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GENERALIZED ^-NUMBERS OF r-MEASURABLE
OPERATORS

THIERRY FACK AND HIDEKI KOSAKI

We give a self-contained exposition on generalized s-numbers of
τ-nieasurable operators affiliated with a semi-finite von Neumann alge-
bra. As applications, dominated convergence theorems for a gage and
convexity (or concavity) inequalities are investigated. In particular, rela-
tion between the classical //-norm inequalities and inequalities involv-
ing generalized s-numbers due to A. Grothendieck, J. von Neumann, H.
Weyl and the first named author is clarified. Also, the Haagerup Lp-
spaces (associated with a general von Neumann algebra) are considered.

0. Introduction. This article is devoted to a study of generalized
5-numbers of immeasurable operators affiliated with a semi-finite von
Neumann algebra. Also dominated convergence theorems for a gage and
convexity (or concavity) inequalities are investigated.

In the "hard" analysis of compact operators in Hubert spaces, the
notion of ^-numbers (singular numbers) plays an important role as shown
in [10], [24]. For a compact operator A, its nth ^-number μn(A) is defined
as the nth largest eigenvalue (with multiplicity counted) of \A\ = (A*A)1/2.
The following expression is classical:

μ n (A) = inf {|| APx || Jf is a closed subspace with dim X ^ < n j ,

where Px denotes the projection onto X.
In the present article, we will study the corresponding notion for a

semi-finite von Neumann algebra. More precisely, let Jί be a semi-finite
von Neumann algebra with a faithful trace r. For an operator A in Jί,
the "/th" generalized ^-number μt(A) is defined by

μt(A) = inf{||AE||; E is a projection in Jί with τ(l - E) < t}9 t > 0.

Notice that the parameter / is no longer discrete corresponding to the fact
that T takes continuous values on the projection lattice. Actually this
notion has already appeared in the literature in many contexts ([8], [11],
[25], [33]). In fact, Murray and von Neumann used it (in the ΠΓcase),
[18]. We will consider generalized ^-numbers of r-measurable operators in
the sense of Nelson [19]. This is indeed a correct set-up to consider
generalized ^-numbers. In fact, the τ-measurability of an operator A
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exactly corresponds to the property μt(A) < + oo, / > 0 and the measure
topology ([19], [27]) can be easily and naturally expressed in terms of μr

When Jί is commutative, Jΐ — U°{X\ m), τ( ) = j x dm, the gen-
eralized s-number μt(A) of A = /, a function on X, is exactly the
non-increasing rearrangement f*(t) of / in classical analysis. (See [26] for
example.) Therefore, through the use of μn one can employ many classical
analysis techniques (such as majorization arguments) in our non-com-
mutative context (as shown in §4).

§1 consists of some preliminaries. §2 is expository and we give a
self-contained and unified account on the theory of generalized ^-numbers
of τ-measurable operators. In §3, we prove certain dominated convergence
theorems for a trace (i.e. gage, [23]). In the literature (see [27] for
example), Fatou's lemma for a trace was emphasized. Instead, we will
show Fatou's lemma for generalized ^-numbers. Although its proof is
simple, it will prove extremely useful. In fact, based on this, we will prove
dominated convergence theorems unknown previously. Also, this Fatou's
lemma is useful to extend known estimates (involving μt) for bounded
operators to (unbounded) τ-measurable operators. In §4, we will study
convexity (and concavity) inequalities involving μr For applications and
for the sake of completeness, we will prove classicial norm inequalities
such as the Holder and Minkowsky inequalities. However, our main
emphasis here is to compare carefully the above classical norm inequali-
ties with inequalities due to A. Grothendieck, J. von Neumann, H. Weyl
and the first named author. We will also show that these "semi-finite
techniques" are useful to derive the corresponding results for the Haagerup
L ̂ -spaces, [12]. This is possible because μt{A) (with respect to the
canonical trace on the crossed product, [28]) is particularly simple in this
case. In the final §5, we prove the Clarkson-McCarthy inequalities for the
Haagerup L^-spaces "from scratch." Proofs are known, but it may not be
without interest. In fact, some false proofs exist in the literature.

This work was completed during a stay of the first named author at
the Mathematical Sciences Research Institute of Berkeley. The author is
grateful to the Institute for its warm hospitality and support. Also the
authors are indebted to the referee for improvement of the article.

1. Preliminaries. For the convenience of the reader, we will collect in
this section some definitions and basic facts on the theory of non-com-
mutative L ̂ -spaces associated with a von Neumann algebra. Our basic
reference on the general theory of operator algebras is [6], [29].

1.1. Let Jt be a von Neumann algebra acting on a Hubert space φ.
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Assume for a moment that Jί admits a faithful semi-finite normal trace
T. For a positive self-adjoint operator T = /Q° λ d£\ affiliated with Jίy we
set

τ(Γ) = sup τlf λ <ffiλ) = Γ λdτ(Eλ).

For 0 <p < oo, Lp{Jί\ τ) is defined as the set of all densely-defined
closed operators T affiliated with Jt such that

In addition, we put L°°(^#; r) = Jί and denote by || W^ (= || ||) the usual
operator norm. It is well-known ([5], [16], [19], [23]) that Lp(Jί; τ) is a
Banach space under || \\p (1 < p < oo) satisfying all the expected proper-
ties such as duality. From this definition, it is not obvious at all that for
example the sum of two operators in Lp{Jί\ τ) is well-defined and, a
fortiori, belongs to the same space. In fact, as was shown at first by Segal
[23], the sum is well-defined because involved operators are measurable.
Instead of the notion of measurability introduced by Segal, we will use

1.2. DEFINITION ([19]). A densely-defined closed operator T (possibly
unbounded) affiliated with Jί is said to be τ-measurable if for each ε > 0
there exists a projection E in Jί such that E($) c 3){T) and τ(l — E)
< e.

Let T be a (densely-defined closed) operator affiliated with Jί. Let
T = U\T\ be the polar decomposition and \T\ = J^λdEλ be the spectral
decomposition. Then T is τ-measurable if and only if τ(l — Eλ) < oo for
λ large enough, or equivalently, limλ_>ooτ(l — Eλ) = 0 due to the normal-
ity of r (see [19] for example). Let us denote by Jί the set of all
τ-measurable operators. When Jl = L°°(X\ m) and τ(/) = jfdm, where
(X, m) is a measure space, a function on X is in Jί if and only if it is a
(finite ra-a.e.) m-measurable function which is bounded except on a set of
finite measure. Thus, Jί is large enough to contain all L ̂ -spaces, 0 < p
< oo. Also, Jί is the closure of Jί with respect to the measure topology.
All these facts remain valid for a von Neumann algebra Jί with semi-finite
trace T SO that Jl really appears as a "basis for investigations in
non-commutative integration theory." The notion of τ-measurability does
not appear in the classical theory of Schatten classes because Jί = Jί for
the algebra Jί of all bounded operators on a Hubert space (with the
canonical trace). Note in contrast that Jί is the set of all densely-defined
closed operators affiliated with Jί when the trace is finite.
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1.3. DEFINITION. For a immeasurable operator T, we define the
distribution function of T by

where E(too)(\T\) is the spectral projection of |JΓ| corresponding to the
interval (7, oo).

