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RINGS WHOSE KERNEL FUNCTORS ARE
LINEARLY ORDERED

ANA M. DA ROCHA DE VIOLA-PRIOLI AND JORGE E. VIOLA-PRIOLI

Valuation domains have been extended in the non-commutative case
by several authors, giving rise to the so called generalized valuation rings,
that is, rings whose lattice of right ideals is linearly ordered by inclusion.
We propose here the study of rings whose lattice of kernel functors is
linearly ordered and we indicate throughout this article similarities
between them and valuation rings. In addition, the rings presented here
include generalized valuation rings and coincide with them when com-
mutativity is assumed. They therefore provide a new non-commutative
analogue of valuation rings.

Unlike the generalized valuation rings, the rings we study enjoy
properties that transfer nicely to matrix rings thus enabling us to treat
questions in a broader context.

Finally, a semigroup structure imposed on the lattice of kernel
functors is analyzed and the article concludes by examining when that
semigroup can be thought of as the semigroup of a valuation ring.

Preliminaries. All rings occurring are associative and possess unity,
which is preserved under subrings and ring homomorphisms. Unless
otherwise stated all modules are unitary right modules. We let JtR denote
the category of right i?-modules.

For any module M we let E(M) stand for an injective hull of M.
Hence M is large in E(M) and E(M) is injective. If M is a module, N a
submodule of M and S a nonempty subset of M we let (N : S) denote
the right ideal {r e R Sr c. N). When no danger of confusion arises we
will simply write (N: S).

The term ideal is reserved to be used for two-sided ideals only.
Consequently, a ring is simple if it has exactly two ideals.

Notation and terminology concerning kernel functors, (topologizing)
filters of right ideals, etc., will follow Goldman [4] and Stenstrom [9] with
which familiarity is assumed.

The class of all objects of JίR which are torsion with respect to a
given kernel functor is closed under taking submodules, homomorphic
images and arbitrary direct sums, conditions that characterize what we
will call a torsion class throughout this paper. There is a one to one
correspondence between kernel functors, filters of right ideals and torsion
classes.
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We let JS? denote the filter of large (or essential) right ideals of R and
Z its associated kernel functor; consequently Z(M) is the singular sub-
module of M.

The idempotent filter of dense (or rational) right ideals of R is
indicated by Sd\ thus 2ΰ c.3? and they coincide precisely when Z(R) = 0.
In this paper l(R) stands for the set of idempotent kernel functors while
Qσ(R) denotes the ring of right quotients of R with respect to σ, if σ
belongs to I(R).

For every module M, the direct sum of n copies of M is denoted by
M(n). Also, Soc(M) indicates the sum of all the simple submodules of M,
or (0) when M contains no such submodules.

R is a (right) F-ring if every simple i?-module is injective. (See Faith
[2].) A module M is called proper cyclic if it is cyclic and non-isomorphic
to R. As in [2] R is a PCI-ring whenever its proper cyclic modules are
injective.

By a valuation ring we mean a commutative ring whose ideals are
linearly ordered by inclusion. If in addition the ring has no zero-divisors it
is called a valuation domain.

Any unexplained terminology can be found, for instance, in [2] or [3].

K(i?) linearly ordered. Let K(i?) denote the set of all the kernel
functors of the ring R; it is a complete lattice because there is a partial
ordering in which σ < v means σ(M) c v(M) for all modules M, and
every family {σ,} of kernel functors has a supremum and an infimum,
defined by sup{σ,} = σ*, where σ*(M) = Σσz(M) for every M ^JίR

i n f ^ } = σ*, where σ*(M) = Πσ^M) for every M ^JlR. We treat in
this article the rings R such that K(i?) is linearly ordered (under the
ordering defined above).

