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RANGE OF GATEAUX DIFFERENTIABLE
OPERATORS AND LOCAL EXPANSIONS

JONG SOOK BAE AND SANGSUK YIE

Let X and Y be Banach spaces, and P: X — Y a Gateaux
differentiable operator having closed graph. Suppose that there is a
continuous function c: [0, o) — (0, o) satisfying

ap,(B(0;1)) 2 B(0; (|1 x])).

Then it is shown that for any K > 0 (possibly K = «), P(B(0; K))
contains B(P(0); [Xc(s)ds). Similar results are obtained for local ex-
pansions and locally strongly ¢-accretive operators. These results extend
a number of known theorems by giving the precise geometric estimations
for normal solvability of Px = y.

1. Introduction. Let P be a nonlinear operator from a Banach
space X into a Banach space Y. Many authors (see [3], [4], [6], [7], [10],
[12], [13], [14] and [15]) have studied solvability of the equation Px =y,
for y € Y, a considerable number of which involve local or infinitesimal
assumptions on the operator P, by showing that P is surjective. However,
in many cases, in general P need not be surjective, although for some
y € Y, the equation Px = y is solvable. For example, let P be a Gateaux
differentiable operator having closed graph such that for each x € X,

dP (B(0;1)) 2 B(0; (|| x[l)

where ¢: [0, o) — (0,00) is a continuous function. In [13], Ray and
Walker showed that P is surjective, where ¢ is nonincreasing and
J&° ¢(s) ds = oo. However, although c is not nonincreasing and [§°c(s) ds
< oo, intuitively we may expect that for any K > 0 (possibly K = o0),
P(B(0; K)) contains B(P(0); [Xc(s)ds) by considering an elementary
integral equation, so that for any y € B(P(0); [Kc(s)ds)C Y, Px=y
has a solution x in B(0; K) C X.

In this paper, we show that the fact mentioned above holds, and such
an idea can be applied to local expansions and locally strongly ¢-accretive
operators similarly. For this purpose, in §2, we give a fixed point theorem
which is a basic tool in proving theorems in §3. And in §3, we apply this
result to nonlinear operators.
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2. A fixed point theorem. In this section we give a fixed point
theorem which is a basic tool in proving theorems in the next section.
Actually our theorem is based on the following well-known Caristi-Kirk-
Browder fixed point theorem [5], which is an equivalent formulation of
Ekeland’s minimization theorem [8, 9].

THEOREM 2.1. Let (M, d) be a complete metric space and ¢ be a lower
semicontinuous (l.s.c.) function from M to R U {0}, # oo, bounded from
below. Let g be a selfmap of M satisfying,

(2.1) d(x, g(x)) + ¢(g(x)) < o(x)
for all x € M. Then g has a fixed point in M.

THEOREM 2.2. Let (M, d) be a complete metric space, and { be a l.s.c.
function from M into [0, o0). Let ¢ be a continuous nonincreasing function
from [0, o) into (0, c0), and let x, € M be fixed. Further suppose that
there exist z € M and K > 0 ( possibly K = o0) satisfying [f, c(s)ds >
¥(z) (when K= oo, [2, . c(s)ds>y(z)). If g is a selfmap of M
satisfying
(22) e(d(xp, x))d(x, 8(x)) < ¢ (x) — ¥ (g(x))

whenever x € M with fjfxO’x)c(s) ds > y(x), then g has a fixed point in M.

If [°c(s)ds = oo, then Theorem 2.2 is the same as Theorem 2.1 of
[13], which is actually equivalent to Ekeland’s theorem [8, 9] (see [11]).
Theorem 2.2 is a slightly extended version of Theorem 2.1, but they are
actually equivalent in logic. The advantage of Theorem 2.2 is that we need
not examine the inequality (2.2) for all x € M, that is, if for suitable
x € M (2.2) holds, we have the desired conclusion. In fact, in Theorem
2.1, by putting 4 = {x € M; d(x,z) < ¢(z) — ¢(x)} for some z € M
with ¢(z) < oo, we have g(A4) C 4 and g has a fixed point in 4. Also
this fact gives the basic idea of the proof of Theorem 2.2.

