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ON THE RANGE OF AN ANALYTIC
MULTIVALUED FUNCTION

T. J. RANSFORD

Proofs are given of set-valued analogues of Rouche's theorem, the
argument principle, and the Picard theorems. This is achieved by devel-
oping a rudimentary theory of upper semicontinuous multivalued lifts.

Introduction. Analytic multivalued (a.m.v) functions first ap-
peared in 1934 in a paper by K. Oka [14], where they were used to
generalize a theorem of Hartogs. After being ignored for half a century,
the theory of these functions has been rejuvenated by recent successful
applications to functional analysis, beginning with the work of Z.
Slodkowski [21], and continuing in [5,6,8, 9, 10,11,15,16,19,22,24,25,
26,27,29,30]. This has motivated a study of their properties, notably in
[1,2,6,7,8,9,11,15,17,18,21,23,29], and the present paper continues
this development.

Let G be a bounded open subset of C, and suppose K is an upper
semicontinuous set-valued map on G which is a.m.v. on G (these terms
are explained in §1). The behaviour of K within G is not uniquely
determined by its values on the boundary of G, as would be the case for a
single-valued analytic function. As a simple example, consider G = (λ:
|λ| < 1} with

K2(λ)={z:\z\<l).

However, in [18] it is shown that the boundary values of K do place
certain constraints on the size of K at each point in G, and the underlying
theme of the present paper is an investigation into what extent they
determine its range, K(G). This is motivated by the fact (Proposition 2.1)
that K{G) is the union of K(dG) with a subcollection of the bounded
components of C\K(dG)9 so that one might expect that as in the
classical theory, the range of K is computable via some form of argument
principle. This hope is strengthened by a multivalued form of Rouche's
theorem, proved in §2. To define winding numbers for multivalued
functions, it is convenient first to set up a simple theory of covering spaces
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and upper semicontinuous lifts. This is carried out in §3, and then used in
§4 to prove a simple topological argument principle. The main result
appears in §5: it is a strong form of argument principle which is essen-
tially analytic in nature. Finally, in §6 we give a second application of the
theory of u.s.c. lifts to prove two Picard theorems for those a.m.v.
functions whose values are connected and polynomially convex.

Acknowledgments. This paper was written partly while the author was
a research fellow at Trinity College, Cambridge, and partly while he was
an E. R. Hedrick assistant professor at the University of California, Los
Angeles. He would like to express his gratitude to both bodies.

1. Preliminaries. The purpose of this section is to summarize some
basic facts about analytic multivalued functions. We begin with some
notation.

Let X and Y be Hausdorff topological spaces. Denote by κ(Y) the
collection of all non-empty compact subsets of Y. Given a map S:
X -> κ(Y) and subsets A a X and B c Y, we write

S~ι(B) = {x^X: S(x)^B),

SIA = the restriction of S to A.

The map S: X -> κ(Y) is upper semicontinuous (u.s.c) if S~ι(U) is open
in X whenever U is open in Y. It is continuous if in addition S~λ(F) is
closed in X whenever F is closed in Y. A basic fact about u.s.c. maps S
which we shall often use is that if A e κ(X) then S(A) e κ(Y).

Let G be an open subset of C, and let K: G -> κ(C) be u.s.c. Then K
is an analytic multivalued (or a.m.υ) function if whenever Gλ is open in
G, and whenever ψ is a function plurisubharmonic on a neighborhood of
{(λ, z): λ e Gl9 z e K(λ)}, then the function

φ(λ) = sup{ψ(λ,z): z G K(λ)} (λ e Gx)

is subharmonic on Gv This definition was introduced by Z. Sίodkowski in
[21], where he also gave a number of equivalent characterizations of a.m.v.
functions. Further information regarding these functions and their appli-
cations may be found in the references cited in the Introduction. We shall
only summarize those properties which will be needed in the sequel.

For the rest of this section, G denotes a non-empty open subset of C.
Firstly, here are some basic examples of a.m.v functions. (Part (a) is
obvious, part (b) is a consequence of [6, Lemma 2.6], and part (c) is just
[17, Proposition 4.5].)
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PROPOSITION 1.1. (a) IfK: G -> /c(C) is constant, then it is a.m.υ.

(b) Iff: G -» C is any function, then K(λ) = {/(λ)} is a.m.υ. if and

only iffis analytic (in the usual sense) on G.

(c) If r: G -> [0, oo) is any function, then K(λ) = {z: |z| < r(λ)} «

a.m.υ. if and only if (log r) is subharmonic on G. D

The next result provides several ways of building new a.m.v. functions

from old. It is a special case of [21, Proposition 5.1].

PROPOSITION 1.2. Let K: G -> κ(C) fte απ a.m.*;. function.

(a) ///: G-^Cw analytic, then L(λ) = /(λ) K(λ) is a.m.υ. on G.

(b) If U is an open neighborhood of K(G), and g: U -> C is analytic,

then (go K) is a.m.υ. on G, where (g° K)(X) = {g(z): z e K(λ)}.

