GROUPS OF ISOMETRIES OF A TREE
AND THE KUNZE-STEIN PHENOMENON

Claudio Nebbia

In this paper we prove that every group of isometries of a homogeneous or semihomogeneous tree which acts transitively on the boundary of the tree is a Kunze-Stein group. From this, we deduce a weak Kunze-Stein property for groups acting simply transitively on a tree (in particular free groups on finitely many generators).

1. Introduction. Let G be a locally compact group, then G is said to satisfy the “Kunze-Stein property” or sometimes G is called a “Kunze-Stein group” if $L^p(G) * L^2(G) \subset L^2(G)$ for every $1 < p < 2$.

This property was discovered by R. A. Kunze and E. M. Stein for the group $SL_2(R)$ [15]. Later the same property was proved for every connected semisimple Lie group with finite center by M. Cowling [6]. In this paper we prove that every locally compact group of isometries of a homogeneous or semihomogeneous tree has the Kunze-Stein property provided that G acts transitively on the boundary of the tree. The proof of our Theorem is based on M. Cowling’s proof of the Kunze-Stein phenomenon for $SL_2(R)$ [6]. A weaker property is deduced for discrete groups acting simply transitively on the tree but not on the tree boundary.

It is known that the group $SL_2(\kappa)$, where κ is a local field, may be realized as a closed subgroup of the group of all isometries of a homogeneous tree in such a way that $SL_2(\kappa)$ acts transitively on the boundary [17]. In particular our result implies that $SL_2(\kappa)$ is a Kunze-Stein group for every local field. This was proved by Gulizia [13] for a local field κ such that the finite residue class field associated with κ is not of characteristic 2.

We follow the terminology and definitions of [6]. In particular $A(G)$ is the Fourier algebra of G as defined in [7]; $C_{00}(G)$ denotes the space of continuous functions with compact support and $L^p(G), 1 \leq p \leq \infty$, the usual L^p-space with respect to a fixed left Haar measure. As observed in [6], a locally compact group G is a Kunze-Stein group if and only if $A(G) \subset L^q(G)$ for every $q > 2$. We will also use the theory of representations for groups acting on a tree developed by P. Cartier.
I wish to thank A. Figà-Talamanca for his encouragement during the preparation of this paper. I would also like to thank Prof. G. Rousseau for bringing reference [2] to my attention.

2. Notations. We shall give a concise description of the tree and of the group of isometries. We refer the reader to [3, 17, 18] for undefined notions and terminology. Let X be a homogeneous tree of order r; the distance $d(x, y)$ is defined as the length of the unique geodesic $[x, y]$ connecting x to y. Let $Aut(X)$ be the group of all isometries of X. We assume also $r \geq 3$ (otherwise, for $r = 2$, $Aut(X)$ is amenable and noncompact, hence it is not a Kunze-Stein group). $Aut(X)$ is a locally compact separable group and the stability subgroup K of a vertex of X is compact and open in $Aut(X)$. A subgroup Γ of $Aut(X)$ is called simply transitive if it acts transitively on the vertices and $\Gamma \cap K = \{1\}$. In other words, Γ acts simply transitively on X iff the map $\gamma \in \Gamma \to \gamma(x_0) \in X$ is bijective for a fixed vertex x_0 in X. It is known that every such group is isomorphic to the free product of t copies of the integers and s copies of the group of order 2 with $2t + s = r$ [1, 4]. Since K is open, Γ is discrete in $Aut(X)$. Moreover $\Gamma \cdot K = Aut(X)$ and Γ is a lattice. As usual, let $\langle f, h \rangle = \int f(g)h(g)\,dg$.

Let Ω be the boundary of the tree, that is the set of equivalence classes of sequences of distinct vertices $\{s_n: n = 0, 1, 2, \ldots\}$ such that $d(s_i, s_{i+1}) = 1$ for every $i = 0, 1, 2, \ldots$; two such sequences are said to be equivalent if they have infinitely many common vertices.

