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THE ANGULAR DERIVATIVE OF AN
OPERATOR-VALUED ANALYTIC FUNCTION

Ky Fan

The classical theorem on the angular derivative of an analytic
function on the half-plane Rez > 0 is extended to operator-valued
analytic functions.

1. Let IT denote the open half-plane

(1) I1 ={ze C:Rez> 0}.
For a positive number k, let 2, denote the set
(2) 2, ={z€C:|Imz|< kRez}.

The following theorem in complex analysis is well-known:

Let f be a function analytic on 11 such that f(11) C I1. If

. . Ref(z)
(3) a—anmfI Rez ’
then for any k > 0, we have
- flz) _ . Ref(z) .o
(4) zlim = zlim Re, = zlim f'(z)=a.
z€2, ze2, zZE2

The limit lim, _, , , 5, f'(2) is usually called the angular derivative of
f at oo. The above classical theorem is the work of several mathemati-
cians: Julia, Nevanlinna, Wolff, Carathéodory, Landau, Valiron. For the
original sources, the reader is referred to [2, p. 216] and [5, p.108]. The
purpose of the present paper is to extend this classical theorem to
operator-valued analytic functions [3, pp. 92-94].

2. Throughout this paper, 5 denotes a complex Hilbert space. By
an operator we always mean a bounded linear operator on 5. The
identity operator is denoted by I. For an operator 4 on 5, the adjoint of
A is denoted by A*; the real and imaginary parts of 4 are denoted by
Re 4 and Im A respectively:

A+ A* A — A*

ImA =

Red = =——, 2i
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For two Hermitian operators A, B on 5, we write A > B to indicate
that 4 — B is a positive operator, i.e., {(4 — B)x,x) > 0 for all x € 5.
The strict inequality 4 > B means that 4 — B is positive and invertible.
The classical theorem stated above can be generalized to the following
result.

THEOREM. Let F be an operator-valued analytic function on the open
half-plane I1 such that for each z € 11, F(z) is an operator on 5 with
Re F(z) > 0. Suppose there is a Hermitian operator A on # satisfying

Re F(z)
(5) ——m>A fOI‘tI”ZGH
and
(6) forany € > 0, there is z, € 11 such that
Re F(z,)
Rez, Al <e

Then for any k > 0 we have

.1 F(z) .. ||ReF(z)
g LY e 1

lim | F(2) - A = 0.

z€3,
3. In proving our theorem, we shall need the following lemmas.

LEMMA 1. Let F be an analytic function on 11 such that for each z € 11,
F(z) is an operator on 5 with ReF(z) > 0. If z, z, € Il and

(8) ¥(F(2), F(z9)) = [ReF(2o)]/*[F(2) = F(z,)]

X [F(z) + F(zo)*] ' [Re F(z,)] ",

then

2

(9) ¥(F(2), F(20)) "W (F(2), F(2)) <| S5

Proof. This is part (d) of Theorem 3 in [1].



ANGULAR DERIVATIVE OF AN ANALYTIC FUNCTION 69

LEMMA 2. Let F be an analytic function on 11 such that for each z € 11,
F(z) is an operator on # with ReF(z)> 0. If F(zy) =1 for some
z, € I, then

(I2] + |z,

(10) IFC) < penRes] Prz T

Proof. According to the definition (8) of ¥, we have
Y(F(z), 1) = [F(z) = I][F(z) + I]™";

so (9) becomes
2

(1) [F)* + 07 [F)" = NFG) = 1[FG) + 117 <| 58
for z € I1.
Let
afz) = z+ zO ’
which is clearly < 1 for z € II. From (11) we have for z € II:
[F(2)* = N[F(z) = I] < a(2)[F(2)* + N[ F(z) + 1],
which can be written
«  1+a(z) ) — 1+ a(z) - da(z)
O a OB e IR (= a(:)’
1+a(z ) 2a(z) 2
F(z) - 1-a(z) “ 1- a(z)
Then (10) follows from
< z_1+a(z) 1+ a(z)
1)< | F2) |+ 122
< 201(2)1/2 1+ a(z)
“1-afz) +1-—a(z)
_lz+zd+lz =z (el +lzd’ oo

4(Rez)(Rez,) ~ (Rez)(Rezgy)
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4. Proof of the theorem. With the aid of Lemma 2, the proof of
our theorem is an operator-analogue of Landau-Valiron’s proof [4], [S, pp.
87-89] of the classical case. Consider a fixed ¢ > 0. By hypothesis, we can
choose z, € I such that

(12 ] ReFlzy) _

Define operator-valued analytic functions £ and G on II by

(13) E(z) = F(z) — Az,

(14)  G(z2) = [ReE(z)]"*[E(2) — ilm E(zo)] [Re E(zo)] .
By (5), Re E(z) > O for z € II. As

(15) ReG(z) = [ReE(z,)] *[Re E(2)][Re E(z,)] ",

we have also ReG(z) > 0 for z € II. Clearly G(z,) = 1. An application
of Lemma 2 to G gives

(I2] + |2o))°
(Rez)(Rez,)

By (13), (14) and (16), we have for z € II:
“ F(z) A” _IE@)]

(16) 1G(z2)| < for z € I1.

z 2]
1 .
= I—Z—l”[ReE(zo)]VzG(z)[ReE(zO)]1/2 + iIm E(z,) ||
1 2 Tm E(z,)||
< m“[ReE(zO)]VZH IG(2) |+ ——IZI—L
MR B2 (2] + z0)” |, Jm E(z0)|
= Regz |zI(Rez) N
Since
IR E(zo)] _ IReE(z)ll _||ReFlz0) | _
Rez, Rez, Rez, ’
it follows that
(a7) ll F(z) _ ” CUe ) mE(z))

z “T2I(Rez) 2]
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For z € 2, we have

(21 + 1zo)* (1 L[ 2o[\ 2]+ Izl
=1+ 21 T 120l
|z|(Re z) z Rez
s(1+ f9)(\/1+k2+—|—zﬂl—).
z Re:z
Therefore
(18) LI e(l +|%0 )( T+ k2 + Lol ) + Il E (zo)]
z - z Re:z |z]

holds for z € =,. The right-hand side of (18) tends to e/1 + k> asz € =,
tends to co. Since ¢ > 0 can be arbitrarily small, this proves that

(19) I Iﬁ(—)- A|=O.
Next, by (13) we have
[Berte) _ ) |ReEta)) pECel
Re:z Re:z Re:z

_ 2

—Ii(ﬁ —A“ forz e I1
Re:z

z

and therefore
Re F(z)

(20) —AISV1+k2 M—AN forz € Z,.
Re:z z
From (19) and (20), it follows that
. ||ReF(z) _
(21) tlim | 222 A“ 0.

Given k > 0, choose & > 0 so small that for every z € =, the circle
C,(z)={w € C: |w— z| = h|z|} is contained in II. Then from Cauchy’s
integral formula [3, p. 96]

E ( ) f M forz e Ek’
27i Jg, ) (w—z)
we derive
_ F(W) 1
IE"(2)] < h IZICE:)(()”E(W)” h wI;/ICh(z) A”
_1 + h M_A‘ forzEZk.
h  wecl W
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This together with (19) implies

(22) lim | F"(z) — 4] = lim | E"(z)]|= 0.
zE2, z€ 2,

The proof is complete.
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