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ON PROJECTIONS OF REAL ALGEBRAIC
VARIETIES

C. ANDRADAS AND J. M. GAMBOA

In this paper we generalize an earlier result of the authors, showing
that any closed semialgebraic set whose Zariski-closure is irreducible, is
the projection under a finite map of an irreducible real algebraic set (see
Theorem 3.2 below).

1. Introduction. This result is, somehow, striking and shows the
wild nature of irreducible real algebraic sets; no matter how complicated
(in terms of connected components, pieces of different dimensions, etc...)
a closed semialgebraic set is (as far as its Zariski-closure is irreducible,
which is a fairly weak condition), there exists an irreducible algebraic set
projecting onto it. In this way, some examples of “exotic” algebraic sets
are obtained in §4.

Also in §4, as an application, is stated a result on the Harrison’s
topology of the space of orders of function fields, which in fact was the
starting point of this work. The problem is: Is any clopen (i.e. closed and
open) subset of the space of orders of a function field the image of the
space of orders of a finite extension? This question is proposed in
[E-L-W]. The answer is affirmative (see 4.1 below) but as it is usual
dealing with orders in function fields we had to translate the problem to
geometry using the, well known at this moment, correspondence between
clopens and semialgebraic sets of a model of the function field. In
particular some results of [D-R] are needed. Thus the question follows as a
corollary of the geometric result 3.2.

Throughout the paper R denotes an arbitrary real closed field. Given
any real algebraic set V we denote by V, the set of central points of V,
that is the closure of the regular points of V. We work always with the
order topology of R". Finally the symbol = always stands for the
projection into the » first coordinates.

2. The key proposition. Here V' will be an irreducible algebraic
subset of R”. We shall denote by p its ideal polynomials and by R[V] its
coordinate ring.
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2.1. PROPOSITION. Let f,..., [, be polynomials in R[X,,..., X,].
Assume that the semialgebraic set S = VN ({ f; 20} U --- U{f, = 0}) is
Zariski-dense in V. Then there exists an irreducible algebraic set W C R"*!
such that w: W — Vis finite and =(W) = §S.

Proof. The proof follows closely the one of the analogous result in the
case V' = R" which appears in [A-G], Proposition 2.1. So, there we proved
that for any A;,A, € R, 0 < A, < A,, the set of zeros W C R"*! of the
polynomial F(T, X) € R[X,,..., X,,T],

F(T, X) = 0f,(T* = X\, f,) — OT*(T> - \,fy)
p—1

_<T2 - >‘2f1) Z TZ(T2 - 2fi)Qi
i=2

verifies that #: W — R" is finite and #(W)=S8={f, >0} U --- U
{f, = 0}, where it is:

p—1

(211) (T, Xx) =[] (T>~f), and

0T, X) = QT X)/(T*~f).  (i=2.....p—1).

Now, let ¥/ = V' X R be the algebraic set defined by pR[T, X]. It is
obvious that #(W N V) = S. Then all our work is dedicated to show that
for some A, A,, W N V' is an irreducible algebraic set. For that we will
use Bertini’s theorem. First of all we shall assume that f, & p (all
i=1,...,p), since otherwise we would have S = V and then the proposi-
tion is trivial. Also, we shall assume f, — Afj ¢gpforalli,je{l,...,p},
A € R. For if f, = Af, € p then either { £, 20} NV ={f=20} NV if
A > 0 and we just omit one of them,or { /, >0} NV = {-f, >0} NV, if
A < 0, what implies again S = V. Next, we write F(7, X) in the form

F(T,X) = Py + \\Py + A, Py,

where
p—1
(2.1.2) Py=0Qf,T* - QT* - T* Y (T*-2f)0,
i=2
P, = QfT?
p—1

P, =fT* Y, (T*-2f)Q,— Off,.

i=2
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Set C = R(V-1) and let V’(C) (resp. W(C), etc.) be the algebraic set
over C defined by p¢ = pC[T, X]. We define

Z = {(x,1) € C"*%: Py(x,1) = Py(x,1) = Py(x,1) = 0},
H = Sing(V'(C)) u(Z n v'(C)).
Then consider the mapping
¢: V'(C)\H - P,(C)

defined by ¢(x, 1) = (Po(x, 1), Py(x, 1), Py(x, 1)).