(c) If H is open in C, andh: H -+ G is analytic, then (K © h) is a.m.υ.

onH.

(d) If L: G -> fc(C) w a.m.υ., then (K 4- L) w a.m.υ. on G, where

(K + L)(λ) = {z + w: z e ΛC(λ), w e L(λ)}. D

Given Γ e κ(C), its polynomial hull t is the set of w e C such that

w)| < | |/?| |Γ for every polynomial /?. The set t is just the union of T

with all the bounded components of C\T. We say T is polynomially

conυex if t = T. We shall be very much concerned with multivalued

functions Q whose values Q(λ) are all connected, polynomially convex

sets; such an hypothesis will normally be abbreviated simply to "Q is

connected and polynomially convex". This involves less loss of generality

than might be supposed, since the polynomial hull Q of an u.s.c. (respec-

tively a.m.v.) function Q, taken pointwise, is also u.s.c. (respectively

a.m.v.); the proof is easy.

The next result is a form of Liouville's Theorem for a.m.v. functions

(see [6]).

PROPOSITION 1.3. Let K: C -> κ(C) be a.m.υ. and polynomially con-

υex. If K is non-constant, then K(C) is dense in C. D

Lastly, we shall require a form of removable singularity theorem.

PROPOSITION 1.4. Let 0 < rx < r2, and suppose that Vis either the disc

{|z| < r2) or the annulus {rλ < \z\ < r2). IfK: {0 < |λ| < R} -+ κ(V) is

an a.m.υ. function, then it can be extended to an a.m.υ. function Kλ:

{\λ\ < R} -+κ(V).
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Proof. For 0 < |λ| < R set ̂ ( λ ) = K{\\ and at 0 define

KM = Π ( U K(λ)\
s>θ\θ<\λ\<s i

It is shown in [18, Proposition 6.1] that the resulting function Kλ:
{|λ| < R} -> /c(C) is a.m.v. It remains to prove that ^ ( 0 ) c V. Define φ:

iί} ->[0,αo)by

By definition of a.m.v. function, φ is subharmonic on {|λ| < R}. Also,
since K(λ) c V on {|λ| = Λ/2}, we have φ(λ) < r2 on {|λ| = R/2). It
follows that φ(0) < r2, and consequently Kλ(0) c F when F is the disc. In
the other case, since clearly K^O) c V, the definition of a.m.v. function
implies that

is subharmonic on (|λ| < /?}, and arguing as above we deduce that
φ^O) < l/rv This proves ^(0) c V when V is an annulus. D

2. Rouche's Theorem. Throughout this section, G denotes a bounded
non-empty open subset of C. We begin with a simple result, which
motivates much of what follows.

PROPOSITION 2.1. LetK: G -> κ(C) beu.s.c. andK\G be a.m.v. Then
K(G) is the union of K(dG) with a subcollection of the bounded components
ofC\K(dG).

Proof. Let D be a component of C\K(dG), and for a contradiction
suppose that there exist z0, z ^ ΰ with z0 G K(G) and zx £ K(G). As
D is connected, we can further suppose that

\zo-zx\<άist{zl9dD).

Define ψ: G X_(C\ {zx}) ̂  [0, oo) by ψ (λ, z) = l/|z - zx\. As ψ is
continuous on G X ( C \ {zx}), and plurisubharmonic on (? X ( C \ {z1}),
it follows from the definition of a.m.v. function that φ: G -> [0, oo), given
by

is u.s.c. on G and subharmonic on G. Now if f e 3G and z e ΛΓ(f), then
\z — zx| > dist(zj, 3D); hence
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But on the other hand, as z0 belongs to K(G) and not to K(dG), there
exists λ o e G with z0 G K(λQ)9 and hence

φ(λ 0 ) > ψ(λ o ,z o ) = l / | z 0 - zx |,

which contradicts the maximum principle for φ.
Thus we have shown that K(G) is the union of K(dG) with a number

of complete components of C \ K(dG), and as K(G) is compact, all these
components must be bounded. D

As a simple consequence we obtain a multivalued form of Rouche's
theorem (to recover the classical theorem, though without multiplicities,

THEOREM 2.2. Let (t,λ) -> Kt(λ): [0,1] X G -» /c(C) be u.s.c, and
suppose further that

(i) for each t G [0,1], the function λ •-> Kt{\) is a.m.υ. on G, ami
(ii) /or eαc/z λ G G, //?e function t *-> Kt(λ) is continuous on [0,1].

(1) [^

Proof. Let 5 be the union on the right hand side of (1), and let
z0 £ 5. Define / = [t G [0,1]: z0 G ̂ ( G ) } . We shall show that / is
both open and closed in [0,1], whence it follows that z0 £ [K0(G)ΔKι(G)]>
proving (1).

Closed: For each t G [0,1], it follows from z o ί f i that z0 G ̂ ( G ) if
and only if z0 G Kt(G). But ί •-> Kt{G) is u.s.c. on [0,1], and so / is
closed.

