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CONTINUITY OF HOMOMORPHISMS
OF BANACH G-MODULES

B. E. JOHNSON

We consider whether, given a locally compact abelian group G and
two Banach G-modules X and Y, every G-module homomorphism from X
into Y is continuous. Discontinuous homomorphisms can exist only when
Y has submodules on which G acts by scalar multiplication. They are also
associated with discontinuous convariant forms on X so if either of these
are absent them all G-module homomorphisms are continuous.

1. Introduction. Throughout this paper G is a locally compact
abelian group.

DEFINITION 1.1. A Banach G-module is a Banach space X with a map

(g, x) = gx of G X Xinto X such that
(i) x — gx islinear on X (g € G).

(ii) g(hx) = (gh)x (g, h € G, x € X).

(iii) ex = x (x € X, e is the identity element of G).

(iv) There is a K € R with

lgxll < Klx[l  (x € X, g € G).

Note that we do not require any continuity of the map (g, x) — gx in
g—in fact in most of the paper we will be treating G as a discrete group.

A G-submodule of X is a closed linear subspace X, of X with gx € X
(g € G, x € X;). The G-module X is scalar if for each g € G there is
A(g) € C with gx = A(g)x (g € G, x € X). If X+ {0} then A(e) =1,
A(gh) = A(g)A(h) and |A(g)| < K. Applying this last inequality to g”
(n€Z) we see |A(g)]=1 so A is a character and mild continuity
hypotheses on g — gx would imply that A is continuous.

DEFINITION 1.2. Let X, Y be Banach G-modules. Then S: X —» Yisa
G-module homomorphism if it is linear and S(gx) = gS(x) (g € G, x € X).

If Y is a scalar module then S(gx) = A(g) S(x) and we say that S is
A-covariant. In the special case when A = 1 is the trivial character we say
S is invariant. When Y = C we call S a form.

Invariant and covariant forms are related in many cases because if
S is a A covariant form on X and 7: X — X is a linear map with
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T(gx) = A(g)~! gT(x) then ST is an invariant form because ST(gx) =
S(A(g)! gT(x)) = gST(x). When X is a G-module of functions on which
G acts by translation such a T is given by (Ta)(h) = A(h) 'a(h).

The main result of this paper [Theorem 4.1] is that if S is a G-module
homomorphism of X into Y then the separating set of S is the direct sum
of finite number of scalar G-submodules of Y. This is proved by methods
similar to [1] involving identifying certain intersections of ranges (Xa,g,)Y
where the a; € C. Our method for doing this depends on doing it first of
all for Y =1/°(G) and to achieve it there we need some results on
difference operators which are given in §2.

2. Two Lemmas. Throughout this section R” is partially ordered by
the product order (except that x < y means x; < y, for all i) and @, b € R"
with @ < b. For x € R" we put |x| = max|x,|. The standard basis vectors
of R" are denoted by ey,...,e,. If x, h€R’, a<x—-h<x<
x + h < b and g is a complex valued function on (a, b) we define

Ag=A(x,h)g= [g(x + hie;) —2g(x)cosh h; + g(x — hiei)]hi_z'
Abusing notation A, g is a function of x and we have A;A ;g = A A, g.
Let A=AA,--- A,. Lemma 2.2 is an extension of Schwarz’ Theo-

rem to functions of several variables with the operator D? replaced by
D? — I; Lemma 2.1 is a preparatory result.

LEMMA 2.1. Let u, v € (a, b) with u < v. Suppose g is continuous
(a, b) = C and g(x) = 0 whenever x; = u; or v; for some i. Suppose also
that Ag =0 whenever a<x—h<x<x+h<b. Then g is zero
throughout (a, b).

Proof. We prove the results by induction on n. When n = 1 we see
that if we have any three points in (a, b) in arithmetic progression and g
is zero at two of them it is zero at the third. Hence g is zero at all points in
(a, b) of the form (1 — A)u + Av where A = 275¢ (s, t € Z). By continuity
g is zero throughout (a, b).

