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NON-EXISTENCE OF CERTAIN CLOSED COMPLEX
GEODESICS IN THE MODULI SPACE OF CURVES

DOMINGO TOLEDO

We prove that most compact totally geodesic curves in the Siegel
moduli space Ag of g-dimensional principally polarized abelian varieties
cannot lie in the image of the period mapping of the moduli space Mg of
smooth curves of genus g. The meaning of "most" is in terms of the
holomorphic sectional curvature of Siegel space—see the precise state-
ment below.

The reason for studying this question is that it gives some idea of the
differential geometry of the period mapping Mg -* Ag. This mapping is
presumably rather curved, i.e., the image of ΛΓ in A9 is curved relative to
the locally symmetric geometry of Ag. The best way to make this precise
would be to compute the second fundamental form of the period map-
ping. This could be an involved computation, perhaps not immediately
interpretable in geometric terms. Hence we prefer first to take a more
elementary approach and ask if the image of Mg contains any straight
lines of the symmetric geometry, i.e., any complex totally geodesic curves.
The easiest question to decide, and the only one studied here, is whether
any closed complex geodesies he in the image. The question of geodesies
of finite area is quite interesting, but more difficult.

We study this question by applying the Miyaoka inequality [5] to the
complex surface induced by the curve in Mg. It gives that the image of the
classifying mapping for the cohomology of the fibers (period mapping)
has area less than 1/3 of the expected maximum for the area of a
mapping into the period space. This strongly suggests curvature properties
of the period mapping.

To show that the above restrictions are not vacuous, we point out in
§3 that closed geodesies violating the restrictions do exist in Av. These are
constructed from classical examples of Hubert modular surfaces in A2.
We also remark that, for g > 3, Mg has plenty of compact curves.
Examples starting in g = 6 are explicitly constructed in [1, 4].

A final algebro-geometric remark is that complex geodesies in Ag are
related to reducibility of the monodromy representation. Namely a com-
plex geodesic of curvature — 1/7 (cf. §1) parametrizes a family of abelian
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varieties with a fixed (g - /)-dimensional abelian sub variety. This is a
necessary, but not sufficient, condition for a curve in Ag to be geodesic.
The examples in [1, 4] have a fixed part in their monodromy representa-
tion but are not geodesic.

I am grateful to J. Carlson and H. Clemens for discussions on these
topics, and to the referee for suggesting a considerable improvement on
the presentation.

1. Statement and proof of the theorem. Let Hg be the Siegel upper
half plane of genus g, i.e., the space of complex symmetric g by g
matrices with positive definite imaginary part. It will also be convenient to
look at its realization as a bounded domain, namely

{Z: Z a complex g by g matrix, Z' = Z, 1 - Z*Z > 0}.

If we let

p = -logdet(l - Z*Z),

then co = ddcp is the Kahler form of the Bergmann metric of Hg, and its
holomorphic sectional curvature function has for image the interval
[ — 1, — 1/g]. Let Δg c Hg be the submanifold of diagonal matrices
diag{ zv..., zg}, |z, | < 1. Then Δg is a maximal totally geodesic polydisk
and the totally geodesic complex curves in Hg are equivalent, under the
group of isometries, to one of the curves

z^diag{(z,. . . ,z,0,. . . ,0)}, \z\< 1,

where the number / of non-zero entries takes the values / = 1,..., g. Since
each factor of Δg has the Poincare metric of constant curvature — 1, a
geodesic of type / has a metric of constant curvature -1/7.