Open: Let t0 G /. Then there exists λ 0 e G such that z0 G JΓ/o(λo).
Let D be the component of C\B which contains z0, so D is open. By
hypothesis (ii), the set {t G [0,1]: ^ ( λ 0 ) c C \ D } is closed, so there
exists a neighborhood N oί t0 such that

t (Ξ N =* Kt(λQ) Γ) D Φ 0 .

But for any /, the set D is contained in a single component of C \ Kt(dG),
so by hypothesis (i) and Proposition 2.1

Kt(G) Γ\D Φ 0 => D a Kt(G).

Consequently

and so / is open. D
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3. Lifts off U.S.C. multivalued functions. In this section we develop the

topological theory used for defining winding numbers in §4 and proving

the Picard theorems in §6. For the time being we forget about analyticity,

and concentrate on upper semicontinuity.

Fix the following notation.

(i) Let X, Y, Z be connected Hausdorff spaces possessing a base of

path-connected, simply connected open sets. Thus they are necessarily

path-connected, and components of open sets are open.

(ii) Let p: Z -> Y be a covering map, that is, a map satisfying the

following property: given y e Y, there exists an open neighborhood U of

y with p~ι(U) equal to a non-empty union of disjoint open subsets Vγ of

Z, such that ρ\Vγ: Vy -> U is a homeomorphism for each γ. We call any

such U fundamental. A covering map is necessarily continuous, open and

surjective.

(iii) Let A be the cover group of p: Z -> Y, that is, the group of

homeomorphisms h: Z -> Z such that ph = p. Call A transitive if

p(zλ) = p(z2) implies that z 2 = λ( z i ) for some h e A; unless specifically

stated, we do not assume this is the case.

We recall two basic facts about covering maps, together with a few of

their elementary consequences (details may be found for example in [13]).

Uniqueness of lifts (UL). If gl9 g2: X -* Z are continuous maps such

that pgλ = pg2, then the set [x e X: gλ(x) = g2(x)} is either empty or the

whole of X. Hence:

(a) the group A is a fixed-point-free (i.e. ifh^A is not the identity,

then h(z) Φ z for allz e Z);

(b) if gv g2 are as above, and if also A is transitive, then there exists a

unique h ^ A with g2 = hgx.

Existence of Lifts (EL). Assume that X is simply connected. Let f:

X -* Y be continuous, and suppose I O G I and Z0EL Z satisfy f(x0) =

p(z0). Then there exists a continuous map g: X —> Z with g(x0) = z0 such

that pg = /. Hence:

(a) // U is a connected, simply connected, open subset of Y, then U is

fundamental;

(b) ifZ is simply connected, then A is automatically transitive.

We now seek to extend these results to multivalued mappings. The

first task is to define 'lift'.

Let Qo G κ(Y). We say Lo e κ(Z) is a lift of Qo if there are open

sets U in Y and V in Z with p: V -> U a homeomorphism, such that
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Qo c U and Lo = (p\V)'\Q0). Note that if zl9 z2 e Lo, then p(zλ) =

p(z2) implies zx = z2.

Let β: X -> /c(7) be u.s.c. We say L: X -> κ(Z) is an H.Λ .C. //// of Q

if L is u.s.c, and if for each x e X the set L(x) is a hft of Q(x). Clearly,

if L is an u.s.c. lift of Q, then so is h° L for any h & A.

The following result extends (UL) to connected u.s.c. Q: X -> κ(Z)

(i.e. those u.s.c. Q such that (?(jt) is connected for each x e X).

PROPOSITION 3.1. Le/ Q: X -» κ(7) 6e w.s.c. ŵrf connected, and let

Ll9 L2: X -+ κ(Z) be two u.s.c. lifts of Q.

(a) Either Lλ(x) = L2(x) for all x e X, OΓL^JC) Π L2(x) = 0 for all

x e X

(b) // αZso 4̂ is transitive, then there exists a unique h & A such that

L2 = h<> Lv

Proof, (a) Define

Xo= { J C G I : I 1 ( X ) Π L 2 ( J C ) = 0 } ,

Jfi = { X G I : Li ίxJΠLjί jc)^ 0 } ,

X 2 = ( X G X : L 1 ( X ) = L 2 ( X ) } .

Since Lx and L2 are u.s.c. and Z is Hausdorff, the set Xo is open. By the

connectedness of X, it therefore suffices to prove that X1 is contained in

the interior of X2. Let x0 e A"x, so that L^XQ) Π L2(X0) contains a point

z0, say, and set yo=p(zo)9 so that y0 e β(x o ) A s ^i(*o) a n d ^2(^0)

are both lifts of Q(x0), these are open sets Uj in 7 and Vj in Z with p\Vy.

Vj-* Uj2i homeomoφhism (j = 1,2), such that

β ( x o ) c [ / y and Ly(x0) = (^|F7.)-1(ρ(^0)) (7 = 1,2).