Proof of Theorem 2.2. Now we construct a new function ¢: M —
[0, 00], which is # oo, Ls.c. and satisfies (2.1), so that by applying
Theorem 2.1, g has a fixed point in M. If K = o0 and [°c(s)ds = oo,
then Park and Bae [11] showed that the equality
d(xg,x x
f (%0, x) +¢( )c(s)ds=z,!/(x)

d(xo’x)

gives ¢ which is a desired one. Therefore we may assume that K < oo (if
K = o0 and [§°c(s)ds < oo, then the similar method well do). Now
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define ¢ as follows: if [f, . c(s)ds > ¢(x), then put ¢(x) satisfying
]"“‘0 N e(s)ds = Y(x), and if [, . c(s)ds < ¢(x), then put ¢(x)
0.

To show that ¢ is Ls.c, let x, — x and lim¢(x,) = t. If # = oo, then
there is nothing to prove, so that we may assume that ¢ < co. Now we can
choose a subsequence {x, } such that lim¢(x, )=1¢. Then since
limd(x,, x,) = d(x,, x), we have

d(xy, x)+1 d(xg,x)+¢(x,,)
f ¢ c(s)ds = hmf ’ c(s)ds
d(xy, x) d(xg,x)

= limy(x, ) = ¢(x),
and d(xg, x) + ¢ = im(d(x,, x) + ¢(x, )) < K. Therefore ¢(x) < 7, and

consequently ¢ is Ls.c.
To prove that ¢ satisfies (2.1), it suffices to prove that

d(x,y) +¢(y) < ¢(x)

whenever [ c(s)ds = ¢(x)and

e(d(xg, x))d(x, y) < ¥ (x) = ¢(»),
since if ¢(x) = oo, then (2.1) is trivially true. Suppose that the latter case
holds. Since ¢ is nonincreasing,

d(xy,x)+d(x,
f o) c(s)ds < c(d(xy,x))d(x, ).
d(xovx)

Therefore by assuming ¢(y) < oo, we have
d(x ,x)+d(x,y) d(x x)+4>(x)
f ° (s)ds < / > (s)ds
d(xgy, x) d(xq, x)
d(xo,y)+¢(y)

— c(s) ds.

d(xg,y)

Since d(x,, y) < d(x,, x) + d(x, y) and c is nonincreasing,

d(xg,x)+d(x,y) d(xg,x)+d(x,p)+¢(y)
/ ° c(s)ds +/ ’ c(s)ds
d(xg,x) d(xg,x)+d(x,y)

d(xgy, X X

< f (X0, %) +9( )c(s)ds,
d(xg, x)

which shows that d(x, y) + ¢(y) < ¢(x). In the above case actually

¢(y) < oo. To see this, suppose that ¢(y) = co. Then we can find ¢ > 0

such that [ d’fje ,»€(s)ds < ¢(y), and hence the above inequalities give

K d(xg,
f e c(s)ds < (- e 00 c(s)ds,

d(xg,Xx) d(xy,x)

which is a contradiction to the fact that ¢(x) < oo.
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As a direct consequence of Theorem 2.2, we have the following
Corollary by putting ¢ is constant.

COROLLARY 2.3. Let (M,d) be a complete metric space, ¢ a l.s.c.
function from M into [0, o) and let x, € M be fixed. Suppose that there
existz € M, K > 0 and ¢ > 0 such that c(K — d(x,,z)) = ¢(z). Ifgisa
selfmap of M satisfying

cd(x, g(x)) < ¢(x) — ¢(g(x))
for all x € M with ¢(K — d(x,, x)) = ¢(x), then g has a fixed point in M.

Note that when z = x, Corollary 2.3 is the same as Theorem 2.1 by
considering the set 4 = {x € M; cd(x,z) < ¢(z) — ¢(x)}, and g(4) C
A.

3. Range of operators. In this section we apply Theorem 2.2 to
Gateaux differentiable operators, local expansions and locally strongly
¢-accretive operators. We begin with the Gateaux differentiable operators.

Let X and Y be Banach spaces, and P a mapping from an open
subset D of X to Y. We say that P is Gateaux differentiable if, for each
x € D, there is a function dP: X — Y satisfying

lim P(x +ty) — P(x)
t—0* 4

=dP(y), yeEX

Easy examples show that Gateaux differentiable operators need not be
continuous. Note that we do not require that dP, is linear. However, it
follows from the definition that dP, is homogeneous, that is, dP (ty) =
tdP (y)forall t > 0.