We can think of Hg as the subset of the Grassmannian G(g, 2g) of
complex g-planes in C2g = {(«, υ): u = (uv..., wg), v = (υl9..., vg)} on
which the skew form Ώ = duλ A dvλ -\- +dug A dυg vanishes and the
Hermitian form h = \u\2 — \v\2 is positive definite, the correspondence
given by Z -> {(u,Zu): u ^ C g}. Let E be the restriction of the tauto-
logical subbundle over G(g, 2g) to Hg. Then the form \u\2 - \v\2 gives an
invariant Hermitian metric on E, whose matrix relative to the frame
(ez, Ze,), etf = (0,..., 1,..., 0), is precisely 1 — Z*Z. Hence cλ(E) is
represented by the form

^ ( l - Z*Z))

1 AAC 1
= -7—adp = i—ω.
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Thus

(i) c ^ ) = ά ω

Now let Γ be a torsion-free subgroup of finite index in the integral
symplectic group and let Ag = Γ \ Hg. Suppose C is a smooth compact
algebraic curve of genus h and /: C -» Ag is a map whose image is a
totally geodesic curve of curvature -1/7. Then the Gauss-Bonnet formula
gives

(2) / Cl{f*E) = l(h - 1),
Jc

because cx(f*E) = (l/47r)/*ω and /*ω is the area form of a metric of

constant curvature -1/7 on C.
Finally, let Φ: Mg -> Ag be the period mapping, and let Mg be a

finite covering of Mg so that Φ lifts to a map φ: Mg -» Ag.

THEOREM. Let C c Mg be a smooth, compact curve of genus h so that

Φ(C) is a totally geodesic curve in Ag of curvature — 1 / / . Then I <

Proof. Over Mg we have a universal curve whose restriction to C gives
a surface X and a fibration TΓ: X -> C whose fibers are smooth curves of
genus g. We compute the Chern numbers of X. First, c2(X) =
cx(C)^(fibre) = 4(Λ - l)(g - 1). To compute c\(X) we use the
Grothendieck-Riemann-Roch formula:

(3) ^(ToddίJf)) = Ύodd(C)(ch(R°π*Ox) - ch(

Note that Rιπ*Ox is the locally free sheaf on C corresponding to the
vector bundle f*E*9 where / = Φ | C . Thus ch°(Rhr*Ox) = g and
ctfίΛ^O^) = c^ftE*) = -cλ(f*E) = -/(A - 1), by (2). Thus we can
evaluate (3) on the fundamental cycle of C and obtain

Substituting c2(X) = 4(Λ - l)(g - 1) and solving for Ci(X) we get

Since JΓ is a minimal surface of general type, Miyaoka's inequality
cϊ(X) < 3c2(X) gives / < g - 1/3, as was to be proved.
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REMARKS (1) We think it is very unlikely that any closed complex
geodesies in Ag can lie in the image of Mg9 but, except for the present
case, can only rule out the case / = 1, see §2.

(2) We stated the theorem in terms of non-existence of certain closed
geodesies in order to give a concrete geometric statement. But we could
equally well have stated the result as an estimate on \dd(Rιπ*Ox)\ for any
fibration TΓ: X -> C with fibres smooth curves of genus g. Namely, the
same argument gives the inequality

It is interesting to rewrite this in terms of ω, using (2), i.e.

f*ω <-r-(g-l/c
and then to contrast this with the sharp estimate for mappings /: C
as in [2]:

ίc f < 4 τ r g ( / t - l ) .

Thus the area of a mapping /: C -> A g that factors through Mg is less
than 1/3 of the expected maximum.

2. Geodesies of curvature —1. The purpose of this section is to
show that closed geodesies of curvature — 1 (i.e. / = 1) do not exist in Ag.
It will be convenient to work with the usual upper half plane model of Hg

and regard it as the subset of the Grassmannian G(g, 2g) of /?-planes in
C 2 g on which the skew form Ω as in §1 vanishes and the Hermitian form

is positive definite, the correspondence given as in §1 by assigning to a
matrix its graph. A geodesic of curvature - 1 is the image under some
element of the real symplectic group of the curve

z -> diag(z,/,...,/), z e Hv

From this it is clear that a geodesic L of curvature — 1 is characterized in
the Grassmannian as the set of all subspaces

L= {We: C2g:dimW= g, W o> V, h/W > 0}

for some fixed subspace V oί C 2 g, dimK = g — 1.
If I is a subspace of C 2 g, let X1-, X° denote its orthogonal

complement with respect to Λ, Ω respectively. Given L as above, choose a
basis el9..., e2g for C 2 g as follows: e2,..., eg a basis for V, eg+2, ...,e2g



NON-EXISTENCE OF COMPLEX GEODESICS 191

a basis for (V°)x , ev eg a basis for Y1, where Y = V Θ ( F ° ) x , so that
Λί^) > Oand h(eg) < 0.