PROPOSITION 1. The following conditions are equivalent:
(a) K(R) is linearly ordered.
(b) For every IR c R and JR c R, there exists a finite set X c R such

that I Ώ (J:X) orJz) (I: X).
(c) For every IR c R and JR c iί, there exists a natural number n =

n(I,J) such that either R/I is an epimorphic image of a submodule of
(R/J)("\ or R/J is an epimorphic image of a submodule of M

Proof, (a) => (b) Set J^(7) = {UR c R; there exists a finite set S c R
such that (/: S) c U} and define analogously ^ ( / ) . It is easy to verify
that they are topologizing filters and therefore we can assume ^(1) c

). Since obviously I e J*"(/), (b) follows.
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(b) => (c) Assume / D (/: X) where X = {x v..., *„} c i?, and de-
fine /: R -> (R/I){n) such that /(r) = (5c1?.. .,5cjr. Since kernel / =
(/: X) c /, it follows that /(i?) = R/(I: X) and Λ/(J: X) maps onto
R/J. Therefore R/J is an epimorphic image of f(R), which is a submod-

(c) => (a) Let σ and v be elements of K(i?) such that σ < v. Then
there exists a σ-torsion cyclic module R/I which is not ^-torsion. Let &
be the filter associated with v and J G F . Properties of torsion classes
guarantee that no submodule of (R/J){n) can map onto R/I, and thus by
hypothesis R/J is an epimorphic image of (R/I){n\ for a certain natural
number n. We conclude that i?// is σ-torsion, for every / e <F and so
p < σ.

A further step in building this kind of ring is provided by the next
result.

PROPOSITION 2. Let Rbe a ring such that K(R) is linearly ordered and
let S be a ring. Then

(a) If S is an epimorphic image ofR,K(S) is linearly ordered.
(b) IF S is Morita equivalent to R,K(S) is linearly ordered.

Proof, (a) Let g: R -> S be the given epimorphism and let g(I) and
g(J) be right ideals of S. We may assume kernel g c I n J and also
/ => (J: X) for a certain finite set I c R. It follows that if g{r) e
(g(J)) ' g(s)) then r<Ξ(J:X) and therefore g(r) e g(7). Thus

(g(^) Sg(*)) c g(J) and K(S) is linearly ordered.
s

(b) Given a category equivalence ψ: e/#Λ -> ̂ # 5 and torsion classes s/
and # in ^ s , define J / ' = (MΛ; ψ(M) e J / } and ^ r = {MΛ; ψ(M)
e ^ } . Since stf' and J*r are torsion classes in JtR, we may assume

s?' c ^ ' . It is easily checked now that sίtiSi.

COROLLARY 3. // K(R) is linearly ordered, then K(MnXn(R)) is
linearly ordered.

For every ideal / of R and for every set X c R we have / c (/: X).
According to Proposition 1 we conclude:

COROLLARY 4. // K(i?) is linearly ordered the ideals of R are linearly
ordered by inclusion.

We will next consider conditions to ensure the validity of the converse
of Corollary 4. Similar results (by taking only right sided ideals) will also
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be formulated. Let / be an ideal of R and let us define the following
collections:

= {KR c i?; I<gK) if 7 c R,

# ( / ) = {KRcR;I

LEMMA 5. // the right ideals of R are linearly ordered by inclusion and I
is a proper ideal of R, then ^"(/) and -^(1) are topologizing filters.

Proof. ̂ ( 7 ) is always a filter. With regards to ^ ( 7 ) it suffices to
prove that if X e 3F(1) and r e R then (X: r) e ^(1). Assume (X: r)
= /. By hypothesis either rR c X or X c riί. If rR a X then i? c (X: r)
= 7, a contradiction. Therefore we must have X o rR. Pick X G I such
that x ί / , and λ e i? such that x = rλ. It follows that λ G ( I : r ) and

so x e 7, a contradiction. We conclude (X: r) D / and thus ^(1) is a
filter, as asserted.

LEMMA 6. If the right ideals of R are linearly ordered by inclusion, /or
every filter 3F there exists an ideal I such that either ^— ^(1) or

Proof. Given the filter J*\ define Io = Π/? taken for all / G ^ , Since
70 is an ideal of 7?, if 70 e J^ then J^= JΓ(7 0). Let us show now that if
/ o ί ^ then J^= J^(70). To that end, given / e ^ ( 7 0 ) we must have
/ D 70 and so there exists 77 e #" such that J (£ H. But then 77 c /, by
hypothesis, and / belongs to J^. Therefore ^ ( / 0 ) c Ĵ " which suffices to
show that J^=

COROLLARY 7. 7///ze right ideals of R are linearly ordered by inclusion,
then K(i?) is linearly ordered.

Proof. Given 7 and / ideals of R such that 7 c /, it follows that
J^(7) c # ( / ) c J^(7) c # ( 7 ) . We make use now of Lemma 6 to infer
that filters (and so, kernel functors) are linearly ordered.