Let A be the set of points (A;,A,) € C? such that { P, + AP, +
A,P, = 0} is an irreducible and non-singular subvariety of V'(C)\ H.
Bertini’s theorem (cf. [H], p. 275) assures that A contains a Zariski open
subset of C? provided that dim(im¢) = 2. Since A’ = {(A;,\,) € R%:
0 < A, <A} is Zariski-dense in C?, it is clear that we can take (A, A,)
€ A’ N A once we check the condition on the dimension of im ¢. For that
it is enough to check that there is no homogeneous polynomial
H(Y,,Y,Y,) € C[Y,, Y;, Y,] — {0} such that H(P,, P,, P,) = 0 (mod p°).

Suppose the opposite and assume that H is of degree d. Then

H(Y,, Y., Y,) = )y a, Yo Y5
a+b+c=d
Now, notice that since p* is generated by polynomials in X;,..., X, (but
not in T'), the equation

Ay(X,, .., X))+ A(X,, ..., X)T+ - +4,(X,...,X,)T>=0

(mod p°)

implies 4,(X;,..., X,) € p®foralli=0,...,s.
Thus we shall work on the lowest degree in T of the monomials
P#PEPS. From (2.1.2) we get:

-1 d
@13 rsrtrs= (T G0) Cogrogrree
i=2

+ Tz(“+b)+1G(X, T)
(where in the case p = 2 the first product is taken to be 1).

We will prove that a,, = 0 for all a,b,c. Set h = a + b. We work
by induction on A. If h =0 then a =5 =0 and we have to prove
a4, = 0. Since the independent term of H(P,, P;, P,) is agy,(IT7_, /)¢
we get agy,(IT4, f,) € be As f, &€ % i=1,...,p,itis ay, = 0.
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Suppose a,,,» = 0 whenever a’ + b’ < h. Then
H(Py, P, P)) = ) ag, PePPP5 = T"M(T, X).

a+b+c=d
a+b>h
Since we have seen that PfPLPy = TX*+DR(T, X), the term of degree 2h
in H(P,, P,, P,) comes from those a, b,c such that a + b = h and its

coefficient is, after (2.1.3)

r—1 d
Z aabc(_l)d( 1—[ fz) (_1)Cf1b+c pa+c.
“hpen =

Thus we obtain
h
Z “i,h—i,d—hfld_ifpd_hH =0 (modp°),
i=0

which implies

h fp i
Z ai,h—i,d—h(f_) =0
i=0 1

where this equation takes place in the function field of V(C). But this
means that f,/f, is algebraic over C, that is, f, = Af; (mod p°) for some
A € C.Since f,, f, € R[X,,..., X,],if weset A = 8 + p/-1, 8,p € R, it
follows f, = 8f; mod(p® N R[X]).

As p is real we get p = p° N R[X] and therefore f, = §f, (mod p),
against our hypothesis on the choice of f;, ..., f,.

To complete the proof of Proposition 2.1 we shall show that

W(C) = {Py+ AP, + A\, P, = 0}
is irreducible not only as a subvariety of V'(C)\ H but also as a
subvariety of V’(C). For suppose this is done. Then if § is the ideal of
W(C) in the coordinate ring of V’(C) we have that q = § N R[V]is a
prime ideal. On the other hand, since #(W) = S, where W = W(C) N
R"*1 we get:
dimW = dimW(C) = dimV’(C) — 1

which shows that g is a real ideal. Therefore W is an irreducible
subvariety of ¥’ in the conditions of 2.1.

Finally, to prove that W(C) is an irreducible subvariety of V’(C) we
claim it is enough to prove that codim#(H) > 1. Indeed, assume this is
proved. Then, W(C) N H has codimension > 2 in V’(C) since the mor-
phism 7: W(C) N V'(C) - V(C) is finite (the polynomial P, + A, P, +
A, P, € C[X, T]is monic) and therefore has finite fibers on all the points
of H. Thus, W(C) has no components contained in H and 2.1 is proved.
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Therefore the proposition follows at once from the lemma:

22. LEMMA. Let 7: V'(C) = V(C) and H = Sing(V'(C))U(Z N
V'(C)) be as above. Then, codimw(H) > 1.

Proof. Since V'(C) = V(C) X C it is clear that codim(Sing(V’(C)))
> 1. Thus it is enough to show codim#(Z N V'(C))>1. Let a €
w(Z N V'(C)). Then there is t € C such that Py(a,t) = P(a,t)=
P,(a,t) = 0. From Py(a,t) = 0 we get one of the following possibilities
(check (2.1.2)):

(i) fi(a) = 0. Then a € V(C) N { f; = 0}.

