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A KRASNOSEL'SKII-TYPE THEOREM FOR UNIONS
OF TWO STARSHAPED SETS IN THE PLANE

MARILYN BREEN

Let S be a simply connected polygonal region in the plane, symmet-
ric with respect to the x and y axes, such that each edge of S is parallel to
one of these axes. Assume that for every set E consisting of 6 or fewer
edges of S there exist points tλ and t2 collinear with the origin (and
depending on E) such that every point in U{e: e in E) is visible via S
from tγ or t2 (or both). Then S is a union of two starshaped sets. The
number 6 is best possible.

Furthermore, an example reveals that there is no finite KrasnoseΓskϋ
number which characterizes arbitrary unions of two or more starshaped
sets in the plane.

1. Introduction. We begin with some preliminary definitions. Let S
be a set in Rd. For points x and y in S, we say x sees y via S (x is visible
from y via S) if and only if the corresponding segment [x, y] lies in S.
Point x is clearly visible from y via S if and only if there is some
neighborhood N of x such that y sees each point ofNΠS via S. Set S is
starshaped if and only if there is some point p in S such that p sees each
point of S via 5, and the set of all such points p is called the (convex)
kernel of S.

A well-known theorem of KrasnoseΓskϋ [5] states that if S is a
nonempty compact set in Rd, then S is starshaped if and only if every
d 4- 1 points of S are visible via S from a common point. Further, points
of S may be replaced by boundary points of S to produce a stronger
result. An interesting problem related to this concerns obtaining a
KrasnoseΓskϋ-type theorem for unions of starshaped sets in the plane R2.
This kind of problem is mentioned in [10, Prob. 6.6, p. 178] and in [1].
Moreover, using work by Lawrence, Hare, and Kenelly [7] concerning
unions of convex sets, the following KrasnoseΓskϋ-type results for unions
of starshaped sets are obtained in [2]: (1) For S compact in R2, S is a
union of two starshaped sets if for every finite set F in the boundary of S
there exist points s and t (depending on F) such that each point of F is
clearly visible via S from at least one of s or /. If in addition set S is
simply connected, then 'clearly visible' may be replaced by the weaker
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term ' visible'. (2) In general, for S a compact set in some linear topologi-
cal space, S is a union of k starshaped sets if and only if for every finite
set F in S there exist points sl9... 9sk (depending on F) such that each
point of F sees via S at least one of the st points. Unfortunately, the
finiteness condition in (2) above cannot be improved, and no finite
KrasnoseΓskϋ number exists to characterize arbitrary unions of two or
more compact starshaped sets, even in the plane. (See Example 4.)

Still, the problem of obtaining a finite KrasnoseΓskϋ number for
certain families of sets remains open. Since the Helly number d + 1 plays
a fundamental role in the classical KrasnoseΓskii theorem, we would
expect the piercing number in [4] to be important in any kind of
generalization. Although an example from [5, pp. 11-12] reveals that no
finite n-piercing number exists for arbitrary families of compact sets when
n > 2, recent work by Danzer and Grunbaum [3] reveals that such a
piercing number does exist for families of boxes. In a similar spirit,
Toussaint and El-Gindy [9] have shown that for polygonal regions whose
edges are parallel to the coordinate axes, the classical KrasnoseΓskii
number 3 may be reduced to 2. Therefore, it seems reasonable to attempt
to establish a generalized KrasnoseΓskii theorem for such sets. This is the
problem considered here.

The following terminology will be used throughout the paper: ConvS,
int S, rel int 5, bdryS, and kerS will denote the convex hull, interior,
relative interior, boundary, and kernel, respectively, for set S. For distinct
points x and y, L(x, y) will represent the line through x and y and
\{x + y) will denote the midpoint of segment [JC, y]. The reader is
referred to Valentine [10] and to Lay [8] for a discussion of these concepts.

2. Preliminary results. We start with an easy lemma.

LEMMA 1. Let S be a compact, simply connected set in R2, with
ayb ^ 5. // each boundary point of S sees via S either a or 6, then each
point of S sees via S either a orb.

Proof. Let JC G S to show x sees via S either a or b. If x e bdry S, the
result is immediate, so assume that x e int 5. Suppose [a, x] % S, and let
[al9 a2] be the component of S Π L(α, x) which contains JC. Clearly
aλ < x < a2, aλ and a2 are in bdryS, and a sees via S neither ax nor a2-
Hence b sees via S both aλ and a2. Since S is simply connected,
conv{ Z>, al9 a2] c S, [6, JC] c S, and the lemma is established.