Suppose the result holds whenever n = k and g satisfies the hypothe-
ses for n = k + 1. Let ¢ € (a,,,, b,.,,) and let y, h € R*. For all y, . ,,
By Witha, oy <y = heyy <Yiwr <Y1 + hpyy < by, we have

A(yk+1’ hk+1)G =0
where

G()’k+1) = Al(y’ h)Az(y, h)--- Ak()’a h)g(}’pu-d"k, J’k+1)~
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Also G(u,,) = 0 = G(v; ). Thus by the result forn = 1, G(c) = 0. We
now apply the inductive hypothesis to the function g(x,, x,,...,x,, ¢) and
the result follows.

LEMMA 2.2. Let f be continuous (a, b) = C and suppose that for each
x € (a, b) there are complex valued functions a;, B; (i = 1,...,n) defined in
a neighbourhood of 0 in R" where a; and B; are constant with respect to the
ith variable, such that

f(x+h) =Y a(x + h)cosh b, + B,(x + h)sinh h, + of|h|"")
i=1
as h — 0. Then there are complex valued functions A;, B; (i = 1,...,n) on

(a, b) where A; and B, are constant with respect to the ith variable such that
for all x € (a, b)

f(x) =

M=

A;(x)cosh x; + B,(x) sinh x;.
1

Proof. First of all we show that if a < x — h < x < x + h < b then
Af = 0. We have

A(x,h)f= 4’1(Ai(x + %hiei, -;—h)f

"2k
Applying this to each of the factors in A =AA,--- A, we express
A(x, h) as the mean of 4" terms of the form CA(y, 3h) where C is the
product of some of the terms cosh 34,. If we denote |A(x, h)f| by K then
for one of these y’s, y® say

+2cosh%h,.A,.(x,h)f+A,.(x Ly 1h)f).

1 1.\
@ — —
A(y ,Zh)'ZKC(zh)

where x —h <y® — 1h <y®+ Lh < x + h and cosh 1k, --- cosh 1h
= C(}h). Repeating the process we obtain a sequence y ™ with

|A(y™,2-"h)f| = KC,;!

n

where

1<C,= C(%h)c(—}h) -+ C(2™™h) < C, < o0

where C,_ is the infinite product IIC(27/h). Moreover y{™ — 2""h <
y(m+D < p(m 4 2-mp 5o the sequence { y(™)} converges to z € (a, b).
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Writing

f(z+k)=Ya(z+k)coshk, + B,(z+ k)sinhk, + f(z + k)
as in the hypotheses of the theorem where f(z) = 0 and f(z + k)|k|"*" —
0 as |k| = 0 and using

By, 27h) e, () coshl 3 - 2)

+B,(y) sinh(y™ = z,)] = 0
we see
KC.' <|A(y™,27h)f| =|A(y™, 27 k) f].
The points at which fis evaluated in calculating the right hand side of this
liein[z —2-2""h,z + 2 -27™h] so that
KC; < 4 C2mh)| F(z)[(hihy - )4
where z(™ is the evaluation point at which f takes its greatest modulus (so
we have z(™ # 7). As|z(™ — z| < 4 - 27™|h] this gives
KC;t < 4"C(h)|f(z)] 2™ = 2" (4ln])" (hyhy -+ h,) 7.
Letting m — oo, C(2™™h) — 1 and we see from the hypotheses on f that
K =0.
Let a <u <v <b. There are complex valued functions 4,, B,

(i=1,...,n) on (a, b) where 4, and B, are constant with respect to the
ith variable such that

g(x) = f(x) = X 4,(x) cosh x, + B;(x) sinh x,

takes the value 0 whenever x; = u; or v, for some i—more precisely put
sinh(x; — w/
() = L0 [T 2ol v0)

sinh(w, — w,)
where the sum is over all n tuples (wy,...,w,) of symbols with w;, = u,, x;,
or v, for all i, the product is over all i for which w; # x; and w, = u; if
w,=v, and w/ =v, if w,=u, Using the addition formula for the
sinh function shows that g is of the form required. We see Ag = Af
because A; A,(x)cosh x; + B,(x)sinh x, = 0. An application of Lemma
2.1 completes the proof.