We say that an operator P: D — Y has closed graph if {x,} € D
with x, = x € D and Px, —» y as n - oo, it follows that Px = y. We
denote by B(w;r) the set {y; ||y — w|| < r}, and B(w;r) its closure.
Also conveniently we set B(w; o0) = X (if w € X).

Now we state our first theorem. The techniques used here are analo-
gous to those of Ray and Walker [13].

THEOREM 3.1. Let X and Y be Banach spaces, and P a Gateaux
“differentiable mapping from B(0; K) C X to Y having closed graph, where
K > 0. Let c: [0, K) — (0,00) be a continuous nonincreasing function for
which, for each x € B(0; K),
(3.1) aP.(B(0;1)) 2 B(0; c([|x[)))-
Then P(B(0; K)) contains B(P(0); [Kc(s) ds).
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We remark that Theorem 3.1 shows that actually P is an open
mapping, therefore it gives Theorem 3.2 of Cramer and Ray [6] and
Theorem 2.2 of Ray [12]. But in order to prove these they used the
maximal principle of Brezis and Browder [2], however our basic tool is
Theorem 2.2, which is an equivalent formulation of Ekeland [8, 9]. Also
Theorem 3.1 can be compared with Theorem 3.1 of Ray and Walker [13]
and Theorem 2.4 of [12], which treat only the case K = oo and [§°c(s) ds
= o0; in this case Theorem 3.1 is that of [13], which extends Theorem 4 of
[15]. Moreover, in Theorem 3.4 we will show that the function ¢ need not
be nonincreasing. The advantage of our formulation here is that our
results contain the range of operators explicitly and we do not assume that
the domain of P is the whole space X.

Proof of Theorem 3.1. Let w € B(P(0); [Kc(s)ds), that is, ||w —
P0)|| < fEec(s)ds. We can choose 0 < ¢ < 1 satisfying

- K
(32) (1= 9)"lw = PO < [~ e(s)ds.
Also we can take a sufficiently small ¢ > 0 satisfying
- K—2¢
1 =g) " lw=PO) < [* " e(s)ds,
0
Define a new metric p on the set M = B(0; K — ¢) by

p(x,y) = max{|x = yl, c(0) (1 + ¢) | P(x) = P(»)}.

Since P has closed graph, (M, p) is a complete metric space. Set ¢(x) =
1 — g)7Y|Px — w||, so that ¢: (M, p) = [0, o) is continuous and ¥ (0)
< [£ % c(s) ds.

Now we claim that w € P(B(0; K — 2¢)). We proceed by con-
tradiction and suppose that w & P(B(0; K — 2¢)). For any x €
M\ B(0; K — 2¢), we have [ 2c(s)ds <0 <(x), since p(0,x) >
lIx|| > K — 2&. In this case set g(x) =0 (# x). For x € B(0; K — 2¢),
set v =|w — Px||e(]]x|)(w — Px). Then by (3.1), there is a ue<
B(0;1) € X such that dP(u)=v and so, if h = c(||x|)||w — Px||u,
then dP (h) = w — Px. Since P is Gateaux differentiable, we may choose
t € (0, 1] so small that x + th € B(0; K — &¢) = M and

|\P(x + th) — P(x) — tdP.(h)| < qt||w — Px||.
By setting g(x) = x + th, this implies g(x) # x and
(3.3) I1P(g(x)) — P(x) — t(w — Px) | < grllw — Px]|
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and

(34) c(IxIDllg(x) — x| < #]w — Px]l.
From (3.3), we have

(3.5) 1P(g(x)) = P(x)|| < (1 + g)tllw — Px|
and

1P(g(x)) —wll = (1 = ) Px — w|| < grllw — Px||,
which implies
(3.6) (1 - @)t Px — w| <||Px — w| = |[P(g(x)) — w].
Combining (3.5) and (3.6), we have

(3.7) (1 + ) [1P(g(x)) = P(x) ]| < 9(x) - ¥(g(x))
and combining (3.4) and (3.6), we get

(3.8) c(lixiDllg(x) — xI| < ¥(x) — ¥ (g(x)).