Now β(x 0 ) is connected, so is contained within a single component U of

Uλ Π ί/2; thus without loss of generality we may suppose that Uλ = U2 =

U. Also Λ e Q(x0) c [/ and (pl^J-'ίΛ) = zoU = 1,2), so by (UL) it

follows that O l ^ i ) ' 1 = (P\vi)~l o n U9 and in particular that Vλ = V2 = V,

say. As Lλ and L2 are u.s.c, there exists a neighborhood N of JC0 such

that x e JV imphes Ly(Λ:) c F (7 = 1,2). But then if x e iV

and since /?|F: F -» ί/ is a homeomoφhism, Lx(x) = L2(x). Thus we

have shown that any x0 G JŜ  possesses a neighborhood JV c X29 as was

required.

(b) Fix x0 e X, and y0 e β(jc0). Choose zy e Ly(;c0) with /?(^y) = y0

(7 = 1,2). If v4 is transitive, there exists h ^ A with / ί ^ ) = z2. Then
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h © Lx is a u.s.c. lift of ζ), and (A ° L 1)(JC 0) Π L2(x0) is non-empty (it
contains z2), so from part (a) we deduce that L2 = Λ° Lv

For uniqueness, note that if k ^ A also satisfies L2 = k° Lv then
^ i ) e I 2 ( i 0 ) and p{k(zx)) = />(zx) = Λ . This implies k(zλ) = z2 =
A(^i), and as Λ is fixed-point-free it follows that k = h. D

Now we turn to the question of existence of u.s.c. lifts of Q:
X -> κ(Y). Plainly, for such a lift to exist at all, the set Q(x) must possess
a lift at each point x G X. A condition guaranteeing this is that for each
x e X the set Q(x) lies inside some fundamental open set Ux. We take
this as our hypothesis.

PROPOSITION 3.2. Assume that X is simply connected and let x0 e X.
Let Q: X -> κ(Y) be u.s.c. and connected, such that for each x e X the set
Q(x) is contained in some fundamental open set.

(a) There exists a lift Lo ofQ(x0).
(b) Given any lift Lo of Q(x0), there exists an u.s.c. lift L: X -> κ(Z)

of Q such that L(x0) = Lo.

Proof. Part (a) is clear. The proof of (b) is very similar to that for the
classical case (EL), so we give only a sketch.

Stage 1. The special case X = [0,1] X [0,1] and x0 = (0,0).
As Q is u.s.c, the Lebesgue covering theorem may be used to

decompose this l a s a finite union of compact squares IJ9 such that for
each j the set Q(Ij) is contained within some fundamental open set.
Moreover we can suppose that x0 e Jo, and that Jn = (Jo U Uln_1)
Π In is always non-empty and connected. We construct an u.s.c. lift L of
Q inductively, starting on 70 with L(x0) = LQ. At the nth stage, if L is
already constructed on (Jo U Uln_1), use p~ι to obtain a lift Lλ of Q
on In with the property that Lx(xn) = L{xn) for some point xn e Jn. As
Jn is connected, it follows from Proposition 3.1 that Lx = L on all of /„,
whence setting L = Lλ on In gives us an u.s.c. lift L of Q on (70

U U/n). After a finite number of such extensions, this lift L is
defined on all of X.

Note that in particular, Stage 1 also implies the result holds when
X = [0,1] and x0 = 0 (i.e. u.s.c. lifts exist along paths).

Stage 2. The general case.
Define L : X - > κ ( Z ) as follows. Given x G l , join x0 to x by a path

α: [0,1] ->X, let Lα: [0,1] -* κ(Z) be an u.s.c. lift of ( β ° « ) with
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Lα(0) = Lo (its existence being guaranteed by the remark above), and set
L(x) = Lβ(l).

The crucial fact is that this should not depend upon the path a
chosen. To check this, let β be another path joining x0 to JC, with Lβ the
corresponding u.s.c. lift. As X is simply connected, there is a homotopy
H: [0,1] X [0,1] -> X between a and /?, so that for s, t e [0,1] we have

By Stage 1 there is an u.s.c. lift M: [0,1] X [0,1] -» κ(Z) of Q ° H, with
M(0,0) = Lo. Since Q°H(t,0) is constant, Proposition 3.1 implies
M(t,Q) = Lo for all t. By Proposition 3.1 again, M(0,s) = Lα(s) and
M(l, s) = Lβ(s). Finally, since Q°H(t, 1) is constant, Proposition 3.1
once again implies M(t, 1) is constant, whence LJ1) = Lβ(l) as desired.

As L(x) is clearly a lift of Q(x) for each x, it remains to show that L
is u.s.c. This follows easily from the fact just proved, that L(x) = La{\)
for any path α joining x0 to JC, and from the uniqueness of lifts
Proposition 3.1; the details are omitted. D

Proposition 3.2 begs the following question: how can we tell if each
set Q(x) lies in a fundamental open set? Using (EL) (b), a simple
sufficient condition is that for every x G l , the set Q(x) should possess a
connected, simply connected open neighborhood within Y. When Y is a
subdomain of C, this is equivalent to demanding that Q(xγ c Y for each
x. We have therefore justified the following corollary.

COROLLARY 3.3. Assume that X is simply connected and let x0 e X.
Assume also that Y is a connected open subset of C. Let Q: X -> κ(Y) be
u.s.c, connected andpolynomially convex.