3. Spectral subspaces as intersections of ranges. Throughout this
section G is a discrete abelian group.

DEFINITION 3.1. For an open set E in G we define
Io(E) = {a;a € I'(G),suppa C E}
where supp a is the closed support of a.
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If Y is a Banach G-module, a € ['(G) then we define

ay= ) a(g)gy

gEG

and Y is a left module over the Banach algebra /(G).

DEFINITION 3.2. For an open set E C G put
Y(E)={y;y€ Y, ap=0foralla € I,(E))}
and put
Y'={a;a€1(G),ap=0forally € Y}.
Y+ is a closed ideal in /*(G). Its hull is the Arveson spectrum of Y
specY = {x; x € G, a(x) = Oforalla € Y*}.
Letg,,...,g, € G,e > 0andy € G. Put

E(gy...gm ¥, 8) = E= {x; x € G.|x(g,) —¥(g)| < e.i=L,....n)

and

n

NE) =Ny (E)= N | X (g~ x(g) )" (5, x(g,)e)""|T.

X€E|j=1

THEOREM 3.3. Y(E) = N(E).

Proof. (i) Lety € Y(E) and x € E. As A(G) is a regular algebra and

z={x;x €6,x(g,)=x(g), j=1....n)

is a compact subset of E, there is a € I'(G) with a(x") # O forall x’ € Z
and a(y) = 0 for all y in a neighborhood of G \ E, that is a € I,(E). Put

i n+1
T=%,= X (g -x(g) )" (g,—x(g)e)"" €1(G).
j=1

Then $(y) > 0 with equality only for y € Z so (£ + a*a)” is nowhere
zero on G which implies b = ¥ + a*a is invertible in /'(G). We have
y=>by =b"'Ly=Yb'y € XY. Thusy € N(E).

(i1) To prove the opposite inclusion, first consider the case G = Z”,
Y = [*°(G) where G acts on /*(G) by translation, that is

(g)(n)=f(g7n) (g, heG,[fel*(G)),

and g,,...,g, are the usual generators of Z". We consider T = 7" as
Rmod27Z and functions on T as 2« periodic functions on R. Let
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y € N(E), &£ € E so that
Xg: =) [gj'l —(exp — iéj)e]"H[gj — (exp iﬁj)e]"H.
j=1

There is z € Y with y = Xz. The Fourier transforms j, 2 of y, z are
Schwarz distributions on T". For m = (m,, m,,...,m,) € Z" put

A(m) = [(1+ m})(1 +m3) - (1 +m2)] .

Then A, A -y and A - z (the pointwise product) are in /}(G) so their
Fourier transforms are in C(T"). Put f=(A-y) =A"*p,g=(A-z)"=
A" * 2. As A™! is the inverse Fourier transform of the distribution

y= (1= D3)(1 - b3)---(1 - D2)
on T" where D, = 9/d7; and Dj¢ = (D;¢)(0) for ¢ € Z so that D;¢ =
D*¢.D?isD;*D,. Thusp =T+f,2=T+g, and

f=a"%(E7-2) =2 s[L (T *g)]
where - denotes the pointwise product of a function and a distribution [4;
p- 117] and

Y ()= Zn‘, [2Sin%(,nj _ gj)]2n+2.

Jj=1
For each j we have

X [(1-D})xg] = (1-D})+(X"s)
+2D+[(D,X") - ¢] -(DE") ¢
so that, because DjDkZA = 0 forj # k we have

Y "(Txg)=T#(X -g) - LoT+(I- D)+ b;x(D,L g)

+LT +(1- Djz)_l(szzA ‘g)

so that

(1) f=a"x[X"(Txg)] =X - X21- D) +D;*(D,L ¢

+(I - Djz)_l *(Djzz ’ 'g).
However (I — D7)~ is the functional

~ ay-1 1 2
(1- D?) (¢)=Ef0 ¢(n,)$(0,0,...,n,,0,...,0) dn,
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where
c(n;) = w(sinh w)'lcosh(nj —a) for0<mn, <27
and (I — D7)+ D, the functional

[(I - Djz)*Dj](¢) = 21—'”];2” s(n,)$(0,...,0,9,,0,...,0) dn;

where s(7,) = w(sinh ) sinh(n; — 7) for 0 <7, <27 and so these
distributions are measures. Thus all the terms in (}) are continuous
functions and, considered as an equation between functions it holds
almost everywhere and hence everywhere. We consider ¢ and s as extended
to 2« periodic functions on R.