The converse of last result is not valid, as we may see by taking
R = M 2 x 2 (7 7 ), where F is a field. According to Corollary 3 K(i?) is
linearly ordered; however the right ideals [J °0]R and [° °] 7ί are not
comparable.
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PROPOSITION 8. If either R is right artinian or every right ideal of R is
two-sided, then K(i?) is linearly ordered if and only if the ideals of R are
linearly ordered by inclusion.

Proof, (a) Assume RR is artinian. Let σ and v be elements of K(i?), &
and ^ their corresponding filters and let IR and JR be minimal elements
of & and ^ respectively. It follows that / and J are ideals, J ^ " = # ( / )
and <& = ̂ ( / ) . If the ideals of R are linearly ordered by inclusion, so are
the filters, as / c / implies # ( / ) D # ( / ) . Therefore, K(R) is linearly
ordered.

(b) If every right ideal is two-sided, this assertion reduces to Corol-
lary 7.

As a consequence we have

COROLLARY 9. Let R be a commutative ring. Then K(R) is linearly
ordered if and only if R is a valuation ring.

According to this result, the rings under consideration can be viewed
as non-commutative analogues of valuation rings. We aim therefore to
providing analogies between these two kinds of rings. Next statement
applies to any given ring.

PROPOSITION 10. K(i?) - {oo} has maximal elements. Dually, K(R)
— {0} has minimal elements.

Proof. Set A = K(R) — {oo}. Given an ascending chain {σz} in A
denote sup{σ,} by σ*. If σ* = oo, then 1 e σ*(i?) = Σσ^R). Hence
there exists an index k such that 1 e ok{R) and thus σk = oo, a con-
tradiction. Accordingly, σ* e A and the usual Zorn's Lemma argument
furnishes a maximal element of A.

On the other hand, let S be a simple module, set *% = { 0 Mt\
M, = S) and let v be the kernel functor associated with the torsion class
#; we clearly have v > 0. Next assume there exists α G K(ϋ) such that
0 < σ < v and let us show that σ = v. To that end pick a non-zero
σ-torsion cyclic module M and a simple module T onto which M is
mapped. Therefore T is σ-torsion and so T is ^-torsion. Hence Γ = φ S
which implies T = S. We conclude that S is σ-torsion, which forces every
element of V to be σ-torsion, that is, v < σ. It follows that v is a minimal
element, as required.
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As a consequence of the proof just given, we now obtain:

COROLLARY 11. // K(R) is linearly ordered, then K(R) - {00} has a

maximum and K(R) — {0} has a minimum. Moreover, there exists a

unique simple R-module (up to isomorphisms) and the minimum of K(R) —

{0} is Soc.

As to Corollary 3, we can now show that its converse is not always

valid. In fact, [6] contains examples of simple rings R having infinitely

many non-isomorphic simple modules. Although clearly the ideals of R

are linearly ordered (by inclusion), the elements of K(iί) are not.

Let K(i?) be linearly ordered and let σmax denote the maximum of

In the commutative case, our rings reduce to valuation rings, accord-

ing to Corollary 9. Clearly, in this case the filter associated with σmax

coincides with {I <z R; I Φ (0)} = J^(0) and thus, for every M £ Ji R, we

have σ m a x (M) = {m e M; there exists 0 Φ r e R such that mr = 0} =

Z(M). However, the situation changes in the non-commutative case and

the description of σmax turns out to be more complicated. It is worth

emphasizing that the minimum of K(i?) — {0} is Soc whether R is

commutative or not.

At any rate, if K(R) is linearly ordered, then Soc < σmax except when

K(R) = (0, 00}. But in this case Soc = 00, every module is semisimple

and R = MnXn(D), for a certain division ring D.

We recall that R is an absolutely torsion free ring (ATF, for short)

whenever σ(R) = (0) for every σ e K(R) - {00}. (See [7], [10].)

PROPOSITION 12. Let K(R) be linearly ordered and assume σmax is

idempotent. Then, R is an ATF-ring and σ m a x (M) = Z(M) for every

M ^JίR.

Proof. To tackle ATF-ness first, it will suffice showing that σm a x(i?)