We make several observations concerning Lemma 1.
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First, if S is not required to be simply connected, then the result in
Lemma 1 fails and in fact S is not necessarily a union of two starshaped
sets. This is illustrated in [2, Example 1],

Next, it is interesting to notice that even when S is a polygonal region
satisfying additional hypotheses, bdryS cannot be replaced by the vertex
set of S in Lemma 1. This is demonstrated in Example 1 below.

EXAMPLE 1. Let S be the polygonal region in Figure 1, with each edge
of S parallel to one of the coordinate axes. Every vertex of S is clearly
visible via S from either point a or point b, yet S is not a union of two
starshaped sets. In fact, no point of S sees via S two members of
{P,q,r}.

Finally, while the result in Lemma 1 holds for two points, it fails for
three, as Example 2 illustrates.

EXAMPLE 2. Let S be the simply connected set in Figure 2. Every
boundary point of S is visible via S from one of the points 0, 6, c.
However, interior point x sees none of these points via S, and S is not a
union of three starshaped sets.
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3. The main theorem. We will be concerned with the proof of the
following theorem.

THEOREM 1. Let S be a simply connected polygonal region in the plane,
symmetric with respect to the x and y axes, such that each edge of S is
parallel to one of these axes. Assume that for every set E consisting of 6 or
fewer edges of S there exist points tλ and t2 collinear with the origin θ (and
depending on E) such that every point in U{e: e in E} is visible via S from tλ

or t2 (or both). Then S is a union of two starshaped sets. The number 6 is
best possible.

Proof. By Lemma 1, it suffices to show that there exist points t, tr in S
such that every boundary point of S sees via S either t or t'. As in [9], it is
convenient to order bdryS in a clockwise direction. It is clear that this
order, in turn, induces a natural order on each edge of S. Since the edges
of S are parallel to the coordinate axes, we may use the terminology
employed in [9] to classify each horizontal edge of S as a 'right' or a 'left'
edge and to classify each vertical edge of S as an 'up' or a 'down' edge,
according to the order it inherits from bdry S.

Observe that relative interior points of 'right' edges see via S no
points above their corresponding lines. Similar statements can be made
for 'left' edges and points below, 'up' edges and points to their left,
'down' edges and points to their right.

Select a 'right' edge eR whosey coordinate is as small as possible and
a 'left' edge eL whose y coordinate is as large as possible. Let R and L
denote the lines determined by eR and eL, respectively. Similarly, select
' up' edge eυ whose x coordinate is as large as possible and 'down' edge eD

whose x coordinate is as small as possible, and let U and D denote their
associated lines. By an observation above, points of rel int eR see via S
only points on or below R. Of course, parallel statements hold for
remaining edges eL, eU9 eD and corresponding lines. By symmetry of S,
clearly U Φ D and R Φ L.

In case line L is below line R and line D is to the right of hne U, then
it is easy to show that S is starshaped and kerS is exactly the rectangular
region bounded by these four lines. In case line L is below line R and line
D is to the left of line U, the argument is equivalent to Case 1 below.
Hence throughout the remainder of the proof we will assume that hne L is
above line R. For convenience of notation, let M (middle) denote the
closed subset of S bounded by lines L and R. Let T (top) be the closed
subset of S whose points are on or above L, and let B (bottom) be the
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closed subset of S whose points are on or below R. For future reference,
observe that each edge of S is a subset of at least one of M, Γ, or B.

The following notation will be helpful: Let £ denote symmetry in the
x axis and let η denote symmetry in the y axis. Let L + and L -
represent closed halfplanes bounded by L with int L — containing no
'left' edge of bdry S. Similarly, define halfplanes U + , U - (with int U -
containing no 'up' edge), !? + , # - , £ > + , / ) - . Note that U9 U + ,
U — are the η-images of D, D + , D - , respectively, while R,R + ,R-
are the ^-images of L, L + , L — .

The proof will be accomplished by considering two cases, determined
by the positions of U and D.

Case 1. For the moment, assume that line D lies to the right of line U.