The operator T being τ-measurable, we have λt(T) < oo for / large
enough and \imΐ_^o0λί(T) = 0 as noted before. Moreover, the map:
t e [0, oo] —> λ,(Γ) is non-increasing and continuous from the right (be-
cause T is normal and E{t i00)(|Γ|) / E{too)(\T\) strongly as tn \ t). The
reader may notice that λt(T) is a non-commutative analogue of the
distribution function in classical analysis, (cf. [26]).

1.4. Let Γ, S be r-measurable operators. Then T + S9 TS, and Γ* are
densely-defined and preclosed. Moreover, the closures ( Γ + S)~ (strong
sum) (TS)~ (strong product) and Γ* are again τ-measurable, and Jί is a
• -algebra with respect to the strong sum, the strong product, and the
adjoint operation. (See [19], [31].) In what follows, we will supress the
closure sign.

1.5. The measure topology on Jί is by definition the linear (Haus-
dorff) topology whose fundamental system of neighborhoods around 0 is
given by

F(ε, δ) = { Γ G Jt\ there exists a projection E in Jί

such that ||TE\\ < ε and τ(l - E) < δ}.

Here, ε, δ run over all strictly positive numbers. It is known ([19], [31])
that Jί is a complete topological * -algebra. Moreover, Jί is dense in Jί.
In fact, if T'=U\T\eS# and \T\ = /0°° λdEλ, then the sequence

JQ λ dEλ}tΊ=l2, .inJί tends to T as n -> oo in the measure topology.

1.6. Now let <y# be a general (not necessarily semi-finite) von Neu-
mann algebra. Let 2ί be the crossed product of Jί by the modular
automorphism group {σ,},eR of a fixed weight on Jί. By a result of
Takesaki, [28], 21 admits the dual action {# 5} 5 G R and the faithful semi-
finite normal trace T satisfying τ ° θs = e~sτ, ί G R . The Haagerup Lp-
spaces associated with Jί, [12], are defined by

Lp(Jί) = [T\ T is a τ-measurable operator (affiliated with 21)

such that ΘS(T) =e~s/pT,s e R}, 0 </? < oo.
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It is known that Lι{Jί) is order-isomorphic to the predual Jί*. We thus
get a positive linear functional tr on Lι(Jί) by the formula

Here Hφ is the element in l}(Jί) which corresponds t o φ e Jί* by the

order isomorphism. For T in Lp{Jί), 0 < p < oo, we set

(As usual, || Ĥ  is the usual operator norm.) Some remarks are in order:
(i) Lp(Jί) does not depend on a choice of a weight on Jί (used to
construct the crossed product), (ϋ) the functional tr on I}(Jί) and
the canonical trace T are quite different, (iii) when Jί is semi-finite,
Lp(Jί\ r) in 1.1 is isomorphic to Lp(Jί).

Full details of Haagerup's theory can be found in [31]. For later
reference, we record:

1.7. LEMMA. Let T be an element in Lλ{Jί). For any t > 0, we have

Here, the distribution function \t is with respect to the canonical trace on the
crossed product 21 = Jίx^9i explained in 1.6.

Its proof is found in [31]. Let us point out that this Lemma is crucial
and indeed a starting point of Haagerup's theory. Because of this lemma,
T is τ-measurable (with respect to the trace τ on 2ί) and additions and
multiplications are justified.

2. Generalized -̂numbers. The notion of generalized ^-numbers for
bounded operators was carefully developed in [8] by the first named
author. On the other hand, its generalization to τ-measurable operators
has fruitful applications as indicated in [15] by the second named author.
In this section, we will give a self-contained and unified account on
generalized ^-numbers of τ-measurable operators.

Throughout the section, let Jί be a von Neumann algebra on a
Hubert space φ with a faithful semi-finite normal trace r.

2.1. DEFINITION. Let T be a immeasurable operator and t > 0. The
"ίth singular number of T" μt(T) is

μt(T) = inf{||Γ£||; E is a projection in Jί with τ(l - E) < t).
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It follows from 1.3 that μt(T) < oo, / > 0. The reader may notice
that μt(T) is indeed a generalization of the classical 5-number for a
compact operator. (Recall the first part of §0.) Obviously, μt{A) admits
the following "minimax" representation:

ίτ\ t S U P

μt(T) = inf
E is a projection in .

with τ(l -E)<t

As shown shortly, we have μt{T) = μt(T2)1^2 wen T is positive. There-
fore, for a positive Γ, this expression reads

sup

E is a projection in Jί
withτ(l-£)<ί

2.2. PROPOSITION. Let The a τ-measurable operator. For any t > 0, we
have

μt{T) = inf{j > 0; λs(T) < t}9

where λs(T) is the distribution function in 1.3. Moreover, the infimum is
attained and λμ ( Γ )(!Γ) < /, / > 0.

Proof. As the map: s -> λ5(Γ) is continuous from the right, the
second statement is obvious. Let us denote the infimum in the proposition
by a. The inequality λa(T) < t means τ(l - E) < t with E = E[Oa](\T\).
But, ||7Έ|| = || |Γ |£ | | < a and μt{T) < a.

On the other hand, let ε > 0 and take a projection E in Jί such that
τ(l - E) < t and

| |Γ£ | |< μt{T) + ε = a.

If £ e £ ( φ ) Π £ ( α ? 0 0 )( |Γ|)(^), ||ζ|| = 1, then we have

Therefore E A E{aoo)(\T\) = 0 and

~EV EM{\T\)-E<l-E

in the Murray-von Neumann sense. We thus get

λ α ( Γ ) < τ ( l - £ ) < / , a<a = μt(T) + ε.

The proof is complete since ε is arbitrary. D
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2.3. REMARKS.

2.3.1. Let 2ί be any von Neumann subalgebra of Jt containing the

spectral projections of \T\. The above proof actually shows that

μt(T) = inf{ 1(7^11; E is a projection in 21 with τ( l - E) <t).

2.3.2. When Jί = L°°(X; m) and τ ( / ) = jfdm, we get

μt(f) = inf{s > 0; m({x e X; \f(x) \>s})<t}.

Hence, μt(f) is exactly the classical non-increasing rearrangement /*(/)•

(cf. [26].) These two remarks are useful tricks to reduce the analysis of

s-numbers for a single operator to the classical commutative situation.

The next proposition gives a more geometrical interpretation of the

generalized s-numbers.

2.4. PROPOSITION. For each t, Let @t be the set of all τ-measurable

operators S such that τ(supp(|S|)) < t. (Here, supp(|SΊ) denotes the support

projection of \S\.) Then, for a r-measurable operator T, μt(T) is exactly the

"approximation number"

Proof. Let T = J7|Γ| be the polar decomposition and

S=UJ λdEλ(\T\)

with a = μt{T). We have

||Γ - S\\ < a = μ / ( Γ ) , τ(supp(|S|)) = λ Λ (Γ) < t (by 2.2).

Hence we get J(Γ, ̂ ,) < jtt^Γ).
On the other hand, let S e ^ and set

As TE = (T - S)E, we get

But τ( l - E) < t so that μt(T) < \\T - S\\ and μt(T) < d(Ty ®t), D

2.5. LEMMA. Let T, S be r-measurable operators.

(i) The map: t e (0, oo) -> μt(T) is non-increasing and continuous

from the right. Moreover,

Umμ t(Γ)=||Γ||e[0,oo].
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μt(aT) = |α |μ,(Γ) for t > 0 and a e C.

(iii) μt(T) < μ,(S), t>O,ifO<T<S.
(iv) μt(f(\T\)) = /(μ ί ( |Γ |)), / > 0 for any continuous increasing func-

tion} on [0, oo) withf(O) > 0
(v) μt+s(T + S) < μ,(Γ) +

(vii) μ,+,(ΓS) < μ,(Γ)μ,(S), ί, 5 > 0.