= (0), since σ < σmax for every σ < 00. Write / = σm a x(i?) and assume

/ Φ (0). Then v(M) = {m e M; ml = (0)} defines a kernel functor, and

clearly v < 00. Therefore v < σmax and so R/I is a σmax-torsion module.

But so is /, and the idempotency of σmax guarantees that R is σmax-tor-

sion, that is, σmax = 00, a contradiction. That proves R is an ATF-ring.

Next, as in [7] we obtain σmax = τE{R) which shows that the filter associ-

ated with σm a x is 2. Since R is a non-singular ring, it follows that 3) = «£?

and therefore σ m a x (M) = Z(M) for every M e JiR.
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It is well known that the locahzations of any valuation domain are

linearly ordered under inclusion. The non-commutative analogous result

will be proved next. Let us remark that a commutative ring is ATF if and

only if it is a domain. (See [10].)

PROPOSITION 13. If R is an ATF-ring and K(R) is linearly ordered,

then its localizations are linearly ordered.

Proof. Since R is ATF it is a non-singular ring and therefore every

ring of right quotients of R is a subring of the maximal ring of quotients

of i?, which in this case turns out to be E(R). (See [9].) If A is a

localization of R, according to [9] there exists σ &1(R) — {oo} such that

A = Qσ(R) and therefore R c A c E(R). Now, by definition of ring of

quotients we must have A/R = Qσ(R)/R = σ(E(R)/R). The same

argument applies to any other given localization B, allowing us to

conclude that B/R = Qλ(R)/R = λ(E(R)/R) for a certain idempotent

λ. Since by hypothesis σ < λ, say, we infer that A a B, and the conclu-

sion follows.

Every valuation ring is local and, if not a field, has a nilpotent socle.

Next results show that this generalizes quite nicely in our non-commuta-

tive context. In what follows, J(R) stands for the Jacobson radical of R.

PROPOSITION 14. If K(R) is linearly ordered, then

(a) J(R) contains every proper ideal of R.

(b) If U= Soc(i?), then either U2 = (0) or U= R (and so R =

MnXn(D) in this case).

Proof, (a) Given a proper ideal /, we will show that / c T for every

maximal right ideal T. Pick a maximal right ideal P containing /.

According to Corollary 11 there exists an isomorphism /: R/T -> R/P.

Since / is two-sided, it annihilates R/P and hence it annihilates R/T.

Therefore, / c Γ, as stated.

(b) Assume U Φ R. Let us define an element of K(i?) — {0} by

setting v(M) = {m e M\ mU = (0)}. Then, by Corollary 11, Soc < v so

that U = Soc(R) c v(R) which implies U2 c v(R)U = (0), as claimed.

COROLLARY 15. Let K(R) be linearly ordered. Then the following

assertions hold:

(a) If H is an ideal of R, either H is right essential in Ror H2 = (0).

(b) IfJ(R) is not essential in R, then J(R) = (0).
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Proof, (a) Assume H is non vanishing. If HR is not essential pick a
non-zero right ideal / such that H Π / = (0). H is two-sided and so
either RI c H or H c RI. But RI a H implies I c H and so / = (0), a
contradiction. Hence, H c RI holds and we readily have H2 c (RI)H =
R(IH) = (0).

(b) Suppose J(R) is not essential. If in addition J(R) Φ (0) we
proceed as in (a) with H = J(R). This time, however, the argument yields
necessarily RI c J(R), as Proposition 14 applies. As before, this is a
contradiction.

One evidence of the ubiquity of simple rings when kernel functors are
dealt with, is given next.

COROLLARY 16. Let K(R) be linearly ordered. If R is either (von
Neumann) regular, or a V-ring, or primitive, then R is a simple ring.

Proof. In any of these cases, J(R) = (0). The conclusion follows, by
Proposition 14.

In valuation rings every non-zero idempotent ideal has a nilpotent
annihilator. It is natural to try to extend this fact to idempotent kernel
functors.

PROPOSITION 17. Assume K(R) is linearly ordered. Then
(a) σ(R)2 = (0) for every σ e= I(JR) - {oo}.
(b) If R is semiprime, σ(R) = (0) for every σ e l(R) — {oo}.