First we make some observations.
(1) In Case 1, S is convex in horizontal direction. That is, for x, y e S

and [JC, y] horizontal, it follows that [x, y] c S. This holds because for
each horizontal line A, each component of A Π S must have its left
endpoint on some * up' edge (in U 4- ) and its right endpoint on some
'down' edge (in D + ). But D + and U + are disjoint, so A n S has at
most one component. Analogous reasoning shows that S Π D — Π U —
is convex in vertical direction and contains the rectangular region D — Π
£ / - n L+ n R + .

(2) Each region bounded by a simple closed curve in S is contained in
S (since S is simply connected). In particular, if x in S sees via S points a
and b of edge e, then x sees via S the interval [a, b]. Thus (3) below holds.

(3) For x e S and e any edge of bdryS, the subset of e seen by x is a
compact interval (possibly empty).

Now let lines L and R meet the y axis at points p and q, respectively.
We will show that for e any edge in bdry 5, each point of e sees (always
via S) eitherp or q.

(4) The set bdryS Π intL — consists of 'up' and 'right' edges in
U + , one 'right' edge crossing U - Π D - , and 'right' and 'down' edges
in D + . By (1) and (2), it follows that each point of S Π L - sees p. By
^-symmetry, each point of S Π R — sees q.

(5) For e in the remaining part S Π L 4- Γ\ R + (and not on L or Z?),
select rx, ί2 collinear with 0 to satisfy the hypothesis of the theorem for the
edge set

[e, ξ(e), η(e), ξη(e), eR, eL).
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B y d e f i n i t i o n o f eL a n d eR, w e m a y a s s u m e r 1 e Γ = S r Π L - a n d
t2e B = S Π R - .

(6) If e is a 'left' edge, t2 cannot see the relative interior of e and of
η(e), so tλ sees the whole of e and of η(e). By ^-symmetry of S, η(tι) also
sees the whole of e and of η(e). By (1) and (2), conv{tv η(tλ)9 e, η(e)} is
in S. But this set contains /?, so /? sees each point of e. Similarly, if e is a
'right' edge, q sees each point of e.

(7) If e = [a, b] is vertical and preceded and followed by 'left'
('right') edges, then by (6), point/? (point q, respectively) sees a and 6, so
it sees the whole of e by (3).

(8) If e is an 'up' ('down') edge preceded by a 'right' ('left') edge and
followed by a 'left' ('right') edge, then/? sees the upper endpoint of e and
q sees the lower endpoint of e by (6). Hence conv{e, /?, q) has its
boundary in S and lies in S by (2). This means that each point of e sees p
as well as q.

(9) For the remaining cases we may assume by η-symmetry of S that e
is a 'down' edge inZ>+ Π L + Π R + preceded by a 'right' edge and
followed by a 'left' edge. Let a denote the upper endpoint of e and b the
lower endpoint of e. Then /? sees b and q sees a by (6). To complete the
proof, by (3) it suffices to show that some point x0 of e sees/? as well as q.

Now each point of e and of ξη(e) sees tλ or t2, and by (3) there are
some xx e e and some wx e ξη(e) which see tx as well as t2. So β =
conv{ JC1? ί1? wl5 /2} has its boundary in S and is contained in S by (2). In
particular, if we let { pλ} = LΠ [tl912] and { qλ} = R Π [tl912] = ξη(Pι),
then conv{ JC1? pl9 qλ} c β c S and Λ:X sees/?x as well as qv We assert that
some x2^ e sees { p2) = ηipj as well as q2 = η(qι). In fact by (5) and
(3) some η(x2) e η(e) and some w2 e £(e) = ξηη(e) see ίx and ί2, so by

FIGURE 3
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the previous reasoning conv{ η(x2), Pχ9 ?i) is in S. It follows by τj-symme-
try of S that conv{ x29 p2,q2} £ S. In particular, x2 e e sees p2 and # 2.

Note that p = \(ρλ + />2)
 a n ^ 9 = \{q\ + #2)- N o w Λere are two

subcases to consider:
In case [xl9 /?J, [x 2 , Pi\ intersect and [xl9 qx]9 [x2, q2] also intersect,

then we have the situation in Figure 3 (up to permutation of indices 1 and
2). There points ρ\ pi9 xt are collinear and q\ qi9 xt are collinear,
i = 0,1,2. The assertion of the caption of Figure 3 is verified by elemen-
tary geometry and shows for λ = \ that p = 2(px + p2) G [pθ9 Pι\ and
q = 2(^1 + q-i) G [#o> q-λ By convexity in horizontal direction, we con-
clude that conv{x0, p0, p,q,qQ}QS and in particular that x0 e e sees/7
and q.