Proof, (i) The monotone property is evident. If it were not continuous
from the right at /, we would get

μt(T) > a > μί+ε(T) for all ε > 0.

Then λa(T) < λμt+ε(T)(T) < t + ε (by 2.2) and λa(T) < t. It follows that
μt{T) < α, a contradiction.

From the definition, we obviously have μt{T) < \\T\\.
If we had ||Γ|| > a > με(Γ), ε > 0, then we would get \a{T) = 0 as

before and ||Γ|| < α, a contradiction.
(ii) follows immediately from Proposition 2.2 or 2.4.

(iii) From 0 < T < S, we get

Λ E[OtS](S) = 0, E(S

in the Murray-von Neumann sense (as in the proof of Proposition 2.2).
Therefore, λs(T) < λs(S), s > 0, and the result follows.

(iv) Let 2ί be the von Neumann subalgebra of Jί generated by the
spectral projections of |Γ|. It obviously contains the spectral projections
of f(\T\). For any projection E in 3t, we get

since / is continuous increasing and /(0) > 0. Using Remark 2.3.1, we get

(v), (vi), and (vii) follow from Proposition 2.4. We will just prove (vii). ((v)
and (vi) are easier.) Choose and fix ε > 0. Proposition 2.4 guarantees the
existence of τ-measurable A, B such that

ε, τ(supp(|Λ|))</,

With C = (T- A)B + AS, we get

\\TS-C\\ = \\(T - A)(S -B)\\< (μ,(T) + e)(μs(S) + ε).
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We have

τ(supp(\C\))<t + s

thanks to the following three facts:

suρp(|C|) < supp(|(Γ — A)B\) V suρp(|^4SΊ),

supp( | (Γ-Λ)l? | )<supp( |5 | ) ,

suρp(|y!5Ί) — supp(|5*^4*1) < supρ(|yί*|) ~ supp(|^|).

Therefore, Proposition 2.4 implies

μt+s(TS) < (μt(T) + ε)(μs(S) + ε). D

2.6. LEMMA. Let T be a r-measurable operator. For a projection E in
Jί, we get

μt(TE) = 0 fort > τ(E).

In particular, if τ(l) = a is finite, then

μ,(Γ) = 0 fort>a.

Proof. It follows from Proposition 2.4. D

2.7. PROPOSITION. Let T be a positive τ-measurable operator. Then we
have

τ(T)=Γμt(T)dt.Jo

Proof. When T is of the form
n

(1) Σ «,E,

(<xι > 0 and Et are mutually orthogonal projections in Jί), the result is
proved in p. 190-191, [26]. (In [26], the extra assumption τ(Ei) < + oo is
posed. But, if τ(£z) = + oo for some i, then we obviously get oo = oo.)

At first we claim that the equality remains valid for any positive
bounded T. Using the spectral projections, one can write T as the norm
limit of an increasing sequence {Tn) of operators having the form (1). We
have

μt{Tn)/> μt{T).

(In fact, it follows immediately from Lemma 2.5, (i), (v) that \μt{Sλ) —
μt(S2)\ < \\SX - S2\\ for any operators St.) Therefore, /0°° μt(Tn) dt /
f™ μt(T)dt as n / oo by the monotone convergence theorem. On the
other hand, we obviously have τ(Tn) / τ(Γ) as n -> oo.
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Let us now assume that T is a general positive immeasurable operator.
For each n, we set

By Lemma 2.5, (iii),

μt{TEx) < μt{TE2) < -•• < μt{T).

We claim that limn_^ μt(TEn) = μt(T). Assume that s =
l i m l l ^ o o / i / ( 7 E J < μ / ( Γ ) . Then E(μtiTEΛoo)(TEn) = E{μt{TE^n]{T) con-
verges to E[ffO0)(T) strongly. Since τ ( £ ( μ ( Γ £ ) o o ) ( Γ £ J ) < t, the lower
semi-continuity of T implies

τ(^(,,oo)(Γ)) < τ ( £ [ j > β 0 ) ( Γ ) ) < \iminf τ(E(μt(TEnhoo)(TEn)) < t,

which contradicts s < μt(T). Therefore we have

μt{TEn) / μt{T) and Γ μt{TEn) dt ? Γ μt{T) dt

as n -> oo by the monotone convergence theorem. On the other hand,
τ(TEn) /< τ(T) as n -> oo (from the definition). Therefore, the general
case is reduced to the bounded case. D

2.8. COROLLARY. Let f be a continuous increasing function on [0, oo)
with /(0) = 0. For each r-measurable operator T, we have

τ{f(\T\))=Γf(μt(T))dt.

In particular,

Uoo \l/p

μt(T)pdή forO</><oo.
Proof. Apply Lemma 2.5, (iv), and Proposition 2.7. D

We now characterize spectral dominance (see [1], [3]) in terms of
generalized ^-numbers. The next result was stated in Remark 5, [3]
without proof.

2.9. COROLLARY. Let T, S be positive τ-measurable operators. The
following conditions are equivalent:

(i) μt{T) < μt(S), t > 0,
(ii) λ,(Γ) < λ,(S), s > 0,
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(iii) τ(f(T)) < τ(f(S)) for any continuous increasing function f on
[0,oo)

Proof, (i) => (iii) follows from Corollary 2.8.
(iii) => (ii) One can approximate the characteristic function χ ( 5 0 0 )

from below by a sequence {/„} of continuous increasing functions on
[0, oo) with fn(0) = 0, and we have τ(fn(T)) < τ(fn(S)) by the assump-
tion. It follows from Lebesgue's dominated convergence theorem (applied
to d\\Es{T)ζ\\\ ξ is a vector) that fn(T) / E(s^(T) and fn(S) /
E{soo)(S) strongly as n -> oo. Thus, the normality of T implies λs(T) <
λs(S). (ii) => (i) follows from Proposition 2.2. D

When Jί is a factor, the above three conditions are of course
equivalent to the spectral dominance E(soo)(T) < E(soo)(S), s > 0.

3. Convergence theorems for gages. Throughout the section, let Jί be
a von Neumann algebra with a faithful semi-finite normal trace T (i.e. T is
a gage in the sense of Segal, [23]). As a direct analogue of the measure
theory, on expects for example the following "dominated convergence
theorem": if a sequence {Tn) of r-measurable operators tends to T in the
measure topology and if there is a positive integrable operator S with
\Tn\ < 5, then one would get

(2) lim τ ( Γ j = τ(Γ).
«-»oo

However, in the literature ([20], [27]) the theorem in the above expected
form has not been proved. (As explained in p. 29, [27], difficulty comes
from failure of the operator inequality \T + S\ < \T\ + \S\). In fact, (2)
was proved under slightly unnatural conditions such as

-S < RcTn < S and -S < ImTn < S.

In this section, among other things, we will prove the "correct" dominated
convergence theorem based on the tools developed in §2. We will also
prove "Fatou's lemma" for generalized ^-numbers. As mentioned in §0,
this viewpoint is new, and will prove very useful.

We begin by characterizing the convergence in the measure topology
(recall 1.5) in terms of generalized Λ -numbers.