(a) There exists a lift Lo of Q(x0).
(b) Given any lift Lo of Q(x0), there exists an u.s.c. lift L: X -» κ(Z)

of Q such that L(x0) = Lo. D

4. Winding numbers and a topological argument principle. We shall
now apply the theory of §3 to the spaces Z = C and Y = C* = C \ {0}
(but X still arbitrary), with p: Z -> 7 defined by p(z) = exp(z). In this
case the cover group A consists of those maps of the form z -> z + 2min
(n an integer), and is transitive. If Qo e K(C*) and Lo is a lift of β 0 , we
shall call Lo a choice of log Qo. For convenience, we restate the results of
§3 in the context of this particular set-up.
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PROPOSITION 4.1. Let Q: X -> κ(C*) be u.s.c. and connected.
(a) If Lλ and L2 are u.s.c. choices of logβ, then there is a unique

integer n such that

L2(x) = Lλ(x) + {2πin} (x e X),

and if m is any other integer then

L2(x) n(Lx(x) +{2irim}) = 0 (JC e X).

(b) Suppose that X is simply connected, that xQ e X, and that Q is also
polynomially convex. Then there exists a choice Lo of logζ?(jc0); and given
any such choice Lo, there exists an u.s.c. choice L: X -> /c(C) of logQ such
that L(x0) = Lo. D

Let Q: [0,1] -> /c(C) be u.s.c., connected and polynomially convex,
with β(0) = g(l). Suppose that 0 £ g([0,1]). Then by Proposition 4.1(b)
there exists an u.s.c. choice L: [0,1] -> κ(C) of logζ). Now L(0) and L(l)
are lifts of the same set, so Proposition 4.1(a) applied to constant
functions shows that

for some unique integer n. By Proposition 4.1(a) again, this integer is
independent of the choice of L. We call n the winding number of Q
about 0, written «(β,0). In general, the winding number of Q about
w e C \ g([0,1]) is defined as

If Q is in fact singleton-valued, say Q(t) = {q(t)}9 then this definition of
n(Q, w) agrees with the classical definition of n(q, w).

PROPOSITION 4.2. Let Q: [0,1] -> κ(C) be u.s.c, connected and poly-
nomially convex, with Q(0) = β(l). Then w •-> n(Q, w) is constant on each
component of C \ β([0,1]), and equals zero on the unbounded component.

Proof. To prove the first conclusion, it is enough to show that
H> -> n(Q, w) is constant on any open disc N contained in C \ β([0,1]).
Given such an N, define an u.s.c. map P: [0,1] X N -> /c(C*) by

By Proposition 4.1(b), there exists an u.s.c. choice L of logP(t,w). Now
P(0,w) = P(l,w) for all w e TV, so L(0,w) and L(l,w) are both u.s.c.
choices of logP(0,w) on N. Hence by Proposition 4.1(a) there exists an
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integer n such that

(2) L(l,w) = L(09w) + {2πin} (w e N).

For each w G N, the map t •-> L(t,w) is an u.s.c. choice of log(β(/) 4-
{-w}), so by (2) and the definition of winding number, n(Q,w) = n for
all w G N, and hence n(Q, w) is indeed constant on iV.

From what has just been proved, to show that n(Q, w) = 0 on the
unbounded component of C \ β([0,1]) it is sufficient to prove it for just
one w in this component. Choose w0 so that

Rew0 > sup{Rez: z e β([0,l])}.

Then Q(t) 4- {-w0} always lies in D = { z: Rez < 0}, so if / is a branch
of log on D and L{t) = f(Q(t) + {-w0}), then L is an u.s.c. choice of
log(ζ> + {-w0}) with L(0) = L(l), whence n{Qy w0) = 0. D

We now prove a topological argument principle. First recall that if a:
[0,1] -> C is a (closed) Jordan curve and if G is its interior, then 3G = [a]
(which is by definition α([0,1])), and G is homeomorphic to the closed
unit disc.

THEOREM 4.3. Let a be a Jordan curve and G be its interior. Let K:
G —> κ(C) be u.s.c., connected and polynomially convex. If z0 & K(dG)
andn(Koa,z0) Φ 0, thenzo<Ξ K(G).

Proof. If the conclusion fails, then by Proposition 4.1(b) there exists
an u.s.c. choice L of log(K + {-z0}) on G. In particular, L <> a is an u.s.c.
choice of log(ϋΓ+ (~zo})<>α on [0,1], and since L(α(0)) = L(a(l)) it
follows that n{K <> α, z0) = 0. D

REMARK. In Theorem 4.3, polynomial convexity is used for more than
just defining winding number; for to do this, one only needs K to be
polynomial convex on 3G, but in fact this is not enough to ensure that
n(K ° a,z0) Φ 0 implies z0 e K(G). For example, let z0 = 0 and consider
K: {|λ| < 2} -> κ(C) given by

ί{λ}, i f l < | λ | < 2

U z : | z | = l } , i f | λ j < l .