As 7 — £ we have £ = O(|n — £*"*?), D;T" = O(|n — £°"*") and
DPT" = O(|n — £°"). However, if § € C(T") with &(n) = O(In — §*")
asn — ¢ then

(I - i)jz)_l* g(n) = 21—17/:" c(1)g(n — te;) dr

= —2};1(;2" c(n; = t)g(”l —(m; - t)ej) dt

- (2smhw)'1[wshnj[)"j cosh(t + 7)g(n —(m, — t)e,) dt
. -
+sinh'qu0 smh(t+w)g(n—-(nj—t)ej) dt

+coshm]jﬂ cosh(7 — t)g('q —(7I,~ - t)ej) dt

+sinhnjf2" sinh(or — t)g(n —(m; - t)ej) dt|.

"

Since [§/cosh(z + 7)g(n — m e, + te;) dt is independent of 5, and
i - 2n
L cosh(t+7r)g('q—njej+ te;) dt=o(ln - ¢ ) asn > ¢

we see that the first integral in this expression is of the form A(n) cosh 7 j
+ o(Jn — €|*") and hence of the form

A(m) cosh(n, — &) + B(n) sinh(n, — £,) + o(ln — &)

where A and B are independent of the jth variable. The other three are
similar and so (I — Djz)‘l* g is of this form. By a similar argument
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I - f)jz)‘1 * f)j * g is of this form so that the decomposition ({) shows
that f satisfies the hypotheses of Lemma 2.2 and so f is of the form
Y A,(x)coshx;, + B(x)sinhx,on Esothat )p=T*f=0o0n E because
the support of T is {0} and (I — Dz)(A {(x) cosh x; + B;(x)sinh x,) =
Thus, if a € I,(E) N9 we have (ay) =4a-y= O because aisa func-
tion in &2 with support in E and so ay = 0.

Taking an infinitely differentiable approximate identity in LY(G) with
support — E we see that I(E) N @ is I' dense in I,( E) and so, since the
product ay is continuous in a we see ay = 0 for all a € I,( E) and hence
y € Y(E).

(iii) Consider now the case in which G = Z", g,,...,g, are its genera-
tors and Y is an arbitrary Banach G-module. Let y, € N(E), a € I(E),
f € Y* and consider the map Y — /®(G) given by

®(y)(g) =f(g%).
We have

[r(@(»)](g) = [2(»)](~7g) = f(g7hy) = ®(hy)(g)
so ® is a G-module and hence an /}(G) module map. Thus,

(I)(J’o) € nlw(c)(E) = [l°°(G)](E)
so ®(ay,) = a®(y,) = 0. However,

®(ayy)(e) = ZGa(g)‘P(gvo)(e) =2 a(g)f(gn) = f(ay,)
ge€

so f(ay,) = O for all f € Y* showing that ay, = 0 and hence y, € Y(E).

(iv) Finally, consider the general case. Denote the injection map
Z" — G given by g/ — g, by « where the g/ are the generators of Z". t* is a
map G — T" and putting ky = «(k)y (k€ Z", y € Y), Y becomes a
Z"-module. Let E’ = *E, ¢’ = *y. Let *'E’ = E and if ¢ < 1 then
I,(E) is the ideal in /(G) generated by ¢« I,(E’) and N(E’) = N(E).
Hence if y €N(E) then 0 =ay = (a)y for all a € I,(E’) and,
because{ b; b € I'(G), by = 0} is an ideal in /'(G) containing ¢ (I( E")) it
contains I,( £) which implies y € Y(E).