Here we may assume that the domain of ¢ is [0, co) by putting
c¢(s) = ¢(K — 2¢) when s > K — 2¢ without affecting our argument of
the proof. Now if p(x, g(x)) = ||x — g(x)||, then, since ||x|| < p(0, x),
(3.8) gives (2.2), while if p(x, g(x)) = c(0)7'(1 + ¢) I P(x) — P(g(x))ll
then, since ¢ is nonincreasing,

el ype o
c(||x||)p(x,g(x))— c(0)(1 + ¢) ”P P(g( ))”

<1+ @) I1P(x) = P(g()) ]l < ¥(x) - ¥(g(x))
by (3.7), so again (2.2) holds. Thus by Theorem 2.2, g has a fixed point in
M, a contradiction, and hence consequently w € P(B(0; K — 2¢)) C
P(B(0; K)).

Analogous estimations for range of local expansions can be stated by
the following theorem, which gives an extended version of Theorem 3.3 of
[13] which also generalizes a result of Browder ([4], Theorem 4.10).

THEOREM 3.2. Let X and Y be Banach spaces, P an open mapping from
B(0; K) € X (K > 0) to Y having closed graph, and let c: [0,K) — (0, o)
be a continuous nonincreasing function. Suppose for each x € B(0; K),
there is an € > 0 such that, if y € B(x; ¢) N B(0; K), then

(3.9) e(max{|lx|l, IyI})lx — yIl <[|Px — Py|.
Then P(B(0; K)) contains B(P(0); [Kc(s) ds).
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Proof. Let w € B(P(0); [Xc(s) ds), that is, ||[w — P(0)|| < [Kc(s) ds.
Then we can choose & > 0 so small that |w — P(0)|| < [X~%c(s)ds
holds.

Introduce a new metric p on the set M = B(0; K — ¢,) by setting
p(x, y) = max{|lx — y|, ¢(0)7}|Px — Py||}, so (M, p) is complete, and
set Y(x) = ||w — Px||. Let c(s) = c(s + &). Then Y(0) < ff‘”l c(s)ds =
JE~24&(s) ds. Now we claim that w € P(B(0; K — 2¢,)). As in the proof
of Theorem 3.1, we suppose w & P(B(0; K — 2¢,)) and obtain a con-
tradiction. Now we define a mapping g: M — M by setting g(x) =0
(# x) when x € M\ E(OiK — 2g); note that in this case [ 2 ¢(s) ds
< 0 < Y(x), and if x € B(0; K — 2¢,), then choose ¢ > 0 so small that
¢ < g and (3.9) holds. Actually the condition (3.9) can be replaced by the
condition that if ||x — y|| < g, then

e(lxMlix =yl < Px — Pyl
Since P is an open mapping
P(B(x;e)) N{tPx+(1 —t)w;0<t <1} # &

and hence there is a g(x) € B(x;¢) such that P(g(x)) € {tPx +
(1 — t)w; 0 <t <1}, so that g(x) # x and g(x) € M. Since

[P(g(x)) — P(x) || =l Px — wl| = || P(g(x)) — wll = ¥(x) — ¢(g(x)),
it follows that
e(llxMlg(x) = xll < ¥(x) - ¥(g(x))
and :
e(llx[1)c(0) 1 P(g(x)) - Px|| < ¥(x) — ¥(g(x)),

and hence (2.2) holds by assuming that the domain of ¢ is [0, o0) as in
the proof of Theorem 3.1. Thus by Theorem 2.2, g has a fixed point in M,
which contradicts to the construction of g(x).

Theorem 3.2 can be applied to the range of locally strongly ¢-accre-
tive operators. Let X and Y be Banach spaces with Y * the dual of Y, and
let ¢: X — Y* be a mapping such that

¢(X) is dense in Y *, for each x € X and each £ > 0
l¢(x) || <l[x] and ¢(£x) = £ (x).

A mapping P from X to Y is said to be strongly ¢-accretive if there exists
a constant ¢ > 0 such that, for any x, y € X,

(Px — Py, ¢(x — ) = c|lx — y|".
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The ¢-accretive mappings were introduced in an effort to unify the
theories for monotone mappings (when Y = X*) and for accretive map-
pings (when Y = X). Many authors (see [3], [4], [7], [10], [13], [16] and
[17]) have studied domain invariance or surjectivity of accretive operators.
The following theorem gives an improvement of Theorem 4.11 of [4],
Corollary 2.2 of [6] and Theorem 3.4 of [13].