Proof, (a) Write I = σ(R). We proceed as in Proposition 12, that is,
we define v(M) = {m e M; ml = (0)} for every M e JtR. Thus, v e
K(JR) - {oo} and if v < σ, R/I turns out to be σ-torsion. But / is
σ-torsion and σ is idempotent, which implies that R is σ-torsion, a
contradiction since σ Φ oo. Therefore we must have σ < v, so that / =
σ(R) c p(R). Finally, I2 c v(R)I = (0), as stated.

We recall that domains (whether commutative or not) are ATF-rings;
the following result shows that the converse is valid for some of the rings
treated in this article.

PROPOSITION 18. Assume the right ideals of R are linearly ordered by

inclusion. Then R is ATF if and only ifR is a domain.
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Proof. If R is ATF we know σmax(i?) = (0). Moreover, by Lemma 6
the filter associated with σmax is F(O) = {IR\ (0) Φ I c £ } . Then, if
ab = 0 and 6 # 0 w e have W? G #"(0) and consequently 0 G σmax(i?) =
(0).

PROPOSITION 19. // K(i?) ώ linearly ordered then the center of R is a
local ring.

Proof. Let A be the center of R. We proceed to prove that given a
and b non-units of A9 a + b is not a unit in A. Suppose a + 6 is
invertible in 4̂ and pick s e A such that (α 4- b)s = 1. Write <?' = as and
Z/ = bs and consider α'iϊ and b'R. Since they are two-sided, by virtue of
Corollary 4 we may assume a'R c //I?, and so α' = b'r, for a certain
r G /?. We claim r G A In fact, given r* G i?, we observe that

b'(rr* - r*r) = b'rr* - b'r*r = a'r* - r*b'r

= r*a' - r*b'r = r*a' - r V = 0.

Then, writing z for rr* — r*r, we have b'z = 0. Moreover, a'z = Z/rz =
r6rz = 0. Since a' + 6' = 1 we infer that z = 0, that is, rr* = r*r. We
conclude that r G A, as claimed. Finally,

1 = a' + Z/ = b'τ + V = b{s(r + 1))

which means b is a unit of yί, the desired contradiction.

By [4] for every ring R and for every σ G K(Λ) one can construct
σ G I(Λ), σ > σ such that σ(M) = (0) if and only if σ(M) = (0). We
furnish the following two examples related with this fact.

EXAMPLE 1. There exists a ring R such that l(R) is linearly ordered
but K(R) is not.

In fact, let F be a field and let A be the commutative algebra
F[JC, y]9 together with the condition x3 = y3 = 0. A is an artinian ring
and P = (JC, 7) is a prime ideal of A Hence the ring R = AP is local
artinian and therefore it is perfect and has a unique simple module.
According to [11] we have l(R) = (0, 00}; however R is not a valuation
ring since (x) and (y) are not comparable in i?, and thus K(i?) is not
linearly ordered.

EXAMPLE 2. Let us construct a ring i? such that K(i?) is a linearly
ordered infinite lattice, and l(R) is finite. Let F be a field and let i? be
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the commutative F-algebra generated by {jci}, with 0 < / < 1 and

+ , i f i + 7 < l ,
x'Xj [o

It follows immediately that x0 = 1 and xλ = 0. Also R is a local ring and
its unique maximal ideal is the ideal Ao generated by {xt\ i > 0). Since
every element of Ao is nilpotent, Ao is a nil-ideal. For every i e [0,1) set
4̂, = { JC w; w is a unit and j > i}, Ci = { JĈ M; u is a unit and j > i) and

set ^ = C\ = (0). Clearly the ideals of R are precisely the ideals At and
C, with i e [0,1], and whenever 0 < i < s < 1 we have

(o) ^ Q c ^ c ς c Λ. cς.μ o cc o = i?

By Corollary 7, it follows that K(i?) is linearly ordered. Now, the elements
of K(i?) are instantly surveyed: their associated filters are either ^(1) or
J^(/), according to Lemma 6. We thus conclude K(i?) is an infinite
lattice. Next, we will exhibit the idempotent filters of R. Given such a
filter J^, we consider the following two cases:

Case 1. ^=β(I) for a certain ideal /. We must have / = I2. If
/ = C, for a certain i, we infer that C7 = QC, c C2 | , and therefore / = 0.
This implies I = Co = R and consequently J^= (i?} Its corresponding
kernel functor is 0. If / = A{ for a certain /, a similar argument shows that
/ vanishes, so that / = Ao and J^= {Ao, R}. Its corresponding kernel
functor is Soc.

