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THE CHROMATIC POLYNOMIAL OF A GRAPH

D. H. LEHMER

Dedicated to the memory of Ernst G. Straus

The problem of which polynomials occur as the vertex coloring of a
graph is studied. The results are complete for graphs with fewer than
seven vertices.

The vertex coloring of a graph is an assignment of colors to the
vertices of the graph in such a way that no edge has its end points colored
the same. If λ colors are available the number of ways that a graph G can
be so colored is denoted by P(G, λ). This function is a monic polynomial
of degree V with integer coefficients, where V is the number of vertices.
The smallest positive integer λ for which P(G, λ) > 0 is called the
chromatic number of G. For example, the chromatic polynomial of a
triangle is easily seen to be

λ3 - 3λ2 + 2λ = λ(λ - l)(λ - 2)

while that for the cube is

λ8 - 12λ7 + 66λ6 - 214λ5 + 441λ4 ~ 572λ3 + 423λ2 - 133λ

= λ(λ - l)(λ6 ~ llλ 5 + 55λ4 - 159λ3 + 282λ2 - 290λ + 133).

Thus the cube can be colored in two colors in just two ways while the
triangle requires three colors and then can be colored in six ways.

An outstanding problem in graph theory is to decide whether a given
polynomial is the chromatic polynomial of some graph. It is the purpose
of this paper to look into this question. A complete account is given for
graphs with fewer than seven vertices. A statistical sample of 100 of the
graphs with 10 vertices is also discussed.

Suppose the given polynomial is

(1) P(λ) - λ - ap-1 + a2λ-* + .. +(-irV 1 λ+(-l)V

Then v must be the number of vertices of the proposed graph G. Secondly
it is known that ax is the number of edges of G. Furthermore, it is known
that at > 0. Since a graph with at least one edge cannot be colored in less
than two colors, it follows that P(λ) is divisible by λ(λ — 1). In particular
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aυ must be zero. If we continue to look for the roots 2, 3,... and remove
these to whatever multiplicities they occur, we can write P(λ) in the form

(2) P(λ) = λw°(λ - l ) m i (λ - 2)mi (λ - k + l)mkιR(λ)

K>1),
where R(k) Φ 0. We call R(λ) the residual quotient of P(λ). If there is a
graph G for which

P(λ) = P(G,λ)

then a necessary condition on R(λ) is that i?(λ) have no rational root. In
fact, since R(λ) is monic, its rational roots are integers and indeed
positive integers because ai > 0. Furthermore its integer roots, if any,
are > k by definition of i?(λ). If R(n) = 0 for some integer n > k then G
could not be colored in n colors but could be colored in k < n colors. This
is a contradiction.

The number k defined by (2) is, of course, the chromatic number of
G.

If we are examining a set of graphs G to discover new residual
quotients i?(λ), our search will be considerably reduced by using the
following four theorems. Although these are known theorems (see for
example Ore [1]), their proofs are sketched and a few comments are given.

THEOREM 1. Suppose that G is not connected so that there exist two
graphs Gλ and G2 such that

G = GλU G2 and GλC\ G2 = 0.

Then

Proof. Color each of Gλ and G2 separately. Since they do not intersect,
the theorem follows from a fundamental combinatorial principle.

Two facts follow from Theorem 1:
(a) The set of all chromatic polynomials is closed under multiplica-

tion.
(b) In looking for new residual quotients we may confine our atten-

tion to connected graphs.

THEOREM 2. Let G be the union of two graphs GΎ and G2 that have a
single vertex in common. Then

P(G1,λ)P(G2,λ)
P{G, A) = 7 .
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Proof. Let V be the common vertex. If we color Gλ and G2 separately
V will be colored the same way only one time in λ. Such graphs can be
omitted in our search for new residual quotients. Graphs with "whiskers",
that is vertices of valence 1, belong to this class. The chromatic poly-
nomial of a graph with n whiskers is divisible by (λ — l)n+1.

THEOREM 3. Let G have an edge E whose destruction would cause G to
become two disconnected graphs Gλ and G2. Then

\\ (λ-l)P(Gl9\)P(G29λ)
A) =

Proof. If we color Gτ and G2 separately the two ends of E connecting
Gλ and G2 will be colored differently λ — 1 times out of λ.

THEOREM 4. Let G be the union of two graphs Gλ and G2 that have only
one edge in common. Then

f(G,,λ)f(O2,λ)

Proof. Let A and B be the vertices of the common edge. By Theorem
1, the colors of A and B being specified, the rest of G2 can be colored in

* [ λ ( λ - l ) ]

ways. To color G we may first color Gλ in P(GV λ) ways and then color
G2 in Q ways.

A common corollary of this theorem is the case of the "attached
triangle" in which there is a bivalent vertex V whose other vertices are
adjacent vertices of G. In this case,

P(G,λ) = P ( G 1 , λ ) ( λ - 2 ) .

If G is disconnected or nearly disconnected in the sense of Theorems
2, 3 and 4 it is clear that G will not produce a "new" residual quotient,
that is, its residual quotient is the residual quotient of a simpler graph.
Graphs that don't satisfy the hypotheses of Theorems 1 to 4 we call
sturdy. In the following table we give the number N of graphs, the number
Nc of connected graphs, and the number Ns of sturdy graphs with V
vertices for 1 < v < 6.
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N 1

1
2
4

11

1
1
2
6

0
0
0
2

5 34 21 5
6 156 112 26

Totals 208 Ϊ43 33

Hence by examining only 33 graphs with < 6 vertices it is possible to find
all the residual quotients of 208 graphs. These may be listed in lexico-
graphical order, along with their discriminants as follows. There are only
21 of these polynomials since several non-isomorphic graphs have the
same residual quotients.