5. A n a n a l y t i c a r g u m e n t principle. F o r Z G C a n d ί e R , w r i t e

H(z,θ)= [z + reiθ: r> 0},

the half-line with endpoint z and angle of inclination θ. With this
notation established, we can state our analytic argument principle.
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THEOREM 5.1. Let a be a Jordan curve and G be its interior, and
suppose a is positively oriented {i.e. n(a,λ) = 1 for λ ^ G). Let K:
G -> /c(C) be u.s.c, such that K\G is a.m.v. and K \dG is connected. Let
z0 <£ K(dG) and suppose that for each ξ e dG there exists θ ^ R such that
(3) K(ϊ)nH(zo,θ)= 0.

Thenn(Koa,z0) > 0, andz0 e K(G) ifandonlyifn(Koa,z0) > 0.

REMARKS, (i) The hypothesis (3) guarantees that

(30 zo«*(?Γ (allf e3G),
and so the winding number n( K ° α, z0) is well-defined. Key use is made
of the hypothesis in the proof below, but it seems somehow unnatural and
we conjecture that the theorem remains true if (3) is replaced by (3'). This
conjecture is closely related to the work in [3,4, 28].

(ii) The added assumption of analyticity allows a much stronger
conclusion to be drawn than in Theorem 4.3, namely a condition for
z0 e K(G) which is both necessary and sufficient. Note also that in
contrast with Theorem 4.3, we no longer require that K be connected or
polynomially convex on G.

Proof. We begin by making a number of simplifications. Firstly, by
considering K + {-z0} instead of K, we may as well suppose that z0 = 0.
Secondly, replacing K(ζ) by K(ξ) for all ξ e 3G, we can assume that
K\dG is polynomially convex as well as connected. Thirdly, there is no
loss of generality in taking α to be the curve y(t) = e2πit, and G to be Δ,
the open unit disc. For by the Riemann mapping theorem there exists a
homeomorphism /: Δ -> G which is analytic on Δ and satisfies /(I) =
α(0). This implies that / <> γ is just a re-parameterisation of α, because a is
positively oriented. So if Kλ: Δ -> /c(C) is defined by Kλ = K <> /, then Kλ

satisfies all the hypotheses of the theorem, with a and G replaced by γ
and Δ respectively, and also n(Kλ° y,0) = n(K ° α,0). Thus once the
theorem is proved for Kv it is also proved for K.

Set n = n(K ° γ, 0). By Proposition 4.1(b), there exists an u.s.c. choice
Lx of log ί o γ o n [0,1], and by definition of winding number we have

Therefore the function L: 3Δ -> /c(C) defined by

L{e2πit) = Lλ(t) + {-Iπint}

is u.s.c. on 8Δ. Now the hypothesis (3) implies that for each ξ G 3Δ, there
exists some choice Lζ of log K(ζ) such that

- z 2 ): zλ,z2 e Lζ) < 2π.
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By Proposition 4.1(a) applied to constant functions, the set L(ζ) is a
translate of Lζ, so

supllmί^! - z2): zl9z2 e L(ξ)} < 2ττ.

Therefore if we set

then w < (ϋ 4- 2τr) on 3Δ. Also since L is u.s.c, it follows that u is u.s.c.
and v is l.s.c. on 9Δ. By a standard partition-of-unity argument, there
exists a continuous function g: 3Δ -> R such that w < g < ( ί ; + 27r)on
3Δ. As (g — u) and (u + 2π — g) are strictly positive l.s.c. functions on
the compact set 3Δ, they are bounded away from zero, their infima being
at least 8 > 0, say. Using the Stone-Weierstrass theorem we may find a
polynomial ρ(λ) such that \g — Im(p)\ < 8 on 3Δ, and consequently
u < lm(p) < (v + 2π) on 3Δ. Hence if ξ e ΘΔ and z e ( I ( f ) +
{ ~/KO})> then -277 < Im(z) < 0. In other words,

(4) e-'M Γ Λ K(ξ) Π Jϊ(0,0) = 0 ( f e 3Δ).

From this we can deduce the theorem. First suppose that n < 0. Then
M(λ) = e~p(λ) λ~" A (̂λ) is u.s.c. on Δ and a.m.v. on Δ, and (4) implies
that 0 lies in the unbounded component of C \ M(3Δ). Hence by Proposi-
tion 2.1, 0 <£ M(Δ), which is patently absurd since Λf(0) = {0}. We
conclude that necessarily n > 0. Now for t e [0,1] and λ e Δ define

ΛΓ,(λ) = / K(λ) +(t - 1) -{X-e'to}.

Then ^ ( λ ) satisfies the hypotheses of Theorem 2.2, and moreover (4)
implies that

Hence by Theorem 2.2, 0 e iΓ(Δ) if and only if 0 lies in the range of
λπ ^ p ( λ ) on Δ, that is, if and only if n > 0. D

The fact that n{K° α, z0) > 0 demonstrates that in some sense a.m.v.
functions preserve orientation. Classically (i.e. when K(λ) = {/(λ)}) the
winding number is obviously non-negative because it registers exactly the
number of zeros of the analytic function (/(λ) — z0) within α. No such
precise interpretation seems possible in the multivalued case, though there
is something that can be said.