Case 2. J^"= ̂ (1), for a certain ideal / of R. If there exists / such
that / = Ai we have #r=#r(Ai) = # ( C , ) which leads to the previous
case. On the other hand, if there exists i such that / = Ci9 we must have
i > 0 and we can therefore pick s > 0 such that As e J*\ Now, choose a
natural number n such that /is > 1. Since every idempotent filter is
multiplicative, it follows that (0) = (̂ 4 )̂" e / , We conclude that every
ideal of R belongs to J*", and the corresponding kernel functor is oo.

What we obtained can be summarized as follows: K(i?) is a linearly
ordered infinite lattice whereas I(i?) = {0, Soc, oo}. Furthermore, it should
be noticed that σmax coincides with Z, although it is not idempotent.

Assume now K(i?) is an infinite linearly ordered lattice. It will then
contain a strictly increasing (or decreasing) infinite sequence of elements,
a fact that in turn reflects on the lattice of right ideals of R, as will be
shown next.
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PROPOSITION 20. Assume K(R) is linearly ordered.
(a) // K(i?) contains a strictly decreasing infinite sequence of elements,

R contains chains of right ideals of any given length.
(b) // K(R) contains a strictly increasing infinite sequence of elements,

RR is not artinian.

Proof, (a) Given the chain of filters J*i => &2 D , pick Iι^βr

1-
&2 and I2 G &2 - &v Now set Kλ = Iλ Π I2 and K2 = I2. It follows that
^ G ^ - ^ 2 , ί 2 E f 2 - J^3 and Kλ c # 2 . Suppose we have con-
structed right ideals Ky; e J^ — JΓ+ 1 for 7 = 1,..., « in such a way that
ί 1 c ϋ:2 c c ί n . Choose X G J ^ + 1 - J^ + 2 , set # * = # Π X for
i < n, and set A^*+1 = X Since X E J ^ . for every j < n, we obtain
# y * G J^, Moreover, i f c ί * c c K*+v If there exists i < n such
that K* = K^l9 we must have K? Ξ ^j +i, which implies Kt G J^ + 1, a
contradiction. We have shown that {Kj*}"+1 is strictly increasing.

(b) Given the chain of filters ^ c ^ 2 c , choose /, G ^ + 1 - ^
for every 7. Now set i r t = /x Π Πln for every «. It easily follows that
{Kj}T is a strictly decreasing infinite sequence of right ideals.

Notice that the valuation domain Z{p) shows that (a) and (b) might
not occur simultaneously: in fact, K(Z(/?)) contains strictly increasing
infinite sequences but no decreasing sequence can be infinite.

In connection with Proposition 20 we now show a ring, obtained by
the usual idealization process, with interesting features on its own.

EXAMPLE 3. There exists a ring R having infinitely many right ideals
but only a finite number of left ideals, for which the set of filters of right
ideals coincides with the set of filters of left ideals. In addition, K(i?) is a
finite linearly ordered lattice.

In fact, let F c G be a field extension constructed in such a way that
dimF(G) = n and there exists a field isomorphism /: G -> F. Now set
A = \\G

0

 G

F\\ and the subring of A given by R = {(a

0

 a

h) G A; f(a) = b}. R

has thus only three left ideals: (0), R and P = \\°0 §||.
On the other hand, the infinitely many right ideals of R are given by

IIQ oil, where V runs through the F-subspaces of G; R is clearly right
artinian and its only ideals are (0), P and R. By Proposition 8a, it follows
that K(i?) is linearly ordered, and the filters of right ideals of R are
#(0)= {IR; / c R], &(R) = {R} and #(P) = {P,R}. Hence, K(R)
= (0, Soc, 00} and σmax = Soc which is not an idempotent kernel since
P2 Φ P.
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We next refer again to Proposition 8: this time, however, with the
corresponding second statement applied to the category of left modules,
and infer that R admits only three filters of left ideals, which coincide
with those we found above. R satisfies therefore the required properties.
It is worth noticing that the filter associated with σmax does not coincide
with {IR; I Φ (0)}, a fact anticipated in the comments preceding Proposi-
tion 12.

The following example exhibits a simple domain R, not a field, such
that K(i?) is linearly ordered.

EXAMPLE 4. There exists a non-artinian simple principle ideal domain
R for which K(R) = 1(1?) has exactly three elements.

