PACIFIC JOURNAL OF MATHEMATICS
Vol. 132, No. 2, 1988

ON DEFORMING G-MAPS TO BE FIXED POINT FREE

EDWARD FADELL AND PETER WONG

When f: M — M is a self-map of a compact manifold and dim M
> 3, a classical theorem of Wecken states that f is homotopic to a
fixed point free map if, and only if, the Nielsen number n(f) of f
is zero. When M is simply connected, and dim M > 3 the NASC
becomes L(f) = 0, where L(f) is the Lefschetz number of f. An equi-
variant version of the latter result for G-maps f: M — M, where M
is a compact G-manifold, is due to D. Wilczyriski, under the assump-
tion that M* is simply connected of dimension > 3 for any isotropy
subgroup H with finite Weyl group WH. Under these assumptions,
f is G-homotopic to a fixed point free map if, and only if, L(f) =0
for any isotropy subgroup H (WH finite), where f = f|M* and
M represents those elements of M fixed by H. A special case of
this result was also obtained independently by A. Vidal via equivariant
obstruction theory. In this note we prove the analogous equivariant
result without assuming that the A7¥ are simply connected, assuming
that n(f*) = 0, for all H with WH finite. There is also a codimen-
sion condition. Here is the main result.

THEOREM. Let G denote a compact Lie group and M a compact,
smooth G-manifold. Let (Hy), ..., (H}) denote an admissible ordering
of the isotropy types of M, M; = {x € M: (Gx) = (H), j < i} the
associated filtration. Also, let & denote the set of integers i, 1 < i<k,
such that the Weyl group WH; = NH; [ H; is finite. Suppose that for each
i € 7,dim MH > 3 and the codimension of M;_; N M jn MH is at
least 2. Then, a G-map f: M — M is G-homotopic to a fixed point
free G-map f': M — M if, and only if, the Nielsen number n(fH) =0
foreachie .

1. Preliminaries. Throughout this note G will denote a compact
Lie group and M will denote a compact, smooth G-manifold. For any
closed subgroup H in G, we denote by NH the normalizer of H in G
and by WH = NH/H, the Weyl group of H in G. The conjugacy class
of H, denoted by (H), is called the orbit type of H. If x € M then
Gy denotes the isotropy subgroup of x, i.e. Gy = {g € G|gx = x}.
For each subgroup H of G, MH = {x € M|hx = x for all h € H} and
My = {x € M|Gx = H}. Let {(H;)} denote the (finite) set of isotropy
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types of M. If (H;) is subconjugate to (H;), we write (H;) < (H;).
We can choose an admissible ordering on {(H;)} so that (H;) < (H;)
implies i < j (see [1]). Then we have a filtration of G-subspaces
MycMy,cC---CM =M, where M; ={x € M: (Gx) =(H;), j <i}.

We now recall the definition of the /ocal Nielsen number. If U is
an open subset of M and f: U — M is a compactly fixed map (not
necessarily a G-map), then the Nielsen number n(f U) is defined [3]
using the equivalence relation on the fixed point set Fix f as follows.
Two fixed points x and y in U are equivalent if there is a path « in U
such that f(a) and o are endpoint homotopic in M. The remainder
of the local theory proceeds along the lines of the global theory. Note
that if dim M > 3, the path o above may be taken as a simple path
in U and assuming (as we may) that Fix f is finite, o may be chosen
to avoid all fixed points different from x and y. Then in a small
closed tubular nieghborhood T ¢ U of o f may be altered in the
interior 70 of T (via the Wecken method [1] or the “Whitney trick”
see [4]) to obtain a map f': U — M so that f’ is an extension of
fIU =T f' ~ f and f’ has only one fixed point in U. This is the
technique of coalescing fixed points. Note that 7 is a closed n-ball.
If this remaining fixed point has index 0, /' may be altered within 70
to remove it, thus obtaining f” ~ f such that f"|U — T9 = f|U — TO
and f” has no fixed points in 7. A key point here is that f is altered
in the interior of a closed contractible neighborhood of a.

2. The Proof of Main Theorem. We first note that the G-map
f: M — M preserves the filtration M, C --- C My, i.e., f(M;) C M;.
Also, W; = WH; acts on MH: and freely on M — M;_,. Furthermore
i = fIMH: MH - MH s a Wi-map. We will set f; = f|M;. We
then let ¥ denote the indices i, 1 < i < k, such that W is finite.
Whenever A is a G-set, A will denote the corresponding set of orbits,
ie, A= A/G. Similarly f: 4 — B, will denote the map induced by
a G-map f: A — B. Finally, Fix f is a G-set, and each orbit in Fix f
will be referred to as a fixed orbit.

2.1. LEMMA. (Controlled Homotopy Extension). Let (X, A) denote
a G-pair such that all orbits in X — A have the same orbit type G/H
and f: (X, A) — (X A) a G-map (of pairs). Let V denote a closed
G-neighborhood of A and fH: X — XH the restriction of f to X*.
Then, any (NH/H)-homotopy f, relative to VH, with fi = fH ex-
tends to a G-homotopy f;, relative to V, with fy = f. Furthermore if
fH is fixed point free on (X — A)H, then so is f; on X — A.
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Proof. The proof is an easy consequence of I1.5.12 in Bredon [1].
Let W = NH/H and Y = X — A. The homotopy f; is defined on Y by
setting

L) =eff(&'y)., G,=gHg™".
Then, f; is definedon Y andon VNY f; = f;, 0 <t < 1. Thus,
setting f; = f on V extends f; to all of X. Note that

gfflely)=ye flgly)=¢g7ly, ye¥x

which verifies the last assertion of the lemma.

