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MAXIMAL FUNCTIONS ON THE UNIT ̂ -SPHERE

PETER M. KNOPF

It is shown that the Hardy-Littlewood maximal function on the unit
sphere in n-space is weak-type (1,1) with a weak-type constant en where
c is independent of n.

Introduction. E. M. Stein and J. O. Strόmberg [6] have shown that
the Hardy-Littlewood maximal function in Rn is weak-type (1,1) with a
weak-type constant en with c independent of n. Their approach is to
pointwise bound the maximal function by a supremum of averages of
members of a certain heat-diffusion semi-group on R*. They then apply
the Hopf abstract maximal ergodic theorem to obtain their result.

We plan to use an analogous version of this approach to show that
the maximal function on the unit w-sphere is weak-type (1,1) with a
weak-type constant en. The best weak-type constant prior to this was cnyfn,
see [4], using an entirely different approach.

Many of the ideas in this paper have already been presented in a
paper by C. Herz [3]. In order to obtain the weak-type constant en,
shaφer estimates are required than are indicated in Herz's paper. Further-
more, there is an oversight of a primarily technical nature which led this
author to perform some contortions to rectify. It should be pointed out
that Herz's overall approach applies not only to the unit sphere in Rn and
Rn itself, but to more general spaces as well.

The author is appreciative of the informative comments and helpful
suggestions of N. Stanton, E. M. Stein, and the referee.

NOTATION AND DEFINITIONS. Let Sn~ι denote the unit sphere in Rn

centered at the origin. Let ωn_1 denote its Lebesgue measure (surface
area). Let v(x,1) = T'f(x) be the solution to the initial value problem
dv/dt = Δsυ and υ(x,0) = f(x) where Δ s is the spherical Laplacian; that
is, the "angular" part of the Laplacian in RΛ. If there is any confusion on
the reader's part, Δ 5 is defined precisely in the proof of Lemma 2 in
equation (12).

Define the maximal heat function of / to be

Mτf(x) = sup
λ > 0

\(λT>ίf(x)dμ
Λ Jo
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The Poisson kernel for the unit ball in R" is

P(rχ,y)~ a

 λ~f2_ n

with x, y ε S"'1 and 0 < r < 1. If / ε L\S"-1), then

(1) «(/•*) = / P(rx,y)f(y)dy

defines an harmonic function in the unit ball where dy is Lebesgue
measure on the unit sphere. The Hardy-Littlewood maximal function of /

is

1

0</<2 JSn

on Sn~ι

(2) Mf(x)= sup /
0</<2 JS*~ι \S(x,t)\

where S(x, /) = { J ; G Sn~ι: \x — y\ < t and χS(x /} is the characteristic
function of the set S(x, t).

The symbol c will stand for a positive constant that may be different
at different appearances but will always be less than 106.

THEOREM, / / / G L\Sn~ι) andn > 3, then

(3) \{x^S^:Mf(x)>λ}\<f\\f\\1

for all λ > 0.

It is enough to prove (3) for Schwartz functions g such that |g(α)(jc)|
< JVlαl for any multi-index a and for some N = N(g) > 0. This follows
from the well-known fact that for any f ^ L\Sn~ι) and ε > 0, there
exists a Schwartz function g such that | | / - g\\λ < ε and \g{a)(x)\ < N N

for some N = N(e) > 0.
Before we prove the theorem, we establish four lemmas.

LEMMA 1. /// e L\Sn~ι) andf > 0, then we have

Mf(x) < cmax n sup

1
u\ —xsup

Proof. By (1) and (2), it is enough to bound

1

P{rx9y)\S{x9t)\

1-yU
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for every y e Sn~ι. Since χS(X,t) is supported on S(x, t) and equals 1
there and P(rx, y) decreases as \x — y\ increases, it is enough to bound

P(rx,y)\S(x,t)\

for every y such that \x — y\ = t with 0 < t < 2. Using spherical coordi-
nates it is easy to see that

• / ^ . / 2arcsin(//2) .

\S(x9t)\=ωn_2 sin"-2 udu

2arcsin(//2) _~
S 1 Π U COS Udu

as long as 0 < t < yfl. By the law of cosines it is a straightforward
calculation to verify that

\2\rx - y\2 = (1 - rf + rt2.

From this we obtain

I <
cntωn_Jl - t2/4 (1 - rf + r

2 j. . , 2

t2{\ - t2/A)

when 0 < t < }/2. If 0 < t < 1/ {n', choose r — \ — t/ {n . We then have

(4) I<C-^^-<cn.
ω,]n-2

If

choose r = 1 - t2/2. In this case we obtain

(5) I<

Finally if ̂ 2(1 — 1/n) < ί < 2, pick r = 1/n and observe that 2ω»-i

|5(x, 01 ^ «„_! whenever /2(1 - l/«) < / < 2 which gives

(6) / < c.

Inequalities (4), (5), and (6) imply the conclusion of the lemma.
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Define

(7) Pλf(x) = u{e-λx)

for 0 < λ < oo.

LEMMA 2. Pλf(x) = /0°°φ(μ, X)71"/(x) dμ for λ > 0 where

(8)

= (n —

This result is stated and its proof is outlined in Herz's paper ([3], p.
231). In order that this paper will be self-contained, we provide a different
proof of the lemma.