In fact, set R = K[x; D] the ring of differential polynomials over a
Kolchin universal field (K,D). It is known R has the required ring
structure. There is a unique simple i?-module S (up to isomorphisms); S
is, in fact, injective. In addition, if MR is cyclic, then either M = R or M
is semisimple, which implies R is a PCI-ring. (See [2], Thm. 7.42.) It
follows easily that K(i?) = {0, Soc, oo}. Moreover, since every semisimple
i?-module is injective, Soc(M/Soc(Λf)) = (0) for every M and therefore
K(i?) = I(i?) as claimed. Notice that σmax = Soc = Z, and its associated
filter coincides with {IR; (0) Φ I c R).

The examples given show that "K(i?) linearly ordered" can be thought
of as a unifing concept for rings with quite different structures.

A Semigroup Structure on K(i?). For any given ring R,K(R) can be
given a semigroup structure in the following way: given σ and λ in K(i?)
let s/ and 3$ be their corresponding torsion classes. Consider the collec-
tion # = [M ^JfR; there exists an exact sequence (0) -> A -> M -> B
-> (0) with ^ E J / and B e <%}. It is routine checking that ^ is a torsion
class. Denote by σ * λ the corresponding kernel functor. It is easily
verified that * is associative and so (K(i?), *) is a semigroup. Some basic
properties of this semigroup are summarized next:

For all v e K(R)
( a ) 0 * v = p*0 = v.

(b) oo * v = J>*OO = oo.

(c) If σλ < σ2, then ox * v < σ2 * v and v * σλ < v * σ2.

(d) v < v * v\ and v = v * v if and only if v e l(R).

(e) σ < σ * v and v < σ * v for all σ e K(i?).

(f) If v < σ and σ e I(i?) then *> * σ = σ.
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Notice that (K(i?), *) is never a group, since σ * v = 0 implies σ = v

= 0.

The following example shows that (K(i?), *) may not be commuta-

tive.

EXAMPLE 5. If R is the ring in Example 2 we claim that Soc* σmax =

σm a x and σm a x * Soc = oo. In fact, if Soc* σmax Φ σmax by (e) we must have

Soc* σmax > σm a x and so Soc* σmax = oo. There exists then an exact se-

quence (0) -> X -> i? -> M -» (0) for a certain Soc-torsion module X and

σmax-torsion module M. Therefore R contains non-zero minimal ideals, a

contradiction.

On the other hand, in order to prove that σmax * Soc = oo it suffices

to show that RR is ^-torsion, where v = σmax *Soc. To that end, consider

the exact sequence (0) -> Ao -> R -> i?/^o ""* (°)

For every α G Λ O , (0: 0) is large in i? and therefore a G Z(i?) =

σm a x(i?). It follows that ^40 is a σmax-torsion module. Also, since i?/^40 ^s

a simple module, it is Soc-torsion. We conclude that R is a ^-torsion

module.

However, if K(R) is linearly ordered and K(R) = 1(2?) then (K(iϊ), *)

is a commutative semigroup (use c, e and f). As in [8] it is therefore valid

to try to determine when (K(R), *) is the valuation semigroup of a

valuation ring.

Let us recall that given a valuation ring A, its valuation semigroup is

defined as the set A* = {aA; a G A) together with the binary operation

oA + bA = abA. Let α* denote aA; therefore A* is a commutative

semigroup whose identity element is 1*. If we define a* < b* if and only

if cfA D M , ^4* turns out to be linearly ordered, with minimum 1* and

maximum 0*. Assume K(i?) = A* and pick v in K(i?) — {0}; it corre-

sponds to a certain α* e^4* - {1*}. According to (d) v * v = v, and thus

<z* + (3* = α*, that is, α 2 ^ = aA. There exists x G A such that α = a2x

and since 1 — ax is a unit, α must equal zero. We obtain α* = 0* and

consequently v = oo. Conclude that K(ϋ) = (0, oo}, that is, R =

MnXn(D), for a certain division ring Zλ

We summarize this section by stating the following

THEOREM 21. Assume K(R) is linearly ordered and K(R) = 1(R).

Then, (K(Λ), *) is the valuation semigroup of a valuation ring if and only if

R = MnXn(D) where n is a natural number and D is a division ring.
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