3.1. LEMMA. Let Tn, n = 1, 2, . . . , and T be ^measurable operators.

Then { Tn} converges to T in the measure topology if and only if

lim /i^Γ - Tn) = 0 for each t > 0.
n—>oo



280 THIERRY FACK AND HIDEKI KOSAKI

Proof. We will prove that S e F(ε, δ) (1.5) if and only if μδ(S) < ε.
When S e F(ε,δ), we clearly have μδ(S) < ε (Definition 2.1). Con-
versely, if μδ(S) < ε, then E = E[0^S)](\S\) satisfies τ(l - E) =
λμs(S)(S) < 8 (Proposition 2.2). Since

\\SE\\ = \\\S\E\\<μδ(S)<ε,

we get S e F(ε,δ). •

The next result was stated in [3] (Proposition 13) without proof.

3.2. PROPOSITION. The following three conditions are equivalent for a
τ-measurable operator T:

(i) λε(T) < +oofor all ε > 0,
(n)limt_>ooμt(T) = 0,

(iii) there exists a sequence {Tn} of τ-measurable operators (boundedif
wished) converging to T in the measure topology such that τ(supp|jΓJ) < oo
for each n.

Proof, (iii) => (ii) For any ε > 0, pick up an integer n0 with
μλ{T - TJ < ε (Lemma 3.1). Since μt(TJ = 0 for / > τ(supp(|ΓΠoD)
(Lemma 2.6), Lemma 2.5, (v) implies

μ<(T) < μ^Tj + μι{T - Tj < ε

for/>τ(supp(|ΓWo |)) + l.

(ii) => (i) For any ε > 0, pick up t0 > 0 such that μίQ(T) < ε. We then
get

oo > t0 > λμto{T)(T) > λε(T)

(Proposition 2.2).
(i) => (iii) If T = ί7/0°° λdEλ(\T\), then the sequence

does a job. D

3.3. REMARK. For a r-measurable operator in the class characterized
in Proposition 3.2, we can strengthen Corollary 2.8. Namely, if T is in this
class and g is a non-negative Borel function on [0, oo) with g(0) = 0 (not
necessarily increasing), we get

(3) τ ( g ( | Γ | ) ) = / ° 0 g(μ,(T))ώ.
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To prove this, at first we note

Γ M λ ) ) , s > 0,

for any positive r-measurable S. This is obtained by approximating the

characteristic function χ ( ί 0 0 ) from below by functions described in

Corollary 2.8. Similarly we get

•'o °
Therefore, if T is in the above mentioned class and I is an interval in

(0, oc), we get

r{Er(\T\))=Γχr(μt(T))Λ.
J0

The class of measurable subsets / in the interval (ε, oo) (ε > 0 fixed) for

which the above equality holds is closed under countable disjoint union

and complement and hence includes all Borel subsets in(ε, oc). (oo — oo

does not occur when one takes a complement thanks to lim, _ ̂  μ,(Γ) = 0.)

Since gχie%oo) ΐ g as ε -» 0, (3) follows.

We also remark that all Lp{Jί\ T), 0 < p < oo, are included in this

class. In fact, if T is in Lp(Jί\ τ) then

rt r°°

<t-' μs(T)pds<Γι μs(T) ds

O as/ -^ oo.

The following "Fatou's lemma" is very useful:

3.4. LEMMA (cf. Appendix of [15]). Let {Tn} be a sequence of

r-measurabίe operators converging to T in the measure topology.

(i) μt(T) < liminf μt(Tn) for each t > 0.
n-* oo

(ii) μt{T) = lim μt{Tn) if s -> μs(T) is continuous at s = /, or if

μt{Tn)<μt{T).

Proof, (i) For each ε > 0, Lemma 2.5(v) implies that

μt + ε{T)-με{T-Tn)<μt{Tn).

Taking the lim infn _+ ̂  of the both sides and using Lemma 3.1, we get

μί+ε(T)< liminf μt{Tn).
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Letting ε 10, we get by Lemma 2.5, (i),

μt(T)< limmΐμt(Tn).
n-* oo

(ii) Picking up a small ε > 0 (0 < ε < t), we get as before

μt{Tn)<μt_e{T)+μXTn-T),

limsup μt(Tn) < μ,_e(Γ).
n—> oo

If s -> μs(T) is continuous at s = ί, letting ε J,0 we get

limsup μ,(Γj<ίμ,(:r)(<; liminf μ,(7;)).

When μt(Tn) < μt(T), the result is clear. D

The proof of the next (known) result should be compared with that in

[27].

3.5. THEOREM. Let {Tn} be a sequence of positive τ-measurable opera-
tors converging to T in the measure topology.

(i) (Fatou's lemma) τ(T) < l iminf^^ τ(Tn).
(ii) (Monotone convergence theorem.) If Tn < T (or even if μt(Tn) <

μt(T), t > 0), then

τ(T) = lim τ(Γj.
n—* oo

Proof, (i) We estimate:
/.OO

τ(T) = / μt(T)dt (Proposition 2.7)

< f liminf μt(Tn) dt (Lemma 3.4)
•'O n-* oo

/.OO

< liminf / μt(Tn)dt (usual Fatou's lemma)
«—• oo *^o

= liminf τ(Tn).
n-* oo

(ii) It follows from (i) and

τ(Tn) = Γ μt(Tn) dt < Γ μt(T) dt = τ(T). D
o o

3.6. THEOREM. Let {Tn} be a sequence of τ-measurable operators
converging to T in the measure topology. Assume that there exist τ-measura-
ble operators Sn, n = 1, 2,..., and S in LP(M\ T), 0 < p < oo, satisfying
the following conditions:

(i) μt(Tn) < μt(Sn) (it is satisfied if \Tn\ < \Sn\, Lemma 2.5, (ii),

(iii)),
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(iii) μt(S) < ]iminfn^O0μt(Sn). (// is satisfied if {Sn} converges to S
in the measure topology , Lemma 3.4, (i).) Then; Tn and T are in Lp(Jί\ T),
and we have

km ||Γ-ΓJ, = O.
n—* oo

If p = 1, then we also get

lim τ(Γj = τ(Γ).
n—> oo

Of course, the dominated convergence theorem described at the
beginning of the section is included in this theorem. (Take p = 1 and
Sn = S.)

Proof. At first we note |τ(Γ)| < τ(|Γ|) whenever T e L\Jί\ r) (see
V §2, [24] for example). The last statement follows from

|τ(Γj - τ(Γ) I =|τ(T; - Γ) | < r{\Tn - T\)=\\Tn - TW,.

Obviously, (i) implies Tn G Lp{Jί\ T). Also, (any version of) Fatou's
lemma implies

| | r | | , < liminf \\Tn\\P < Hminf HSJÎ  =\\S\\p < oo

and T ̂ Lp(Jf\ r). By Lemma 2.5, (iv), we have

μt(T - Tn) < μt/2(T) 4- μt/2(Tn) < μί/2(T) + μt/2(Sn),

and hence,

μt(T-Tn)
p<Cp{μt/2(T)P + μι/2(Sny},

where Cp = MaxCL^'"1). Since l im I I ^ o o μ / (Γ- Tn)
p = 0 (Lemma 3.1)

and \immin^,ιχμt/2(Sn)
p > μt/ϊ(S)p ((iii)), the non-negative function

Cp{μ,/2(Ty + μί/2(Sn)P} - μt(T - TJ" satisfies

-μt(T- Tn)
p\

Usual Fatou's Lemma thus implies

f Γ Γ P } 1

* 0 w —* oo

< liminf Πςfμ^ίΓj' + μ^ίSj'J-μ^Γ-Γj'lΛ.
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In other words, we have

2C,( | |Γ | | J + | | S | | J ) < U m i n f { 2 ς ( | | r f , + H 5

By (ii) and the fact that every norm is finite, we get

0< -limsup||Γ-:rX
n-* oo

^ J | Γ - Tn\\p = 0. Π

3.7. THEOREM. Let Tn, n = 1, 2,..., and T be elements in Lp{Jί\ T),

0 < p < oo. The following two conditions are equivalent:

(ii) l i m ^ J I Γ J ^ = \\T\\p and Tn -» Tin the measure topology.
If, in addition, 1 < p < oo, they are also equivalent to
(iii) Xιmn-,J\Tn\\p = \\T\\p and Tn^T in the σ(L'9L<)-topology,

where q is the conjugate exponent of p.