First we need one more definition. Let us call S c C costarshaped if
its complement is "starshaped about oo", i.e. for each z ί S there exists
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θ G R with S Π H(z,θ) = 0 . Any convex or starshaped set is
costarshaped. Also a compact costarshaped set is automatically polynomi-
ally convex.

THEOREM 5.2. Let a be a positively oriented Jordan curve and G be its
interior. Let K: G -» κ(C) beu.s.c, connected and costarshaped, andK\G
be a.m.v. If zo£K(dG), then n(K ° a,z0) is an upper bound for the
number of components of E, where E is the compact set { λ G G: Z 0 G

REMARKS, (i) Since no account is taken of "multiplicity of zeros", we
cannot hope for exact equality.

(ii) If the conjecture made in remark (i) after Theorem 5.1 were
correct, then "costarshaped" could be replaced by " polynomially convex"
in Theorem 5.2.

Proof. It is enough to show that whenever E can be written as the
disjoint union

where Fv..., Fm are non-empty open-and-closed subsets of E, then
necessarily

n(K ° α, z0) > m.

The proof is by induction on m. The case m = 0 follows immediately
from Theorem 5.1. Let m > 0, and suppose that the statement above
holds for any α, K, z0 satisfying the hypotheses of the theorem, and any
decomposition of the corresponding E into m — 1 or fewer disjoint
non-empty open-and-closed subsets. With the particular decomposition
E = Fx U U Fm under consideration, since Fm is polynomially convex,
we can choose a negatively oriented Jordan curve β in G (i.e. n(β,λ) = -1
if λ lies inside β) such that

Fj c exterior of β (j = 1,2,..., m — 1)

Fm c interior of β.

Select distinct points av a2 in [a] and bv b2 in [/?]. Since Fl9...,Fm_ι

are polynomially convex, we can find disjoint simple paths βl9 β2 joining
ax to bx and a2 to b2 respectively, such that

βj(t) e G\(*ί U ΌFm) (0 < / < 1, j = 1,2).
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Denote by a' the part of the curve a running from a2 to al9 and by α" the

part running from ax to a2. Similarly, let β' be the part of β going from

bλ to b2, and β" denote the remainder (the reader is urged to draw a

picture). Finally, write δr for the path formed by joining together a\ βl9

β' and the reverse of β2; likewise, form δ" by joining up respectively α",

/?2, β" and the reverse of βv Then δ' and δ" are positively oriented

Jordan curves, and

(5) n(Koδ'9z0) + n(Koδ"9z0) = n(Koa,z0) + n(Koβ9z0).

Let Gf and G" be the interiors of δf and δ" respectively. We are going to

apply the inductive hypothesis separately to K on Gf and on G". The

corresponding sets Er and E" are just (E Π G') and ( £ Π G"); therefore

we have the decompositions

(E"Y = F{' U •• ^

where the /J and i^r/ are disjoint non-empty open-and-closed subsets of

(Ef) and (E") respectively, and where p and q satisfy

(6) p < m — 1, q < m — 1 and p + q > m — 1.

Since (6) holds, the inductive hypothesis implies that

(7) n(Koδ\z0)>p and n(Koδ", z0) > q.

Also, since Fm is contained in the interior of β, applying Theorem 5.1 to

the reverse of β gives

(8) n(Koβ,z0)<-l.

Combining (5), (6), (7) and (8), we deduce

n(Koa,z0) > m,

and the induction is complete. D

6. Two Picard theorems. Let K: C -> /c(C) be a non-constant (entire)

a.m.v. function whose values are polynomially convex. By Proposition 1.3,

J^(C) must be dense in C. In fact the "little Picard theorem" of B. Aupetit

[11] says that C \ K(C) is necessarily a polar set (alternative proofs appear

in [7,17]). Also A. Zraibi [29] has shown that if K(λ) is always finite, with

say #K(λ) < n (all λ e C), then in fact C\K(C) contains at most

In - 1 points, and this bound is best possible. At the other extreme, we

shall now prove that if K(λ) is always connected, then C\K(C) can

contain at most one point. This will be done applying the theory of §3 to a
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different covering map; namely we shall take Y = C \ {0,1} and Z = H+

= { : G C : I m z > 0 ) , and p: Z -> Y will be the modular function Λ:
i/+-> C \ (0,1}. This function is analytic, and is a covering map between
the spaces concerned; its construction and other details may be found for
example in [20].

THEOREM 6.1. LetK: C -» κ(C) be a.m.v., connected andpolynomially
convex. If K is non-constant, then C \ K(C) contains at most one point.