THEOREM 3.3. Let X and Y be Banach spaces, and P an open mapping
from B(0; K) C X (K > 0) to Y having closed graph. Let c: [0,K) —
(0, 00) be continuous nonincreasing for which, for any x € B(0; K), there is
an € > 0 such that for every y € B(x;€) N B(0; K),

(3.10)  (Px — Py,é(x — y)) = c(max{|x[, |»|})lIx - »I".
Then P(B(0; K)) contains B(P(0); [Kc(s) ds).

Proof. 1t is easy to show that (3.10) implies (3.9), so that Theorem 3.3
follows from Theorem 3.2.

In Theorem 3.3, if P is locally lipschitzian, and if Y can be renormed
so that Y is Frechet differentiable and Y * is strictly convex, that is,
the duality mapping J: Y = Y* is single-valued and continuous, then
Downing and Ray [7] show that P is automatically an open mapping.
Also if Y = X and ¢ is the duality mapping, and if P is continuous, then
P is an open mapping by [16] and [17]. Also Theorem 3.3 can be applied
to multivalued locally strongly ¢-accretive mappings as in [7].

Note that the continuity of ¢ in Theorem 2.2 and Theorems 3.1-3.3
can be replaced by the piecewise continuity of ¢ without affecting results
of those theorems.

Simple geometric intuition and integral equation suggest that ¢ need
not be nonincreasing in Theorems 3.1-3.3. Actually by using easy geomet-
ric estimation we can prove that such a condition can be removed in the
following Theorem 3.4. In fact, Torrejon [17] proved that in Theorem 3.2,
if K= oo and [§°c(s)ds = oo, then the condition that c is nonincreasing
is not necessary.

THEOREM 3.4. The conclusions of Theorems 3.1-3.3 hold without the-
assumption that c is nonincreasing.

Proof. We may assume that P(0) = 0 after parallel transformation.
Since c is continuous, for any given ¢ > 0, there is a partition

0=K,<K, < -+ <K, <K
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of [0, K] such that by putting
m,=inf{c(s); K,_; <s<K,}, 1<i<n,

the inequality

n

K
Y m(K,— K, ;)= f c(s)ds — ¢
i=1 0
holds. Now we will prove that P(B(0; K,,)) contains B(0; [£c(s)ds — e),
and hence we complete the proof since ¢ is arbitrary. For this purpose, it
suffices to prove that for any given w € Y with ||w| = 1,

the segment {tw;0 < ¢ < M, } c P(B(0; K,))

for any k,1 < k < n, where
(3.11) p

M, = 21 m,(K;,— K,_,).
Then for k= n, we have {mw;0 <t < M,} C P(B(0; K,)), and this
implies B(0; [Xc(s)ds — ¢) € B(0; M,) € P(B(0; K,)).

First note that if ¢ is nonincreasing (in particular, ¢ is a constant
function), then the theorem holds by Theorems 3.1-3.3. Therefore if
k = 1, then (3.11) is trivially true. Suppose that (3.11) is not true for some
k > 2, and k is the smallest integer for which (3.11) does not hold. Then
there is a ¢, with M,_, <t, < M, such that rw & P(B(0; K,)), but
{tw;0 <t <M,_,} € P(B(; K,_;)). Now choose an ¢ > 0 so small
that ¢ < M, — t,. Take r > 0 such that m,r < ¢ /4, and set m =
min{ m,, m,, ..., m; } > 0. Then note that, by Theorems 3.1-3.3,

(3.12)  if||x|| < K,_; + r, then P(B(x;r)) 2 B(P(x); mr)
and
(313) ifK, ;+r<|x||<K,-r,

then P(B(x;r)) 2 B(P(x); m,r).
(3.12) and (3.13) are possible, since P satisfies the conditions of Theorems
3.1-3.3, respectively, by setting ¢(s) = m in case (3.12) and ¢(s) = m, in
case (3.13) on B(x;r).