Proof, (i) => (ii), (i) => (iii) are obvious, (ii) => (i) follows from Theo-
rem 3.6 with Sn = \Tn\ and S = |Γ|. In fact, (iii) in Theorem 3.6 is checked
as follows:

μt(S) = μt(T) < liminf μt(Tn) = lim μt(Sn).
n—> oo n-* oo

Here, Lemma 2.5, (ii), and Lemma 3.4,(i) were used, (iii) => (i) follows
from the uniform convexity of Lp{Jί\ T), 1 < p < oo. (cf. [13], [14],
[34]). D

The theorem ((ii) => (i)) was previously known for special values of p
only when τ(l) < oo. (cf. [14], [21]). Also, here is one subtlety in the above
proof worth pointing out. Although we were able to check the condition
(iii) in Theorem 3.6, the following problem is still open: Let {Tn} be a
sequence of τ-measurable operators converging to T in the measure
topology. Does the sequence {\Tn\\ converge to \T\ in the measure
topology? The answer is affirmative if τ(l) < + oo. More information can
be found in [19], [20] (when τ(l) < oo).

4. Convexity and concavity inequalities. Here, we study convexity (and
concavity) inequalities involving μt and provide "real analysis" proofs to
the classical norm inequalities. Not only that, we will carefully compare
these classical norm inequalities with inequalities involving μt due to A.
Grothendieck, J. von Neumann, H. Weyl, and the first named author. We
will also show that these "semi-finite techniques" are useful in the theory
of Haagerup's L ̂ -spaces.



GENERALIZED ^-NUMBERS OF r-MEASURABLE OPERATORS 285

The topics here are closely related to [1], [2], [3], [8], [9], [11], [32], and

as in [3] our philosophy is that, inside a trace, operators behave "like

functions."

Until further notice, throughout we will assume that Jί is a von

Neumann algebra with a faithful semi-finite normal trace τ.

Thanks to Proposition 2.7 and Corollary 2.8, one can derive inequali-

ties involving the trace τ from these involving μr The converse is also

possible to some extent thanks to

4.1. LEMMA (cf. Lemma 3.3. [8]). Assume that Jί has no minimal

projection. For any τ-measurable operator T, we have

I μs(T)ds = supiτ(E\T\E); E is a projection in Jί with τ(E) < /}.

If \T\ does not have a point spectrum, the supremum may be taken over all

projections {of trace at most t) in the von Neumann subalgebra generated by

the spectral projections of \T\.

Proof. We may assume T > 0. Let T = /0°° λ dEλ be the spectral

decomposition. Take an abelian von Neumann subalgebra 3ί =

L°°(X; m) of Jί containing spectral projections of T and with non-atomic

measure m (corresponding to T). (Such 91 exists by assumption on Jί.)

Therefore, for T = / in 2ί, we have μt(T) = /*(/) (Remark 2.3.2).

Since (X, m) is non-atomic, the classical equality

Γf*(s)ds= sup ί \f\dm
EQX

m(E)<t

is available. (See p. 202, [26].) This means that

Γ μs(T)ds = sup{τ(ETE); E is a projection in 21 withτ(£) < /}

< sup{ τ(ETE); E is a projection in Jί with τ(E) < t}.

Conversely, when a projection E in Jί satisfies τ(E) < t we estimate

τ(ETE) = Γ μs{ETE) ds (Proposition 2.7)

= Γ μs(ETE)ds (Lemma 2.6)

< Γ μs(T)ds. (Lemma2.5, (vi)). C
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The reader may think that the assumption on Jί (no minimal

projection) is quite restrictive. But we can always embed Jί into Jί <S>

L°°([0,1]; dt) without changing the ^-number because of the trivial fact

where the ^-number on the right is relative to the tensor product of r by

the trace

f-+Jlf(s)ds.

Let us discuss the Holder inequality:

(4) U T S | | , <\\T\\P\\S\\q {P,q,r> 0 ; p - * + q~' = r " 1 ) .

Of course, (4) is well-known when p, q, r > 1. However, it seems that the

only proof of (4) for 0 < r < 1 is based on the Weyl inequality (see [8])

At(TS)<At(T)At(S), t>0.

Here, Λ,(Γ) is defined by

Λ,(Γ) = e x p Γ l o g μ , ( Γ ) A , t > 0.

It is easy to see that if for example T satisfies the "Lorentz space"-type

condition

(5) Γ G l or μt(T)<CΓa ( C , α > 0 ) , / > 0,

then Λ,(7") is well-defined (i.e., oo — oo does not occur). Whenever

Λ,(Γ) appears in what follows, we will always understand that T satisfies

(5). Actually, the assumption (5) is satisfied by "almost all" τ-measurable

operators appearing in applications. (Cf. the estimate before Lemma 3.4.)

4.2. THEOREM. Let Γ, S be τ-measurable operators.

(i) ||ΓSΊ|r < \\T\\p\\S\\q (p9q,r> 0; p'1 + q'1 = r'1).

(ii) At(TS) < At(T)At(S), t > 0.

(iii) j<f{μs{TS))ds < j<f{μs{T)μs{S))ds

for any increasing function /: R+-> R such that t -> /(^0 is convex.

This result for τ-compact elements in Jί (i.e., elements in Jί satisfy-

ing the conditions in 3.2) was proved in [8]. As mentioned before, not only

proofs of (i) ~ (iii) for τ-measurable operators, but we will also show that

each of them can be deduced from the others.

Proof, (i) We may and do assume \\T\\p, \\S\\q< oo. Then the result

follows from Corollary 4.4, (iii), [8], and the trick in the Appendix of [15].

But, since this trick will be repeatedly used later, for the convenience of

the reader we will recall the arguments. Let T = U\T\ and |Γ| = /0°° λ dEλ
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as usual. For each weN+,weset

TΛ=ufλdEλ.

As \\T\\p < + oo, each Tn in Jt is τ-compact (cf. p. 315-316, [8]) because
of

μ,(Γj £ μ,(Γ)-> 0 a s r ^ O ) .

Define Sn similarly. By Corollary 4.4, [8] (which is essentially (ii), (iii) for

τ-comρact operators), we get

μs{TnSnYds) < { / o μM(TmVώ) (jf μ,(Sm)< ώ)

But 7 ^ -> TS in the measure topology so that

< ( Γ liminf μs(TnSn)
rds)l/r (Lemma 3.4, (/))

V •'o n —> oo /

< liminf < I μs(TnSn)
rds\ (usual Fatou's lemma).