(ii) ¢ = 0. But then from P,(a,0) = 0 it follows readily a € V(C) N
{ITf., f; = 0}.

(iii) Q(a,t) = 0. Then, from Py(a, t) = 0 we get also

tt Z( —2£,(a))Q.(a,t) =

If r =0by (i) itis a € {T17_, f 0}. Thus we are reduced to the system

Q(a,t) =

(2.2.1) rl

Y (- 2f(a))Qi(a,1) =0

i=2
As Q(a,t) =TI (1> - f(a)) (see (2.1.1)) we have 1> — f(a) = O for
some j. If there are i, j,i # j, with > — f(a) = t* — f,(a) = 0 it follows
a € V(C)N {f,— f,=0}. Now assume ¢*> — f,(a) = 0 only for one j,
say j = 2. From the very definition of Q; (see (2.1.1)), the second
equation of (2.2.1) reduces to

(¢ = 2£,(a)) Q5(a,1) = 0.
Again, eithera € V(C) N { f, = 0}, or
r—1

Q,(a,t) = 11;12 (= f,(a)) =

whence a € V(C) N { f, — f; = 0} for some j > 2.
In conclusion, in any case we have

e e V() o[ T1A)(IT (- 1)) = o]

i<j
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and since by hypothesis f; € p and f, — f; € p all i, j, we have
codim#(Z N V(C)) = 1

and the proof is complete.

2.3. REMARK. Note that if p = 1 in Proposition 2.1, the above proof
works by setting f, = -1.

3. The main result. We start with the following:

3.1. DEefFINITION. A semialgebraic set S C R” is called irreducible
if the smallest algebraic set which contains S is irreducible (i.e.
F(S)= {fER[X,,...,X,]: f(x)=0 all xS} is a prime ideal of
R[X,,..., X,].

Now we are ready to prove the main result:

3.2. THEOREM. Let S C R" be an irreducible closed semialgebraic
subset. Let V C R" be the Zariski closure of S. Then there exist a positive
integer m and an irreducible algebraic set W C R"*"™ such that:

(1) m: W — Vs finite.

2) w(W)=S.

Proof. We may assume S written in the form (see [A-G))
S=(§;Nn---NnS,)NV
with
S;={fuz=0}uU---U{f, =0},

where for each (k,i)e {1,...,p} X{1,...,m} f,€R[X,,...,X,]
Then we will find W ¢ R"*™. We work by induction on m.

For m = 1 the theorem is Proposition 2.1. Assume now that there
exists an irreducible algebraic set X’ € R"*™~! such that

(1) 7(X’) — V is finite, and

g =(X)=8"=(S;nNn---NnS,,_)NV.
(Notice that V is still the Zariski closure of S’.) Let X = X’ X R ¢ R**™
be the algebraic set defined by the extension of the ideal of X', #(X’) C
R[X,,....X,, Ty,...,T,_4], to the polynomial ring R[X],..., X,,
Ty,...,T,_,, T] where T is a new variable. Obviously X is irreducible and
x(X)=S".
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Now let F(T,X)=P,+ AP, +A\,P, € R[X,,..., X,,T] be the
polynomial displayed in 2.1.2 with the property that for any A, A, € R,
0 <A, <A, the set Y’ of zeros of F (as a subset of R"*!) projects onto
S,,. Let Y be the algebraic subset of R”*” defined by F(T, X) considered
as a polynomial in R[X,,..., X, T},...,T,,_,T]. Thenm: (XN Y) >V
is finite since both 7: X’ — V and #: Y’ — R” are finite, and #(X N Y)
= S.