In case [xv px], [x 2, p2] do not intersect, neither do [xl9 qτ], [x2, q2].
Then conv{x1? pl9 p2, x2} and conv{x1? ql9 q2, x2} have their boundaries
in S. In particular, letting x0 = \{xλ H- x 2 ) e e, [x 0 , /?] U [x 0 , ̂ r] c S.
Again x0 e e sees/? as well as qy the desired result.

We conclude that every point of edge e sees via S either p or #, and
hence every boundary point of S sees via S either p or 9. Therefore, by
Lemma 1, every point of S sees via 5 either/? or q, and S is indeed a union
of two starshaped sets. The proof for Case 1 is established.

Case 2. Assume that line D lies to the left of line U.

The following observations will be helpful.
(1) If V is a vertical line meeting S, each component of V Π S has its

top endpoint on a 'right' edge (in R+) and its bottom endpoint on a 'left'
edge (in L+). Thus L_Π S is convex in vertical direction and contains its
orthogonal projection onto L. Similarly U_Π S is convex in horizontal
direction and contains its orthogonal projection onto U. ξ- and η-symme-
try give corresponding statements on R_Π S and D_n S.

For convenience of notation, let A denote the closed rectangular
region determined by lines L, R, D, U. Let Al9 A[, A2, A2, A3, A'3, A4, A'4

denote the eight closed unbounded regions determined by L, i?, Z>, U
labeled in a clockwise direction about A9 with Aέ meeting A only at the
common vertex <zz, 1 < i < 4, and with Ax = L_Γι U_. (See Figure 4.)
Then we observe:

(2) A is contained in S. In fact, choose points vλ and υ2 which satisfy
the hypothesis of Theorem 1 for the collection of edges [eL, f\{eL), eR,

v(^R)y eυ> £(eυ)} F r o m preliminary comments, for x e (rel int eL) U (rel
int η(eL)), y G (rel int eR) U (rel int η(eR)), and z G (rel int ev) U (rel
int ξ(eυ)), x sees via S at most points of L_, y sees at most points of i?_,
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z sees at most points of ί/_. Hence for an appropriate labeling, we have
υλ G L_ and each point of eL U η(eL) sees υl9 v2 G R_ and each point of
eR U η(eR) sees υ2. Furthermore, by the collinearity of υl9 0, υ29 one and
only one of the points υl9 v2 sees eυ U ξ(ea). If this point is υl9 then
ϋ1eA1 = L_Π U_ and υλ sees eL, η(eL), eυ, i{ev) via 5. By observation
(1) it follows that S contains the subset of bdry^l lying in the first
quadrant. By the symmetry of S, bdryyl c S, and since S is simply
connected, A c S. Similarly, we can concluded c S if v2 sees ev U ^{e^.

From observations (1) and (2) we get:
(3) If V is a vertical line in D+Γ) U+9 then V Π S is a segment. Hence

D + Π ί/+Π S is convex in vertical direction. Similarly, L+Π R+Π S is
convex in horizontal direction.

For future reference, observe that since A c S, no relative interior
point of any edge eL, eΛ, eu, eD can meet 4̂. Therefore, by the symmetry
of 5, we may assume that these edges are labeled so that eL c Al9

eυ c ^ 2 , eΛ c ^ 3 , and eD c ^ 4 . Thus η(eL) c ^ 4 , {(β^) c Al9 η(eR) c

To complete the proof in Case 2, we will show that each boundary
point d of S sees via S two consecutive points from (al9 a2, a3, a4, aλ), the
vertex set of A. Let e be an edge of S containing point d. Clearly e lies in
one of the closed halfplanes determined by each line L, R, Z>, and U.
Since A c ^either e c ^ or e c 4̂̂  for some i, 1 < i < 4. First consider
the situation in which e Q Ai for some ι, and for convenience of notation,
assume / = 1. Choose points tx and /2 satisfying the hypothesis of Theo-
rem 1 for { e, η(e), eL, eϋ9 eR9 eD).

Using earlier comments, it is clear that for an appropriate labeling of
tλ and t29 one of the following must occur: Either tλ G A4 and t2 e A2 or
/x e Aλ and /2 G ̂ 43. In the first case, using observation (1), each point of
e which sees tλ must see a4 and ax as well. Each point of e which sees t2

must see aλ and a2. Thus point d sees two consecutive vertices of A. In the
second case, each point of η(e) which sees tx must see a4 and al9 while
each point of η(e) which sees t2 must see a4 and a3. By the η-symmetry of
5, this forces each point of e to see either aλ and α4 or αx and α2, again the
desired result.