Also take &, > 0 so small that &, < min{¢, /4, rm}. Then since { w;
0<t<M,_,} CP(BO;K,_,)), we can take x, € B(0; K, _,) so that
Px, = tw, where t;, = M, _;, — 27'¢,. Also by (3.12), we can choose
X, € B(xy;r) so that Px, = t,w, where t, = t; + rm — 27 %¢,. Continue
this process, we assume that x; and 7, be chosen for j > 2 with ||x,|| < K
— r for all i <j. Then if ||x;|| < K,_, + r, then by (3.12) there exists
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x;41 € B(x;;7) such that Px; ., =¢;,w, where ¢, , =1 +rm—
27/, and if K, ; +r <|x;|| < K, — r, then by (3.13) there exists
Xji1 € B(x;r) such that Px, , =1, w, where ¢, =1 +rm, —
27/71l¢,. We can continue the above process unless ||x > Ky — r. Now
we claim that there is a j such that 7, < ¢, <, with ||x,|| < K, — r for
all i <j, so that tw € P(B(x;; r)) € P(B(0; K,)), which is a contradic-
tion.

To prove our claim, suppose that ||x|| < K, — r forall j =1,2,....

Then for j > 2, we have

t; =t +rm—27, (sincem<m,)

>H+(j-)m—Q272+ --- +277)e,
>M,_  +(j—1)rm—e, (since L=M,_, - 2‘182).
Since rm > 0, for some sufficiently large j, we can have 7, <1, ;. Also
since the sequence {¢,} is increasing, our claim is proved. Now suppose
that for some j, ||x;,4|| > K, — r and ||x,|| < K, — r for all i <. Since
I, = x; 4l <r(1<i<j)and rm, <g/4 < (M, — M,_,)/4, we have
4r < K, — K, _,, so that there is a j, with 1 <j, <j— 1 satisfying
lx Il <Ky +rand K, +r<|x|l<K,—rforal jo+1<ix<j
Then we have ||x;,; — x; 4|l > K — K;_, — 3r, and hence (j — jo)r >
K,— K,_, —3r. Note that ¢, <¢t,,, forall 1<i<j,and ¢,,, =1t +
rm, — 27" 1g, for all j, + 1 < i <. Therefore we have
L=t +rm,— 27",
>t +(J = Jo)rmy — 27,
> Mk - £1 > to.

so that we complete the proof.
We list here one final conclusion as the following

THEOREM 3.5. Let X and Y be Banach spaces, and P an operator from
X to Y having closed graph. Let c: [0, o) — (0,00) be a continuous
function for which one of the following conditions holds.
(a) P is Gateaux differentiable and for each x € X, (3.1) holds.
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(b) P is an open mapping and for each x € X, there is an € > 0 such that
for every ||x — y|| < & (3.9) holds.
(c) P is an open mapping and for each x € X, there is an € > 0 such that
for every ||x — y|| < ¢, (3.10) holds.
Then for any K > 0 (possibly K = o), P(B(0; K)) contains
B(P(0); [Kc(s)ds), in particular, if [ c(s)ds = oo, then P is surjective.

As a final remark, the condition (3.2) can be applied to the following
extended version of Theorem 2 of [14]. The proof of the following theorem
follows from (3.2) and Lemma of [14]. There is no significant variation in
the proof, and so we omit it.

THEOREM 3.6. Let X and Y be Banach spaces, and let P and Q be
Gateaux differentiable mappings from B(0; K) C X (K > 0, possibly K =
o) to Y. Let c: [0, K) — (0,00) be a continuous function. Suppose for
each x € B(0; K), that

(a) dQ, is a bounded linear operator from X to Y, and

(b) dP.(B(0;1)) 2 B(0; c(|| x|)).

Suppose in addition, for some p € (0,1) and each x € X that

(©) c(lIxID~ N4l < p.

If the mapping R = P + Q has closed graph, then R(B(0; K)) contains
B(R(0); (1 — p)[fc(s)ds), in particular R is an open mapping. And if
J&e(s)ds = o, then R(B(0; K)) = Y.

In the same situation of Theorem 3.6 Ray and Walker [14] showed
that if P and Q have closed graphs, then so does P + Q. In [14], in order
to prove that R is an open mapping, they used actually the Brezis and
Browder principle [2], which was recently generalized in [1] and [18].
However, our Theorem 3.6 can be proved by using only Theorem 2.2
(actually Theorem 2.1 by assuming that ¢ is a constant function) and
combining Theorem 3.4, and it gives a precise estimation of range of
operators.
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