4. Automatic continuity results.

THEOREM 4.1. Let G be an abelian group and let X,Y be Banach
G-modules. Let S: X — Y be a G-module homomorphism and let © be the
separating space of S. Then & is the direct sum of a finite number of scalar
submodules of Y. The separating space is defined in [6; p. 7).
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Proof. We apply [6, Theorem 2.3] with € = G, T as the set of all
E(8,--8n ¥,8) (€LY, g,...,8,€ G, ¥ €G,0 <e<1) and X(E)
and Y(E) as in Definition 3.2. By the regularity of /*(G), if F,...,F, €T
with F;,N F,= & for i # j there is b € I'(G) with 5= 0 on F, U F, U

-UF,_ andb—lonF Let x € X. Then x = bx + (e — b)x. If for
some j W1th 1<j<n—1wehavea € I,(F) then ab = 0 so bx € X(F))
(7 =1,...,n — 1). Similarly (e — b)x € X(F,) so that [6: Conditions 2.2]
apply.

For any a € I'(G) with finite support we have S(ax) = aS(x) and so
S(aX) = aS(X) c aY. Hence for each E € T, S(Ny(E)) < Ny (E). By
Theorem 3.3, this implies S(X(E)) € Y(E) so that the hypotheses of [6:
Theorem 2.3] are satisfied. Hence the set A of discontinuity points of S is
finite. Thus for each A € G\A there is E €T with & C Y(E). Let
a € I,(G\ A). By the regularity of /'(G) we have a = X ,a - p; where
p; € I,(E;) and & C Y(E,). Thus, if s € & then as = Lap,s = 0. Hence
&+ 2 I,(G\ A)~ which, by [3; p. 170], implies &*D {a; a € IY(G),
a(A)=0,A€ A} =Z(A) and so spec & C A. As ING)/Z(A) =
and S is an [Y(G)/Z(A) module it is a C” module and hence a direct sum
of n C modules. These summands are scalar G-modules.

COROLLARY 4.2. If in 4.1, S is discontinuous then there is an element x
of G for which

(1) X has a discontinuous x-covariant linear form.

(ii) Y has a non-trivial scalar submodule corresponding to the character

Conversely if such a x exists then there are discontinuous G module
homomorphisms X — Y.

Proof. As S is not continuous, & is not {0} so there is s € & with
s # 0 and x € G with gs = x(s)g (g € G). Let f € Y* with f(s) # 0. For
y € Ylet a,: G - C be the function g —~ x(g)f(g'y). Theny = a,is a
bounded linear map Y — /*(G). Let M be a translation invariant mean
on [*(G) and put F(y)= M(a)). Then F € Y*, a, is the constant
element g — f(s) so F(s) = f(s) # 0 and FS(gx) = FgS(x) =
x(8) FS(x) because a,, = x(g)7a, where 7, is translation by g. Thus FS
is a x-covariant linear form.

For the converse if ® is a discontinuous x-covariant form on X and
y # 0 lies in a scalar submodule then S(x) = ¢(x)y is a discontinuous
G-module homomorphism.
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REMARK 4.3. If G is a locally compact abelian group, X, Y are Banach
G-modules, S is a G-module homomorphism X — Y and the product gy is
continuous in g in some way which ensures that scalar submodules of Y
correspond to continuous characters then we see that 4.2 applies with G as
the topological dual of G.

ExaMPLES 44. If Y is a Banach G-module containing no scalar
submodule then every G-module homomorphism into Y is continuous. If
X =L?(G) (1 <p < o) where G is an extension of a locally compact
abelian group by a discrete group with uncountably infinite torsion free
rank or p =2 and G is compact and weakly polythetic, there are no
discontinuous translation invariant forms on X [2 and 7] and hence, by the
remarks after Definition 1.2, no discontinouus x-covariant forms for any
x € G. Thus, if Y is a continuous Banach G-module then every G-module
homomorphism X — Y is continuous.

The results in this paper can be extended to the case of G-modules
which satisfy Definition 1.1 with (iv) replaced by
(iv)’ For each g € G there is K € R and an integer k£ with

lg™x|| < Kn*|x| (xeX,neZ).

The main changes needed are to replace /'(Z") by the space of functions
of rapid decrease [5; p. 83] and /*(Z) by the space of functions of slow
increase. We now define N( E) by

NNy (87" - x(8,)%) (g, — x(g))e)"Y

k=1 x€E j=1
and need higher order versions of 2.1 and 2.2.
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