Now consider the situation in which e ^ A\ for some /, and by
symmetry of our assumptions we may assume / = 1. We select points tx

and t2 satisfying our hypothesis for the collection of edges
{ e, £O), eL, eR, ev, eD}. As before, for an appropriate labeling, one of the
following must occur: Either tλ G ̂ 44 and t2 G A2 or tλ G ̂ 4X and /2 G ̂ 43.
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There are three cases to investigate, depending on the classification of

edge e.

Case A. Here we examine the case in which e is a horizontal edge in

A[. Assume e is a 'left' edge. Then ξ(e) is a 'right' edge. If tx e A4 and

t2 G A29 then conv{ί2 U ξ(e)} c 5. By symmetry, conv{£(72) Π e J c S ,

and in particular e sees some point of L Π ̂ 4X. The same holds if tλ e A1

and ί2 G ̂ 3 . δ u t since L+Π R + Γ\ S is convex in horizontal direction and

77-symmetric, it follows that e sees both a4 and αx via S, the desired result.

Symmetrically, if e is a 'right' edge, e sees both a2 and α 3 via A

B. Now we assume that e is a 'down' edge in A[ and either

preceded by a 'left' edge or followed by a 'right' edge (or both). If e is

preceded by a 'left' edge /, then by Case A each point of / and in

particular the top point of e sees via S both a4 and ax. From observation

(3), it follows that every point of e sees both a4 and ax via S. Similarly, if e

is followed by a 'right' edge, the bottom point of e sees both a2 and a3.

Hence every point of e sees both a2 and a3 via S.

Case C. It remains to consider the case in which e is a 'down' edge in

A[ which is preceded by a 'right' edge and followed by a 'left' edge. For

convenience of notation, let e = [a, b] where a is above b. Because eL is

the first edge in A[, a & L. Similarly, b £ D. Recall that every point of the

'down' edges e and ξ(e) (which may coincide) sees via S either tx or t2. By

the £-symmetry of S, every point of e and £(e) sees via S either f&tj = ^

or £( ί 2 ) = S2 There exist points xx and x2 on e such that xx sees via S

both tλ and ί2 while x2 sees via 5 both sλ and s2. Without loss of

generality, we may assume that tλ e A4 and t2 ^ A2. Hence sγ^ A3 and

s2 G ^4X. Observe that none of the segments [a, /J, [<z, s2], [b, 5X], [6, /2] lie

in S. (See Figure 4.) Both a and xx see t2 via 5, so conv{ α, x l 5 /2} c S. In

particular, every point of [a, xx] sees some point of R Π A2, and by

observations (2) and (3), it follows that every point of [a, xλ] sees both a2

and a3 via S. Similarly, since both b and x2 see s2 via S, we conclude that

every point of [x2, b] sees both a4 and av If x 2 is above xλ or if xx = x2,

the argument is finished. If xλ is above JC2, it remains to show that every

point of [xl9 x2] sees two consecutive vertices of A, and it is helpful to

consider two complementary subcases.

Subcase Cl . Here we assume that [tl912] meets the segment [a4, ax].

Because of θ G [tv t2] and ^-symmetry, [/1? /2] as well as [sl9 s2] meet both
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segments [α4, aλ] and [α2, α3]. Then [xv tλ] meets Z> in a pointy ^ A4 Π
D and [x2, j χ] meets D in a point j>2 G i43 Π ΰ . By construction, [jq, /J c
S amd [x2, ̂ x] c S, so using observation (3), we conclude that [xl9 yλ\ U
[y\y yi] u [yi> xi] u [χ2» x i ] ^ ^ B u t ^ is simply connected, so
conv{xl5 yv y2, x2} c S. Since a3 and Λ4 are on [yl9 y2\ it follows that
every point of [xl9 x2] sees via S both α3 and α4.