Proof. Suppose K(C) omits more than one value. Rescaling if neces-
sary, we may assume without loss of generality that K(C) c C\{0,1} =
Y. Applying Proposition 3.3 with X = C shows that there exists an u.s.c.
lift L: C -> κ(H+) of K (via Λ). Because Λ is analytic, it follows from
Proposition 1.2(b) and the definition of u.s.c. lift that L must be a.m.v.
Moreover, for each λ e C the set L(λ) is homeomorphic to K(λ), so
must also be connected and polynomially convex (polynomial convexity is
a topological invariant of compact subsets of C). Since L(C) c H+,
Proposition 1.3 implies that L must be constant on C, whence K = Λ ° L
is also constant. D

Theorem 6.1 and the results mentioned in the paragraph preceding it
may be thought of as analogues of the little Picard theorem. There is also
a multivalued version of the big Picard theorem, proved by the author in
[18]. In a slightly weakened form, it states that if K: {0 < |λ| < R} -> κ(C)
is an a.m.v. function, and if

(9) E= Π *({0<|λ |<r} ) ,
0<r<R

then either C \ E is polar, or there exists a Mδbius transformation g such
that g°K has an a.m.v. extension to a neighborhood of 0. If K is
connected and polynomially convex then this conclusion can be
strengthened by using the same general idea as in Theorem 6.1. The proof
which follows is based on an exposition of the classical big Picard theorem
given in [12].

THEOREM 6.2. Let K: (0 < |λ| < R} -> κ(C) be a.m.v., connected and
polynomially convex, and let E be defined as in (9). Then either #(C \ E)
< 1, or there exists a M'όbius transformation g such that g° K has an a.m.v.
extension to a neighborhood of 0.

Proof. Suppose that #(C\E) > 2. Rescaling if necessary, we may
assume that

tf({0<|λ|<2})cC\{0,l}
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Let Lo be a lift (via Λ) of the set K(l). Define

Dχ = [reiθ: 0 < r < 2, -3ττ/2 < θ < τr/2],

D2 = [reiθ: 0 < r < 2, -ττ/2 < θ < 3ττ/2},

so that Dλ and Z>2 are both simply connected domains containing the

point 1. By Proposition 3.3 there exists u.s.c. lifts Ly. Dy -> κ(H+) of K

(via Λ) such that Lj(ϊ) = L o (y = 1,2). As Λ is analytic, both L x and L2

are a.m.v. functions. By Proposition 3.1(a), 1^(1) = L 2 ( l) implies that

Lλ = L2 on Z>+, where

ΰ + { λ e C:0 < | λ | < 2 ? R e λ > 0}.

Also, if we set

D= { λ G C:0 < | λ | < 2, Reλ < 0},

then by Proposition 3.1(b), the transitivity of the cover group A oί A:

H+-+ C \ {0,1} (note H+ is simply connected) implies that there is an

element h ^ A such that L 2 = h <> Lλ on D~. Now it is shown in [12] that

given any h e A9 there exist a domain V of the form { z : , y < | z | < l } f o r

some 0 < s < 1, and analytic maps q: i/+-> V and /: F-> C\{0,1},

such that q ° h = q and / ° # = Λ. Construct F, ^ and / for our particular

h. Then q ° Lx = q ° L2 on both Z>+ and D~, and hence on Dλ Π Z)2, so

that if M: {0 < |λ| < 2} -> ιc(F) is given by

M ( λ ) = 9 o L (λ) , ( λ e ΰ j

then M is a well defined a.m.v. function. Also on ί)y we have

so that in fact / ° M = ίC on the whole of {0 < |λ| < 2}. There are now

two cases to consider.

Case I. V= {0 < \z\ < 1}.

Set Vo = V U {0} = {|z| < 1}. By the classical big Picard theorem, /:

K-> C\{0,1} can be extended to a meromorphic function /0: Vo ->

C^ \ {^}, where β equals either 0 or 1. Thus if g(z) = l / ( z — a), then

g o /0 is analytic on VQ. Also, by Proposition 1.4, M: {0 < |λ| < 2} ->

/c(F0) can be extended to an a.m.v. function Mo: ( |λ | < 2} ->

fc( J^). Then (g ° /0) ° Λ̂ o ^s a n a m v function on {|λ| < 2}, and if λ Φ 0

then

Case 2. F = {̂  < |z| < 1}, where s > 0.
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In this case, Proposition 1.4 shows that M: {0< |λ |<2}->/c(F)
can be extended to an a.m.v. function Mo: {|λ| < 2} -> κ(V). Then / ° Mo

is a.m.v. on {|λ| < 2} and equals K(λ) if λ Φ 0. D

We conclude by giving examples to show that both connectedness and
polynomial convexity are indispensable assumptions in Theorem 6.2.

EXAMPLE 1. Define K: (0 < |λ| < 1} -* /c(C) by

K(λ) = {z: z2 = 1 + exp(l/λ)} (0 < |λ| < 1).

Then K is a.m.v., polynomially convex (indeed, two-valued) and ^({0 <
|λ| < 1}) c C\{-1,1}, but any u.s.c. extension of K to 0 would be
unbounded.

EXAMPLE 2. Define K: {0 < |λ| < 1/2} -» κ(C) by

Then K is a.m.v., connected, and K({0 < |λ| < 1/2}) c C \ {-1,1}, but
again any u.s.c. extension of K to 0 would be unbounded.
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