Let C = R(V-1) be the algebraic closure of R and consider
Z= {(57 tl""’tm—-ht) € Y(C) PO(E, t) = Pl()_cat) = PZ(E’t) = O}
After Lemma 2.2 it is codim(7(Z)) > 1. Let H = Sing( X(C)) U (Z N
X(C)). Then codim(7(H)) > 1 since we have dim X’ = dim V. Consider

¢: X(C)\H - Py(C)
defined by

¢(-§’ tlﬂ et tm—l’ t) = (PO(Ea t)9 Pl('lca t)’ P2(-l‘9 t))

Since X(C)\ H is non-singular, Bertini’s theorem applies assuring that
the set of points (A, A,) € C? such that (X(C)\ H) N Y(C) is an
irreducible, non-singular subvariety of X(C)\ H, contains a Zariski open
subset of C? provided that dim(im¢) = 2. Since R is Zariski-dense in C
we can choose A;,A, € R,0 <A, <A,

As 7(X) = S’ which is Zariski-dense in V, to prove that dim(im¢) =
2 it is enough that P,, P, and P, do not verify any homogeneous
polynomial, modulo p¢ =_¢(V)C[X] and this was shown in the proof of
Proposition 2.1. Finally, since codim(#(H)) > 1 it follows that Y(C) N
X(C) is irreducible in X(C). Thus, as in 2.1 the real algebraic set
W = Y N X verifies the conditions of the theorem.

3.3. DEFINITION. Let S be a semialgebraic subset of R” and let V' be
its Zariski closure. We say that S is regularly closed in V if it coincides
with the closure of its interior, where both, closure and interior are taken
in the order topology of V (also called strong topology).

3.4. COROLLARY. Let S,V and W be as in Theorem 3.2. Assume further
that S is regularly closed in V. Then w(W,) = S.

Proof. Since m: W — V is finite, m(W,) is a closed semialgebraic
subset of V (see [B] p. 170). So it is enough to show that S c a( w).
Assume x € $\ 7( W.). Then there exists a strong open neighborhood U
of x, Uc S, such that UN «(W,) = @. Thus U C «(W\ W,). But
dim(7(W\ W,)) < dimW = dimV = dimU (once more by the finiteness
of =), contradiction.
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3.5. REMARK. Notice that the condition of the irreducibility of S in
Theorem 3.2 is necessary. Indeed it is immediate to check that no
irreducible real algebraic set can project onto the semialgebraic consisting
of two points.

4. Applications. We describe first of all the applications of Theorems
3.2 to the order space of a function field. For that let K = R(xy,...,X,,)
be a real function field of transcendence degree r over R. We denote by
X(K) its space of orders endowed with Harrison’s topology. Given any
formally real extension E of K we consider the restriction morphism ¢
defined by

e: X(E)-> X(K): P> PNK.
A subset Y of X(K) is called clopen if it is open and closed in the

Harrison’s topology of X(K) (cf. [E-L-W]). Since X(K) is compact ([P]),
we can write Y as a finite union of basic open sets

Y=H U - UH,

where
H,=H(fy.....J,) = (P € X(K): f,€ P,.... [, € P)
and all the f,, are in any ring 4 with quotient field K.

4.1. THEOREM. Let Y be any clopen subset of X(K). Then there exists a
finite extension E of K such that Y = im .

Proof. Let V' be a non-singular model of K and assume that
R[x,,...,x,] is the coordinate ring of V. We write Y =H, U --- UH,
with H,= H(fy;,.--, 1)), fui € R[Xy,...,x,]. We define the semialge-
braic set associated to Y by

YA___H;U v UH;
where
H={xeV: fi,(x)>0,...,f,(x) > 0}.

Let Y be the strong closure of Y'in V. Then Y is a semialgebraic set,
regularly closed in V. Then by 3.4 there exists an irreducible algebraic set
W c R"*™ such that #(W) = m(W,) = Y. Let E be the function field of
W. Since =« is finite E is a finite extension of K. Furthermore, from
7(W,) = Y it follows (see [D-R], Prop. 2.10) that Y = im ¢, what achieves
the proof.
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Theorem 3.2 can also be stated in terms of the real spectrum of real
finitely generated R-algebras as follows (we refer to [C-R] for the defini-
tion and main properties of the real spectrum).

4.2. COROLLARY. Let A be a real domain, finitely generated as R-alge-
bra. Let C be a closed constructible set of Specg A with non-empty interior.
Then there exists a real domain B, integral over A such that C = j*(Specy B).

Proof. In [C-R] it is proved that if V, W are algebraic sets and f:
V — W is a morphism, then the diagram

V KA w

l {

Specy R[V] 4 Specg R[W]

is commutative, where the vertical arrows are the natural inclusions of V
and W into their real spectra (see [C-R]). On the other hand in [C-R] it is
proved that the correspondence between closed constructible sets
Speck R[V'] and closed semialgebraic sets of V' via the inclusion V' —
Specy R[V'] is one to one. Then 4.2 follows at once from Theorem 3.2.