Combining the above two estimates, we get the desired result, (i) =» (ii) At
first, for immeasurable Γ, S, we prove

U t \ 1 A / rt ^ \1/2r ί M ^ \l/2r

'μ.iTSYώ) <[ζμs(T)2rds) (ζμa(S)2'ds) ,
f >0,

based on (i). By the remark after Lemma 4.1, we may and do assume that
Jί has no minimal projection. Let T = U\T\ and S = V\S\ be the polar
decompositions. Let E be a projection in Jί which commutes with |TΊSΊ
and satisfies τ(E) < t. Let F be the support projection of \ES*\ and W
be the phase part of the polar decomposition of ES*. Then

/ W*W = F,

\WW* = supp(\SE\)<E.

It is then straightforward to check

E\TS\2E = (ES*W*E){EW\T\2W*E)(EWSE).

Thus, (i) implies that
2
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Here, Lemma 2.6 and Lemma 2.5, (ii), (vi) were used. Notice (E\TS\2E)r

= E\TS\2Έ. By taking 2ί which includes E in the proof of Lemma 4.1

(where T is replaced by \TS\2r), we obtain (by Lemma 4.1)

μs{TSfrds) <{j^s(T)4rdS) (jf μ,(S)4'

which is exactly (6) since r > 0 is arbitrary. Dividing the both sides of (6)

by / 1 / r , we get

j \\/r [ i , l/2r , j N 1/2r

μΛτs) T ) * (/0 ̂
( Γ ) T ) (/O ^{S) T) •

We now assume that T9 S (hence TS) satisfy (5). By the well-known

equality:

t
exp/Ίog|/(,)|f =lim {/|/(,) Γf) 1

if f \f(s) ( — < + oo for some r > 0.
Jo t

(see p. 74, [22] for example), we get

λt{TS)ι/t <At{T)ι/tAt{S)ι/t.

(ii) => (iii) This follows from Corollary 4.2, [8], if T and S are

bounded. Using the same trick as in the proof of (i), it is clear that (iii)

remains valid for any T, S. (iii) => (i) follows from the classical Holder

inequality (with f(s) = sι/r and / = + oo). D

We now discuss the Minkowsky inequality:

| | Γ + 5 | | ^ < | | Γ | | ^ + | | 5 | U p>\.

It was shown in [8] that this can be deduced from the von Neumann

inequality:

where

Φ , ( Γ ) = Γ μs(T)ds (recall Lemma 4.1).
Jo

4.3 LEMMA (cf. [1], [15], [32]). Let T, S be τ-measurable operators.

Then there exist partial isometries U9 V in Jt such that

| Γ + S\ < U\T\U* + V\S\V*.
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4.4. THEOREM. Let T, S be ^measurable operators.
(i) \\T+S\\pί\\T\\p + \\S\\p, p>l

(ii) Φt(T + S) < Φt(T) + Φ,(S), t > 0,
(iii) ftf(μs(T+S))ds < tif(μa(T) + μ3(S))ds, t > 0,

for any convex continuous increasing function f: R+ -» R.

Proof. Of course (i) is well-known. (For example it follows from the
Lp X ZΛduality). Also, as mentioned before Lemma 4.3, it can be proved
from the von Neumann inequality (see the proof below). Therefore, as
before, our main concern is to clarify relation among (i) ~ (iii).

(ii) As usual, we may assume that Jί has no minimal projection. Let
E be a projection in Jί with τ(E) < t. Using ί/, V in Lemma 4.3, we
estimate

τ{E\T + S\E) < τ(EU\T\U*E) + τ{EV\S\V*E)

< Γ μs(EU\T\U*E)ds+ Γ μs(EV\S\V*E)ds

< f μs(T)ds+ f μs(S)ds
Jo Jo

due to Lemma 2.6. hence Lemma 4.1 implies (ii).
(ii) => (iii) By Lemma 4.3, (i), [8], (iii) follows from (ii) when S and T

are bounded. For general Γ, 5, (iii) remains valid by the trick in the proof
of (i) in Theorem 4.2.

(iii) => (i) follows from the usual Minkowsky inequality (with f(s) =
sp, t = oo). D

We point out the formula

where the infimum is taken over all decompositions Γ = Γ 1 + Γ2. This
also proves (ii), and it is very important in the theory of real inteφolation.
Let T = Tx + T2 be an arbitrary decomposition. For 0 < a < 1 and
s > 0, we estimate

μ,(Γ) < μ^T,) + μ(1_β),(Γ2) (Lemma 2.5, (v))

^/*«(2ri)+l|r2L (Lemma2.5, (i)),

Φ,(Γ) < fμas(Tι)ds + ί||Γ2|L < Γ μas(Ti)ds + /||Γ2|
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Letting α f l , we get Φ,(Γ) < mίdlΓ-J^ + ίH^H^}. To show the reversed
inequality, let T = u\T\ be the polar decomposition and |Γ| = f™λdEλ

be the spectral decomposition. We set a = μt(T),

Since |7\| = /α°°(λ - α) dEx = /(|ΓD with

f/y\ ίθ i f θ < λ < α ,
/ ( λ ) " \ λ - α i f λ > « ,

we get

μs(Ά) = f(μs(T)) (Lemma2.5, (»), (iv))

-oc ifO <s<t,

0 if 5 > t.

Since H^H^ < α, we get

= f(μs(T)-a)ds + ta = fμs(T)ώ.

Thus the above formula was proved.

It is also worth pointing out that when positive τ-measurable opera-
tors Γ, S satisfy Φ,(Γ) < Φt(S), t > 0, S is said to "submajorize" T. In
fact, this ordering is one of the most important orderings in the majori-
zation theory.

Before investigating a counterpart of Theorem 4.4 for 0 < p < 1, we
prove Jensen-type inequalities ([3]) which may be of independent interest.

4.5. LEMMA. Let T be a positive τ-measurable operator, and U be a
contraction in Jt'. For any continuous increasing convex function f on R +

withf(0) = 0, we get

μt{f{UTU*)) =f(μt(UTU*)) < μt(Uf(T)U*).

Iffis concave instead, we get the reversed inequality.

Proof. We will just consider the convex case. (The concave case can be
handled similarly.) Since / is convex, it is of the form

t€=/
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with aL > 0 and bL < 0. For each unit vector £ and i e /, we have

( Uf(T)U*ξ\ξ) > ( U(atT+ bt)U*ξ\ή

= aL{ UTU*ξ\ξ) + bt\\U^\\2 > at{ UTU*£\£) + bL

since bL < 0 and ||t/*£||2 < 1. Taking the supremum over i, we have

{Uf(T)U*ξ\ξ)>f((UTU*ξ\ξ)).

By making use of the expression right before Proposition 2.2, we get

μt(Uf(T)U*) = inf sup( Uf(T)U*ξ\ξ) > inf sup/(( UTU*ξ\ξ))

= /(inf sup( £/Γt/*ξ|ξ)) (since / is continuous and increasing)

= f(μt(UTU*)). Ώ

4.6. PROPOSITION. Let f be a continuous increasing function on R+ w/7/z
/(0) = 0. Let a, b be elements in Jί with a*a + b*b < 1, and T, S be
τ-measurable operators.

(i) When f is concave. IfT, S are positive, we have

μt(a*f(T)a + b*f(S)b) < μt(f(a*Ta + b*Sb))y t > 0,

hence,

τ(a*f(T)a) + τ(b*f{S)b) < τ(f(a*Ta + b*Sb)).