Suppose Γ c Sp(g, Z) stabilizes L. Then relative to a basis as above
the elements of Γ have matrices of the form

a
0
c

o

0
A
0
0

b
0
d
0

0
0
0

Since Γ is a group we must have that all the matrices A = A(y), γ e Γ,
must commute. Thus if the complex geodesic Γ \ L were compact, Γ
would be non-abelian, hence there is a subgroup Γ c Γ , different from
the identity, so that A(γ) = id for all γ e Γ'. The compactness of Γ \ L
also imphes that all elements of Γ give hyperbolic motions of the
hyperbolic plane, so the 2 by 2 sub-block in the above matrix cannot have
one as an eigenvalue if γ Φ id. Thus Y is the eigenspace corresponding to
the eigenvalue one of a matrix with integral entries, hence defined over the
integers. Y ± is then defined over Z, so the basis el9...9 e2g can be chosen
so that all the entries of the above block and the complementary block are
integral for all γ e Γ , From this and the compactness of U(g — 1) it
follows easily that the action of Γ on L is commensurable with the usual
action of Sp(l, Z) = SL(2, Z) on the upper half plane Hv which does not
have compact quotient. Thus no complex geodesic of curvature - 1 can be
compact in Ag.

REMARK. The same argument shows that if Γ c Sp( g, Z) is the
stabilizer of a complex geodesic of curvature — 1, then either 1) Γ = {id},
2) Γ = Z, or 3) Γ is commensurable with SL(2, Z). The latter case
classifies all such geodesies of finite area. Geometrically they parametrize
families of g-dimensional abelian varieties with a fixed (g — 1)-
dimensional abelian subvariety. An analogous classification can be simi-
larly obtained for certain totally geodesic embeddings of Hι in Hg,
1 < / < g.

3. Closed complex geodesies in Siegel space. Finally we remark
that closed complex geodesies that violate the inequality of §1 do exist in
Ag. For g = 2 and 1=2 the construction is based on the classical
embeddings of Hubert modular surfaces in A2 studied by Hecke. We give
[3], Chapter 7 as a convenient reference. Namely, if p is a prime of the
form 4 k + 1, there is an embedding of the Hubert modular surface
SL(2,O)\if X H in A2, where O is the ring of integers in Q({p). The
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image of this embedding is covered by a totally geodesic H X H in H2.

Now the Hubert modular surface contains compact geodesic curves of

curvature —1/2; these are the Shimura curves discussed in [3, 6e]. Their

image in A2 are the desired geodesies.

Now for any k < [g/2] we have a natural embedding A\^> Ag

induced by the mapping H2 -> Hg given by

Zl9..., Zk -> block diagonal (Zl9...9Zk).

The diagonal images of the above examples in A2 give closed complex

geodesies of curvature -1/2/: .

REFERENCES

[1] M. F. Atiyah, The signature of fibre bundles, in Global Analysis, Princeton Math.
Series 29, Princeton University Press, 1969.

[2] A. Domic and D. Toledo, The Gromov norm of the Kάehler class of symmetric domains,
Math. Annalen, 1987.

[3] F. Hirzebruch and G. van der Geer, Lectures on Hubert Modular Surfaces, Presses de
l'Univ. de Montreal, 1981.

[4] K. Kodaira, A certain type of irregular algebraic surface, J. Analyse Math., 19 (1967),
207-215.

[5] Y. Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math., 42
(1977), 225-237.

Received November 13, 1985. Supported by the Sloan Foundation and The National
Science Foundation.

UNIVERSITY OF UTAH

SALT LAKE CITY, UT 84112