Subcase C2. Here we assume that [ί1? r2] meets the segment [a3, a4] in
its relative interior. (See Figure 5.) Then [0, tι]ΠL=pι^A4n L, [θ, sτ]
ΠR = q2eA3Π R, [θ, s2]ΠL=p2^A1Π L, and [0, t2] Π R s 9 l e
i4 2 nJ{ . By construction, [x2, 52] and [xl9 /2] lie in S. Thus by observa-
tions (2) and (3), [0, p2] U [0, ft] c 5. By η-symmetry, [0, Pι] U [0, ί 2 ] c
S as well. Since Λ:X sees both tx and ί2 via s, it follows from observation (3)
that xλ sees pλ and ̂ rx via S and also sees a2 and a3 via 5. Similarly, we
conclude that x2 sees/?2 and q2 via 5 and also sees aλ and α4 via S. So we
have again the situation of Figure 3. Determine λ e [0,1] such that
aι = λPi + (1 "" λ)/?2. Then Λ3 = λ ^ + (1 - λ)q2. The conclusion
drawn from Figure 3 in Case 1, Step 9, yields here that the point
Λ:0 = λxλ + (1 — λ)jc2 sees both aλ and a3. Likewise, determine X ^ [0,1]
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such that a4 = Xp1 + (1 — λ')p2- Then a2 = λ'^ + (1 — λ')q2, and as

before the point x'o = λ'xτ 4- (1 — λ')x2 sees both a2 and a4. We have

found that both xλ and x0 see a3, and both x0 and x2 see av Hence every

point of [x1 ? JC0] sees a3 and every point of [x0, x2] sees ax. Both xλ and JCQ

see α 2 and both JCQ and x 2

 s e e a4-> s o every point of [JC1? XQ] sees α 2

 a n d

every point of [x^ χi\ s e e s α 4 I n conclusion, every point of [xv x2] sees

via 5 either a2 or a4, and every point of [xv x2] sees via S either ^ or β3.

We have the required result in Subcase C2.

We have proved that each boundary point of S sees via S two

consecutive vertices from (al9 a2, a3, a4, a^). Therefore, each boundary

point of S sees via S either aλ or a3. By Lemma 1, each point of S sees via

S either αx or a3, and S is a union of two starshaped sets in Case 2. This

finishes the proof of Theorem 1.

FIGURE 6
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To see that the number 6 in Theorem 1 is best possible, consider the
following example.

EXAMPLE 3. Let S be the simply connected set in Figure 6. Set S is
symmetric with respect to the x and y axes, and for every set E consisting
of 5 or fewer edges of S, there correspond points tλ and t2 collinear with θ
such that every point in \J{e: e in E) is visible via S from tx or t2. (Of
course, tx and t2 are not necessarily symmetric with respect to the origin.)
However, S is not a union of two starshaped sets.

We conclude the paper with an example adapted from [5, pp. 11-12]
which reveals that no finite KrasnoseΓskii number exists to characterize
arbitrary unions of two or more compact starshaped sets, even in the
plane. Hence the KrasnoseΓskii-type result (2) in our introduction ([2,
Theorem 2]) is best possible. Moreover, some restrictions like those in
Theorem 1 must be imposed on our sets to obtain better results.

EXAMPLE 4. Let n be fixed, n > 2. For 1 < / < 2«, let Ci9 C- be arcs
on the unit circle defined in polar coordinates as follows:

n-C, = { ( 1 , θ): (i - n + 1 ) ^ < θ < ( ) ^ }

C; = {(1, 0): (i + n + 1 ) ^ < θ < (i + 3n - 1 ) ^ } .

Let α, and bi denote the endpoints of C, , with a\ and b't the endpoints of
C(. Finally, let Sn = U{convC, U convC/: 1 < i < In). (Figure 7 il-
lustrates set Sn when n = 2.)

FIGURE 7
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Using an argument from [5, p. 11], every 2« — 1 of the pairs of arcs
Ci9 C- have a common pair of antipodal points. Hence for every (2n - 1)-
member subset T of Sn, there correspond two points s, t (depending on T)
such that each point of T is visible via S from s or t. However, there is no
line meeting all An arcs, and it is not hard to show that there are no two
points s\ t' satisfying the condition above for the set of midpoints

T' = [ \ { a i + b ^ ^ a ' t + b ' ) : l < i < 2 n ) .

Since n is arbitrary, it is clear that no finite KrasnoseΓskii number exists
for the general case. Thus the result in [2, Theorem 2] is best possible.

The author would like to thank the referee for providing the improved
and shortened version of the proof of Theorem 1, Case 1, and for carefully
reworking the text and figures of Theorem 1, Case 2 so that an assertion
in Subcase C2 could be justified efficiently.
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