Also, for general T, S, we have

r{f(\T+S\))<r{f(\T\)) + r{f(\S\)).
(ii) When f is convex. IfT, S are positive, we have

μt{a*f{T)a + b*f(S)b) > μt(f(a*Ta + b*Sb)), t > 0,

hence,

τ{a*f(T)a) + r(b*f(S)b) > τ(f{a*Ta + b*Sb)).

For positive T, S; we also get

r(f(T+S))>τ(f(T)) + r(f(S)).

Inequalities in (i) are implicit in [3], but for the sake of completeness
we will give full details. More detailed information can be found in [3].

Proof, (i) Consider the von Neumann algebra Jί ® M2(C) equipped
with the trace f = [τ

0 % Applying Lemma 4.5 to the contraction [a

b g]*
and the positive (f-measurable) operator [Q °S], we get

ί\a*f(T)a + b*f(S)b 0|\ l\f(a*Ta + b*Sb) 0
μ' ί o o F μ 1 o o
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Here, the s-numbers are relative to f. But this obviously means the first
inequality in (i). To show the last inequality in (i), we at first assume Γ,
S > 0. Since Γ, S < T + S, there exist contractions U9 V in Jί such that

T1/2 = u(τ + s)ι/\ sι/1 = v(τ + s)λ/\

U*U+ V*V= supp(Γ+ S).

We then estimate

Hf(T)) + r(f(S)) = τ(f(U(T + S)U*)) + τ(f(V(T + S)V*))

> τ(Uf(T + S)U*) + τ(Vf(T + S)V*)

(Proposition 2.7 and Lemma 4.5).

= τ(/(Γ + S)1/2U*Uf(T + S)1/2) + τ(f(T + S)1/2V*Vf(T + S)1/2)

= r(f(T+ 5)1/2supp(r+ S)f(T+ S)1/2) = τ(f(T+S)).

For general T, S, we choose partial isometries U, V in J( such that

\T+ S\< U\T\U* + V\S\V* (Lemma4.3).

Since U\T\U*, V\S\V* > 0, we get

τ{f(\T+S\))<τ{f(U\T\U* + V\S\V*))

(Lemma 2.5, (iii), and Corollary 2.8)

< r(f(U\T\U*)) + r(f(V\S\V*)) (the previous case)

Here, the last inequahty follows from μt(U\T\U*) < μt(\τ\) a n d

μt(V\S\V*) < μt(\S\). (ii) is proved by the same arguments as (i). (But,
notice that the last part based on Lemma 4.3 breaks down.) D

We now discuss the following inequality:

(7) \\T+S\\P

P<\\T\\P

P+\\S\\P

P, 0 < p < h

that replaces the Minkowsky inequality, p > 1. It can be proved that (7)
is equivalent to the Grothendieck inequality proved in [9] for τ-compact
elements in Jί\

| Γ + S|) < Λ,(l +|Γ|)Λ,(1 + | S | ) , t > 0,

and hence to

(8) /' g{μs(T+S))ds<f g{μs(T))ds + f g(μs(S))ds, t > 0,

for any increasing function g on R+ which is operator concave ([7]) and
g(0) = 0 (cf. [1], [9]). However, operator concavity is a strong condition
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and (8) was proved in [3] (when t = + oo) for any increasing concave
function / with /(0) = 0. We now state

4.7. THEOREM. Let T, S be τ-measurable operators.

(i) fg(μs(T+S))ds<fg(μs(T))ώ + fg(μs(S))ώ, t > 0,

for any increasing concave function g on R + with g(0) = 0.

(ii) Λ,(l + g(\T+ S\)) < Λ,(l + g(|Γ|))Λ,(l + g(\S\)), t > 0,

for any g as in (i).

Of course (7) follows from (i) (actually from the last inequality in
Proposition 4.6, (i)). We will prove (ii) and the bi-implication (i) <=* (ii).
But, before its proof, some remarks are in order. For a positive τ-measura-
ble operator Γ, we have

μ,(l + T) = i

(by comparing the spectral projections of T and those of 1 + T). There-
fore, if / < τ(l) (τ(l) G (0, oo]), then we have

On the other hand, if t > τ(l), then (since we are assuming (5) and
log(l + μt(T)) - log(μ,(Γ)) when μt(T) is large) we get

0 < Γ ( 1 ) log(μ,(l + T))ds< +oo,

and consequently

A,(l + T) = 0.

Proof, (i) As usual we may and do assume that Jί has no minimal
projection. Also, by Lemma 4.3, we may and do assume that Γ, S are
positive. For a projection E in Jί, τ(E) < t, commuting with T + S, we
estimate

r(Eg(T + S)E) = τ(g(E(T + S)E))

< τ(g(ETE)) + τ(g(ESE)) (Proposition4.6(i))

= Γ g(μs(ETE)) ds + f g{μs(ESE)) ds (Lemma 2..6)
•'O •'O

<fg{μs(T))dS + fg{μs(S))dS.

Thus, (i) follows from Lemma 4.1.
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(i) => (ii) By the comment before the proof, we may and do assume

τ(l). We apply (i) to the function: s -> log(l 4- g(s)) and get

Γ log(l + g{μs(T + S))) ds < f log(l + g(μs(T))) ds

+ f

Since g(μs(T + S)) = μs(g(\T + S\j/)9 this is exactly (ii) (thanks to the

other comment before the proof).

(ii) => (i) To show (i), we may and do assume that T and S are

bounded by the usual approximation arguments. Lemma 3.2, [9], asserts

that

Γf g(μs(T))pds = κ-ιpsm(τrp) Γ logΛ,(l

for each 0 < p < 1 (and similar formulas for S and T + S). Thus, (ii)

implies

/' g(μs(T + S))Pds < f g(μs(T))Pds + f g(μs(S))Pds.

Letting p /» 1, we get (i). D

We now assume that Jί is a general von Neumann algebra and

21 = Jίxσ\ϋ is the crossed product explained in 1.6. In the rest of the

section, we prove norm inequalities of the Haagerup Lp{Jί) based on the

techniques developed so far.

4.8. LEMMA. For any T in Lp(Jΐ), 0 < p < oc, we have

μΐ(T) = Γι^\\T\\p, t>0,

where μt is relative to the canonical trace on %.

This lemma is proved in [15]. Actually, it is an immediate conse-

quence of Lemma 1.7 and Lemma 2.5, (iv). This lemma implies that an

element in Lp(Jί), 0 < p < oc, satisfies the condition (5). Also, for T in

Lp(Jί), 0 < p < oo, it is elementary to compute

Φt(T) = qtι/q\\T\\p if 1 <p < oo and p~ι + q~ι = 1,

4.9. THEOREM (cf. [12], [13], [15]).
(i) ForTinLp{Jί) and S in L\Jt) (p,q,r > 0; p~ι + q~ι = r " 1 ) ,
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we have
\\TS\\r<\\T\\p\\S\\q.

(ii) For T, S in L"(Jί), 1 < p < oo, we have

\\τ+s\\P<\\τ\\P+\\s\\P.
(iii) For T, S in Lp{Jί), 0 < p < 1, we have

Proof, (i) Setting t = 1 in Theorem 4.2, (ii), we get

(ii) When p = 1, oo, the result is trivial. (The case p = 1 is actually

proved as (iii).) When 1 < p < oo, setting / = 1 in Theorem 4.4, (ii), we

get

q\\T+S\\P<q\\T\\p + q\\T\\p.