The solution to the initial-value problem dv/dt = Δsv for 0 < / < oo
and υ(x, 0) = f(x) is clearly

which is well-defined for any Schwartz function / satisfying |/ ( α ) (x) | <
TV|α| for some N > 0. We claim that

(10) PY(JC) = exp{-λ[(-Δs + aψ2 - a]}f(x)

as we now demonstrate. Letting r = e~λ and recalling (7) we can rewrite
(10) as

ill) u(rx) = r(-As+a2)l/2-af(x).

It is obvious that u(x) = f(x). If we express the Laplacian in Rn, Δw, in
the form:

(12) Δ = r~"l

and then calculate Δu(rx) we immediately see that Δw = 0 which estab-
lishes (10). By (9), (10), and the symbolic calculus it is sufficient to show
that

(13) exp{-λ[(-Z> + aψ2 - a]} = f" φ(μ, λ)e»>dμ

for any negative number b since the spectrum of Δs lies on the negative
real axis (see [5], p. 70). It is elementary to show that the function on the
right hand side of (13) satisfies the differential equation gr(λ) =
-[(-ft + a2)ι/2 - a]g(λ) from which (13) easily follows.
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LEMMA 3. /// e L\Sn'1) andf > 0, then Mf(x) < cnMτf(x) for all

Proof. By Lemma 2, we have

Pλf(x)=

Integrating by parts yields

(14) Pλf(x)=Γ \\fτy
Jo M L 'o

< sup
μ>0

γj Tγ(x)dy
μ Jμ Jo f dμ

= MΓf(x)f

One easily calculates from (8) that

dφ -μ
a2μ2 + 6μ - λ2) expf^λ - a2μ - %- I.

In his paper [3], Herz claims that

f dp.

is bounded independent of λ. In point of fact,

(15)
dφ dμ

is best possible. Luckily, this is sufficient for our purposes. Since

dφ _ d

we obtain

(16) Π < f* \φ\dμ+ f dμ.

In the definition of φ, we observe that φ > 0 and furthermore fφdμ = 1
as can be seen from (13) by letting b = 0. It is clear that μφ > 0 and it
vanishes at 0 and oo. By calculating d/dμ (μφ), it is easy to check that μφ
has a single turning point on (0, oo), say μ = μ0, where it attains its
maximum. Since μφ increases from 0 on (0, μ0) and decreases to 0 on



82 PETER M. KNOPF

(μ 0, oc), we have

J
r00 d
I -r (μφ) dμ = 2 μ o φ ( μ o ?

λ )
0 a r

There follows the inequality:

// < 1 + 2 max μφ(μ, λ) = 1 4- 2M.

To bound M, express μφ as

(17) μφ(μ,λ) =

where 4̂ = aλ and t = aλ~ιμ. By taking the derivative of the right hand
side of (17), it is easy to check that its maximum is taken on when
x = XQ = ( - 1 + /l + A2)/4A. It is trivial to verify that x0 = O(A)
when 0 < A < 1 and x0 = 0(1) when A > 1. Substituting these estimates
for xQ into (17) gives M < cAι/2 < cjnλ which in turn implies (15) as we
wished to show. Substituting inequality (15) into (14) gives

(18) Pλf(x) < c(l + ^\)Mτf{x).

Recall that u(e~λx) = Pλf(x) from which there follows u(rx) <
c(l + \jn ln(l/r) )Mτf(x). Lemma 1 implies that

Mf(x) < c n ̂ sup |l + ̂  ln|l/|l - -^-JJJ,

Λ ] sup I 1 + f ln(l/(l - ί

ϊ!"f»-;i

(1 + fiΓ5ϊri))Mτf(x)

which can be simplified to Mf(x) < cnMτf(x) as we wished to show.

LEMMA 4. J / / e Ll(Sn~l) andf>0, then HΓY^ < \\f\\v

Proof. It is a result in diffusion theory (see Ch. IX, p. 252, [2]) that

Tλf(x)= f Kλ(x9y)f(y)dy
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with Kλ > 0. If f(x) = 1, then clearly Tλf(x) = 1 so that

(19) / Kλ(x,y)dy = l
JSn-l

for any x e S"1"1. Since w(x, λ) = AΓλ(jc, j/) is the solution to the initial
value problem du/dλ = Δ5w and u(x,0) = δy(x) where δ̂  is the delta
function centered at y9 then by the symmetry of the sphere Kλ(x, y) =
κx(y>*)• Equation (19) shows that

(20) / Kλ(x,y)dx = l
Jςyn-l

for any y ^ S" ι. We can now use (20) to conclude the proof of the
lemma. We have

ιKχ(x,y)f(y)dydx

= / / Kλ(x,y)dxf(y)dy

= / J(y)dy =11/1

which establishes Lemma 4.

We are now ready to finish the proof of the theorem. It is obvious
that Tλf(x) forms a semi-group with respect to λ. Lemma 4 states that
II^Vlli ^ ll/lli f<>Γ / > 0. We have HΓ*/^ < H/H^ for / > 0 since

IΓYL-II/ Kλ(x,y)f(y)dy

Kλ(x,y)dy =

Finally it is obvious that Γ λ(l) = 1. All the hypotheses of the Hopf
abstract maximal ergodic theorem are satisfied (see Lemma 6, p. 690, [1])
which yields the result

(21) \{x:Mτf(x)>λ}\<l\\f\\1

for λ > 0 and / > 0. By Lemma 3 and (21), we conclude that

\{x:Mf(x)>λ}\<f\

which proves the theorem.

1 1 0 0 Vy-i
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