Residual Quotient Discriminant

λ2 - 2λ + 2 " -4
λ2 - 3λ + 3 -3
λ2 - 3λ + 4 -7
λ2 - 4λ + 5 -4
λ2 - 4λ + 6 -8
λ2 - 5λ + 7 -3
λ2 - 5λ + 8 -7
λ2 - 6λ + 10 -4
λ3 - 4λ2 + 7λ - 5 -23
λ3 - 5λ3 + 9λ - 7 -44
λ3 - 5λ2 + lOλ - 7 -23
λ3 - 6λ2 + 13λ - 11 -31
λ3 - 6λ2 - 14λ - 11 -59
λ3 - 6λ2 + 14λ - 13 -59
λ3 - 7λ2 + 18λ - 17 -23
λ3 - 7λ2 + 19λ - 19 -76
λ3 - 8λ2 + 23λ - 23 -23
λ3 - 9λ2 + 28λ - 29 -31
λ4 - 5λ3 + 10λ2 - lOλ + 5 125
λ4 - 7λ3 + 21λ2 - 30λ + 17 257
λ4 - 8λ3 + 28λ2 - 47λ + 31 2597
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There are 1044 graphs with 7 vertices; 853 or 82% of these are connected
graphs. A random sample of 100 of these graphs showed 20 to be sturdy.

It was decided to take a random sample of 100 graphs for the
12,005,168 graphs with 10 vertices (of which 11,716,571 are connected).
These were fully analyzed for their residual quotients. Of these 100 graphs
64 were sturdy. We list below those residual quotients not found in the
above tabulation together with their discriminants.

Residual Quotient

λ2 - 5λ + 9
λ2 - 6λ + 11
λ3 - 8λ + 25λ - 29
λ3 - 10λ2 - 35λ - 43
λ3 - l lλ 2 + 42λ - 55
λ3 - l lλ 2 + 43λ - 58
λ4 - 9λ3 + 34λ2 - 69λ + 50
λ4 - 10λ3 + 41λ2 - 80λ + 61
λ4 - 10λ3 + 42λ2 - 86λ + 72
λ4 - l lλ 3 + 51λ2 - 117λ + 109
λ4 - 12λ3 + 56λ2 - 121λ + 101
λ4 - 12λ3 + 57λ2 - 126λ + 112
λ4 - 12λ3 + 58λ2 - 130λ + 114
λ4 - 12λ3 + 60λ2 - 145λ + 143
λ4 - 13λ3 + 65λ2 - 149λ + 131
λ4 - 16λ3 + 100λ2 - 288λ + 322
λ4 - 17λ3 + 112λ2 - 339λ + 398

Discriminant

-11

-8
-199

-23
-23
-107
2836
144
5584

16357
1371

3136
6224

23909

1963
2048

1929

In addition to the above there were

31 polynomials of degree 5
27 polynomials of degree 6
13 polynomials of degree 7.

As to the distribution of chromatic numbers among the 100 random
graphs: 29 graphs need three colors and 56 need four colors and 15 need
five colors.

The number of edges range from 14 to 35 and are distributed as
follows.
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Number of Number of Number of Number of
Edges Graphs Edges Graphs

11
17
10

5
6
3
3
1
1

76 of the 100 graphs had Hamiltonian circuits.
The roots of R(λ) are for the most part tightly clustered. This is

shown by the smallness of its discriminant. No cubic polynomial has a
discriminant less than -23 and six residual quotients have this minimum
value. However there are graphs whose residual quotient have quite large
discriminants. For example, the discriminant for the cube graph is
-39,069,367.

Of course, all these results were obtained electronically. We conclude
this report by giving a very brief account of the algorithms used.

In the first place, all graphs are handled by means of their adjacency
matrix {aij}υXυ where

_ 11 if vertex i is adjacent to vertex 7
ιj \ 0 otherwise.

This is a symmetric matrix with 0's on its diagonal. Those elements which
lie above the main diagonal can be assigned arbitrarily to determine an
arbitrary graph. To make a random choice of the /th row of this upper
triangular matrix we generate a large random integer, extract V binary
digits from its center and decapitate i of its digits. This leaves a V - /-digit
random binary number for the /th row. The matrix is now made symmet-
ric.

To find P(G,λ) we use the following.

THEOREM 5. Let G be a graph with an edge E. Let the endpoints of E be

Vx and V2. Let G' be the result of destroying E {but not Vx or V2). Let G" be

the graph obtained from Gr by letting Vλ coincide with V2. Then
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Proof. We can color G' in λ colors by coloring G properly and then
coloring G improperly so that the vertices V1 and V2 have the same color.
This last operation is equivalent to coloring G" properly. That is,

P(G',λ) = P(G, λ)+P(G", λ).

To use Theorem 5 in finding the chromatic polynomial of a given graph G
with E edges one proceeds as follows.

First, one replaces G by the two graphs G' and G" and sends them to
two stores, S+ and S_. Each of them has at most E — 1 edges. Next, one
processes in the same way the graphs inS+ and S_, being careful to place
the output graphs, which now have at most E — 2 edges, in the ap-
propriate storage.

One proceeds in this way until, in E steps, there are no edges left in
any of the graphs.

A simple counting process collects the coefficients of the chromatic
polynomial of G.
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