(iii) Choose /?' with 0 < p' < p( < 1). Setting g(s) = sp' and t = 1 in

Theorem 4.7, (i), one directly computes

(i -PVP)'1\\T+ sfP < (l -p'

based on Lemma 4.8. Clearing (1 - p'/p)~ι and letting /?' />/>, we get

(iii). D

As pointed out in 1.6, tr (used to define || \\p) and the canonical trace

r on 21 = ^ j c σ R are different. But, it is possible to relate the L^-norm on

Lp(Jί) to T. Namely, the explicit computation of Φ, before Theorem 4.9

and the formula (with t = 1) after Theorem 4.4 imply that

| | Γ | | , = tf-MnffHΓilli +\\T2\L], T ^ L " { M ) , \ < p < π ,

p~ι + q~ι = 1, where the infimum is taken over all decompositions T =

Tλ + T1{Ti are immeasurable operators affiliated with 21) and the ZΛnorm

in the inf sign is relative to the canonical trace on 2t.

We now specialize ourselves to the commutative case. The following

fact does not seem to have been noticed in classical analysis. Let (X, m)

be a measure space, and / be a measurable function on X. For 1 < p < oo

(p~ι 4- q~ι = 1), define the function / o n X X R by

f(x9t)=f(x)e'/'9 x^X,t^R.

Then, \\f\\p = Ux\f\p*n)1/P is given by

Here, the infimum is taken over all decompositions f = fι + / 2 (// are

functions on X X R) and || \\x in the inf sign is relative to the measure
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dm ^ r ' ώ o n l x R . Full details are left to the reader. (It is indeed an

amusing exercise.)

Finally let us point out the reason why "semi-finite techniques" were

useful in Theorem 4.9. Actually, the Haagerup L^-space is sitting in-

side the "non-commutative weak L^-space" (i.e., the Lorentz space

Lpcc(%; τ) associated with 2 ί = ~ # X σ R and the canonical trace T)

on 21 (although Lp(Jf) c L^(2ί; r) is false). Furthermore, H^H ,̂

T e Lp{Jί), is exactly the weak L^-space norm of T. Details on this

theory will be published elsewhere.

5. The Clarkson-McCarthy inequalities. This section is devoted to a

study of the Clarkson-McCarthy inequalities:

(9) \\T+S\\P

P+\\T-S\\P

P<2"-\\\T\\P

P+\\S\\P

P), 2<p<oo,

(10) \\T+S\\l+\\T-S\\U2(\\T\\P

p + \\S\\P

pγ
/P, Kp<2,

p~ι + q'1 = 1, where T, S are in the Haagerup Lp(Jί). Of course, these

inequalities, which imply uniform convexity for the L^-spaces, 1 <p < oo,

are known, (cf. [4], [5], [30], [34] for the semi-finite case and [12], [13] for

the general case.) The inequality (9) is relatively easy to prove.

LEMMA 5.1. Assume 1 < p < oo, and let Γ, S be in Lp(Λf)+. Then we

have

2^\\T+S\\P

p<\\T\\P

P+\\S\fP<\\T+S\\P

P.

Proof. The first inequality is valid for any T, S in Lp(Jΐ), and it is

just Theorem 4.9, (ii) together with the convexity of tp, t > 0. The second

inequality is basically the last statement of Proposition 4.6, (ii) (in the

semi-finite case). Since tr and r are different, the arguments in Proposi-

tion 4.6 should be modified as follows:

= tr((t/(r + s)u*y) + tr((r(r+ s)v*)')

(Here, Γ1/2 = U(T + S)ι/2, S1/2 = V(T + S)1/2,

U*U + V*V = supp(Γ + S), U, V e Jί)

= μ1((U(T+ S)U*)P) +μi(([/(T+ S)V*)P) (Lemma 4.8)

< μι{U(T+ S)PU*) +μι(V(T+ S)PV*) (Lemma4.5)

= tτ(U(T + S)PU*) + tτ{V(T + S)PV*)

= tr((Γ + S)p/2supp(T + S)(T + S)p/1)

= tr((T+ S)P)=\\T+S\\P

P. •
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When 0 < p < 1, all the inequalities in the above Lemma are re-
versed. In fact, the first inequality follows from the operator concavity of
tp

9 t > 0 (0 < p < 1) (see [7]) while the second is just Theorem 4.9, (in).

5.2. THEOREM. Let Jίbe a general von Neumann algebra, and Γ, S be
in Lp{Jί) with 2 < p < oo. Then we have

||Γ+ S& +||Γ- St * 2'-

Proof. Set p' = p/2 e [1, oo). We have

\\τ+s\\p

P + \\τ-s\\p

P=\\\τ+s\%

Here, Lemma 5.1 was used twice. D

From the above proof and the remark after Lemma 5.1, it is clear
that, when 0 < p < 2, the inequality (9) is reversed.

The inequality (10) is more difficult to prove, and some false proofs
exist in the literature. Basically, all correct proofs have been done in the
framework of the "complex interpolation method" (cf. [13], [34]), and the
first named author would like to point out that the "real analysis" proof
of (10) presented in [9] is incorrect. We present a direct proof by adopting
a method due to Cleaver, [4].

5.3. THEOREM. Let Jί be a general von Neumann algebra, and Γ, S be
in Lp(Jί) with 1 < p < 2. Then we have

where p~ι + q~ι = 1.

Proof. Let Γ + 5 = U\T + S\ and T - S = V\T - S\ be the polar

decompositions, and

A^WT+SWT'IT+SΓ'U*, B=\\T- s\\TP\τ- sf'v*.

Then, A, B are in Lq{Jί)\ and we have

tτ(A(T+S))=\\T+S\\q

p=\\A\\P

q, tτ(B(T-S))=\\T-S\\l=\
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It is easy to see that the theorem follows from

\tτ(A(T+ S) + B(T- S))\

for any A, B in Lq(Jί) and any Γ, S in Lp(Jf). Let A = U\A\ and
B = V\ BI be the polar decompositions, and let T = HX and S = KY be
the right polar decompositions (H, K > 0). For 1/2 < Rez < 1, we set

T{z) = HPZX, S(z) = K*ZY9

Aί \ II A \\PZ~^l~Z^TT\ A\^l~Z^

A(z)=\\A\\q U\A\

Then the function

f(z) = tτ(A(z)(T(z) + 5(z)) + B(z)(T(z) - S(z)))

is bounded continuous on 1/2 < Rez < 1 and holomorphic in the inter-
ior. For Rez = 1, we have

Using similar bounds for the other terms, we have

For Rez = 1/2, all of Γ(z), S(z), A(z), and B(z) are in L2{Jί) and we
have

\f(z)\<\\A(z)\\2\\T(z) + S(z)\\2+\\B(z)\\2\\T(z) - S(z)\\2

<(\\A(z) \\l + \\B(z) \$/2(\\T(z) + S(z) \\l + \\T(z) - S(z) ^

where the parallelogram law was used. But we estimate

We similarly get

2

Therefore we have proved
n \ 1 /?/ n n \ 1 /9

= 1/2.
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By the three line theorem, we get

where α, β are \\A\\ζ + \\B\\ζ, \\T\\P + | |S| |* respectively. Since |F(1//>)| is
exactly the left side of (11), the proof is complete. D

The main emphasis of the present article has been real analysis
methods. Yet, the authors' effort to obtain a real analysis proof of (10) has
not been successful. Even in the B(ίQ) case, the authors are very interested
in a real analysis proof of (10). Let us point out that a "real analysis
proof of (10) presented in [17] is incorrect. (Actually, the argument in
[17] is based on false inequalities for real numbers.)
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