2.2. PROPOSITION (Inductive Step when W; is finite). Let f: M — M
denote a G-map such that

(1) fi-1: M;_y — M;_, is fixed point free,

(2) W; = NH;/H; is finite,

(3) f; has a finite number of fixed orbits on U; = M; — M;_,,

4) n(fH, UH)=0.
Then, f is G-homotopic to f': M — M, relative to M;_, so that f] is
fixed point free.

Proof. Consider the map f;: M; — M; and let H = H; and W = W,
for notational convenience. Now focus attention on fH: MH — MH
and let ] and @, denote two fixed W-orbits in UH. Call the fixed or-
bits @, and &, Nielsen equivalent if for some x € #, and y € &, x and
y are Nielsen equivalent in U/ (see [2]). We will coalesce two Nielsen
equivalent orbits into one fixed orbit as follows. Suppose @, = Wx
and @, = Wy with x and y Nielsen equivalent in UiH , 1.e., there is
a path o from x to y in U so that fa ~ o (in M and with ends
fixed). Because of assumption (3) we may assume that a avoids all
other points of Fix f; other than x and y. Project o to & in U? /W
by the orbit map n: U# — UH /W and let B denote a simple path
homotopic (relative to end points) to & Then f lifts to a simple path
B from x to y. If N(B) is a closed ball neighborhood of f in U /W,
then, since N(f) is contractible, n~'(N(B)) = WN(B), where N(f)
is the corresponding ball neighborhood of f. Thus, n~!(N(8)) con-
sists of disjoint translates of N(f) by W. The local Nielsen number
n(fH, N(B)) is at most one (see [3]). Applying the local Wecken the-
orem or the “Whitney trick” in N(f) (see [3] or [4]), we can obtain
a homotopy H: N(B) x I — MH such that H;|ON(B) = f; for all
t, 0 <t < 1,Hy = fi|N(f) and H; has at most one fixed point in
the interior of N(B). H has the extension H(wx,t) = wH(x,t) to
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(WN(B)) x I and to all of M/ x I by using f; outside of WN(B) x I.
Then H: M x I — M; is a W-homotopy, with H; = ¢;: MH — MH
having one less or two less fixed orbits. Continuing in this manner
we obtain a W-map ¢}: M1 — MH  W-homotopic to f; with finitely
many fixed orbits no two of which are Nielsen equivalent. If x belongs
to one of the remaining orbits Wx and D is a sufficiently small neigh-
borhood of x, then the local indices i(¢}, D) and i(¢;, wD), w € W, are
the same and i(¢!, WD) = |W|i(¢!, D). Since n(fH, UH) = 0, we must
have i(¢], D) = 0, since Wx is the union of Nielsen classes. We can
now remove x as a fixed point via a homotopy relative to D and ex-
tend (as above) to a W-map ¢ : MH — MH  W-homotopic to ¢}, with
Wx eliminated as a fixed orbit. Continuing in this manner we arrive at
a W-map y;: M — MF which is fixed point free and W-homotopic
to f; relative to some closed neighborhood of Ml-’f - By Lemma 2.1
this map y; extends to a fixed point free G-map f/: M; — M;, G-
homotopic to f; (relative to M,_;) and the G-homotopy extension
theorem provides the required extension f” of f].

2.3. ProPOSITION (Inductive Step when dim W; > 0). Let f;: M; —
M; denote a G-map such that

(1) fH is fixed point free on MH,,

(2) dim W; > 0, W; = NH;/H,.
Then, f; is G-homotopic relative to A to a G-map f]: M; — M; such
that f is fixed point free.

Proof. This proposition follows from Lemma 3.3 in [6].

Proof of Theorem. We assume (inductively) that f: M — M is a
G-map such that f;_;: M;_, — M;_, if fixed point free. As a first
step, choose a closed G-neighborhood V' of AM;_; in M; so that M;_,
is a G-deformation retract of V. Then, f is G-homotopic, relative
to M;_;, to a map f’ such that f': M; — M, has no fixed points in
V;. Thus, we may assume that f itself has this property so that f; is
compactly fixed on U; = M; — M;_,. In particular fl-” is compactly
fixed on U/ and the local Nielsen number n(f#, UH) is defined. We
consider two cases.

Case 1. W; = NH;/N; is finite, i.e.,, i € 7.

In this case, the codimension condition applies to yield »( iH , UI.H )
= n(fH) = 0. This is because any path in M from x to y, xUy € U#
may be deformed (ends fixed) to a path in U, i.e., to one avoiding the
submanifold Mﬁ ;- Let V' denote a closed G-neighborhood of M,-’f 1
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in MH so that the fixed points Fix f# of fH are in M — V'. Choose
a closed G-neighborhood @ C UH of Fix f; so that f(Q) c UH.
Working in the orbit space UX/W;, we deform fi|Q, relative 40,
to a map fi’ with finitely many fixed points. Since W; acts freely
on U,-H we may apply the covering homotopy theorem to conclude
that £ is homotopic relative to V' to ¢: M — MH where ¢ has
finitely many fixed W;-orbits and the homotopy is compactly fixed.
Thus, n(gp, UI-H ) = 0 and we may apply Proposition 2.2 to conclude
that f is G-homotopic, relative to M;_;, to a map f': M — M with
fi+ M; — M, fixed point free.

Case 2. dimW; > 0. We apply Proposition 2.3 and then the G-
homotopy extension theorem to conclude that f is G-homotopic, rel-
ative to M;_;, to amap f': M — M with f/: M; — M, fixed point
free.

Applying induction completes the proof of the sufficiency. The ne-
cessity is clear.
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