We end the paragraph showing how Theorem 3.2 can be used to
produce “exotic” real irreducible algebraic sets. For it we define a
semialgebraic set to be connected if it is not the union of two disjoint and
non-empty open semialgebraic sets (see [B]).

Then we show:

4.3. PROPOSITION. For any natural numbers n, p, there exists an
irreducible, non-singular real hypersurface in P"*Y(R) with p equidimen-
sional connected components.

Proof. Clearly it is enough to find a non-singular, irreducible, bounded
affine hypersurface of R"*! verifying the requested conditions. The case
p = 1lis, obviously, trivial.

To get hypersurfaces with p connected components, we do the
following: we take p disjoint balls, B,,..., B,, with

’ p?

B, = {x ER"ij(x) ZO}, fj(X)::rjz_ i (Xi—' ajt)z'
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Then we use Proposition 2.1 (for ¥V = R") to produce an irreducible
hypersurface W c R"*, of equation F(T, X) = 0, which projects onto
S =B, U--- UB, It is clear that W has at least p connected compo-
nents. Now it is a matter of working out the equation F and playing with
the centers g; and the radius r; of the balls B; to show that W has indeed
only p connected components (therefore of dimension n) and is non-sin-
gular.

Let s,(x;,...,x,) denote the jth elementary symmetric function.
Then the polynomial F(7, X) of 2.1 takes the form

(43.1) F(T,X)P=(p—1)T?

+ L M(X)TD 4+ ()N f, -,
j=1

where

(‘1)ij(X) = sj()\lfl""7fp-—l) +fpsj—1()\2f1»---,fp—1)

p—1
+ 2 5, (Afis 20 fy)-
i=2

Now, taking into account that if f,(x) > 0 for some k then f,(x) <0
for all / # k one can check, by working on M(x) that we can choose
a;€R"andr;€R, j=1,...,p, such that for all x € Sitis M;(x) > 0,
j=1,..., p. Thus it is immediate from 4.3.1 that over any x € S we have
either two points if [12_; f,(x) # 0, or a unique point, (x,0), in case
fi(x) =0 for some k =1,..., p. Since 7: W — R" is finite this implies
that W has exactly one connected component over each ball B, ..., B,.

That F(T, X) is non-singular follows readily by taking derivatives in
(4.3.1). We have

p—1
a7 = T|2p(p = DT+ T 2p = )M, (x) T D .
j=1

Since M (x) > 0 for x € m(V), (dF/dT)(x,t) = 0 implies 7 = 0. But
(x,0) € Sing(V') implies x is a singular point of some of the spheres
{fj =0}, j=1,..., p, absurd.

Concerning the dimension anomalies of real algebraic sets we prove:

4.4. PROPOSITION. For any finite increasing sequence of natural num-
bers sy < s, < --- <, there exists an irreducible real algebraic set of
dimension s, with pieces of dimensions s, s,, ..., s, (and no pieces of other
dimensions).
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Proof. In R* we consider linear subspaces L, of dimension s,,
transversal each other, for k = 0,...,r — 1. Then, if L, is defined by the
linear forms /,...,/ _, we have L, = {f, >0} where f, =
—(If + -+ +12_,). Now let B be a closed ball in R* of radius ¢ and
centerat apoint g € R’ with ||g|| large enough, tangent to the linear space
L,  and such that L, " B= & for all k=0,...,r — 2. Notice that
B = {f >0}, where f, = [e — X, (x, — a;)*], ¢t odd. Thus by taking
¢ small enough and ¢ suitably large we can make the positive values of f,
as small as needed. Then consider the semialgebraic set

S={fo20U---U{f_1 20} U{f >0}

Let W be the hypersurface produced by Proposition 2.1 which projects
onto S. Writing the equation of W as in the proof of 4.3 it is immediate,
from the fact that f, < 0 over R* forall k = 0,...,r — 1, and the remark
on f, made above that we can choose ¢, g and ¢ such thatitis M(x) > 0
for all x € S and all j. Thus, as in 4.3, W consists of one single point over
all the linear subspaces (hence coincides with them) and two (symmetric)
points over B which coincide over the boundary of B. Hence 4.4 follows
at once.

4.5. REMARK. Notice that from the proof of 4.4 it follows that W is
connected when s, > 1.
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