Ω is a compact metric space; if $x_0 \in X$ and $\omega_0 \in \Omega$ there exists a unique sequence of distinct vertices $\{s_n\}$ in the class ω_0 such that $s_0 = x_0$. In this way, Ω can be regarded as the set of infinite sequences starting from a fixed vertex x_0 in X. There exists a unique probability measure ν on $\Omega, Aut(X)$-quasi invariant and K-invariant. Let $P(g, \omega)$ be the Poisson kernel, that is, for $g \in Aut(X)$ and $\omega \in \Omega$, $P(g, \omega) = d\nu_g/d\nu(\omega)$, with $\nu_g(\omega) = \nu(g^{-1}\omega)$.

For every complex number z, we define the following representation of $Aut(X)$:

$$[\pi_z(g)f](\omega) = P^z(g, \omega)f(g^{-1}\omega).$$
It is known that, for $t \in \mathbb{R}$, $\pi_{1/2+it}$ are unitary irreducible representations on $L^2(\Omega)$; in fact even the restrictions to Γ are irreducible [12, pg. 76; 1].

For a fixed vertex x_0 in X, let $X^+ = \{x \in X : d(x, x_0) \text{ is even}\}$ and $X^- = X \setminus X^+$. The partition X^+, X^- is independent of the choice of x_0. If G is a closed unimodular subgroup of Aut(X) acting transitively on X^+ but not on the tree, then the representations $\pi_{1/2+it}|_G$ are irreducible for $t \neq (2m + 1)\pi/2\lg(r - 1)$, $m \in \mathbb{Z}$ [2, pg. 39, pg. 62]. Let J be the interval $[0, \pi/\lg(r - 1)]$ and $c(z)$ the following complex function:

$$c(z) = [(r - 1)^{2-2z} - 1]/[(r - 1)^{1-2z} - 1].$$

Finally, let dm be the following measure:

$$dm(t) = [(r - 1)\lg(r - 1)/4\pi r |c(\frac{1}{2} + it)|^2] dt.$$

3. The results. Let G be a closed noncompact subgroup of Aut(X) acting transitively on Ω, and $K_0 = G \cap K$. Since K_0 is compact open in G we can assume that its measure is one.

PROPOSITION 1. K_0 acts transitively on Ω.

Proof. Since G/K_0 is countable, Baire's theorem implies that every orbit of K_0 on Ω is open. By [17, Prop. 3.4], there exist $g \in G$, a sequence $\{s_n\} \subset X$, $n \in \mathbb{Z}$ and $i_0 \in \mathbb{Z}$ $i_0 \neq 0$, such that $d(s_n, s_{n+1}) = 1$ and $g(s_n) = s_{n+i_0}$ for every $n \in \mathbb{Z}$. In this proof we realize Ω as the set of all infinite sequences $\{t_n\}$ issued from $t_0 = s_0$. Therefore the sets: $E(x) = \{\{t_n\} \in \Omega : t_j = x\}$ with $x \in X$ and $d(s_0, x) = j$ form a basis for the topology of Ω. Let $\omega_1 = \{s_0, s_1, \ldots\}$ and $\omega_2 = \{s_0, s_{-1}, s_{-2}, \ldots\}$.

Since $K_0\omega_1$ and $K_0\omega_2$ are open, it follows that there exists $j > 0$ such that $E(s_j) \subset K_0\omega_1$ and $E(s_{-j}) \subset K_0\omega_2$. Using the automorphism g, it is not hard to show that K_0 acts transitively on $\mathcal{C}E(s_{-1})$ and $\mathcal{C}E(s_1)$, respectively. Obviously, $\mathcal{C}E(s_{-1}) \cap \mathcal{C}E(s_1) \neq \emptyset$ and $\mathcal{C}E(s_{-1}) \cup \mathcal{C}E(s_1) = \Omega$. This means that K_0 acts transitively on Ω.

PROPOSITION 2. Let G be a closed noncompact subgroup of Aut(X) acting transitively on Ω. Then either G acts transitively on the vertices of X, or G has two orbits X^+ and X^-.

Proof. By Proposition 1, K_0 acts transitively on Ω, that is, K_0 acts transitively on the set $S_0^n = \{y \in X : d(s_0, y) = n\}$ for every $n \geq 0$. Moreover for every $g \in G$, gK_0g^{-1} acts transitively on S_n^x for every $n \geq 0$ and $g(s_0) = x$. In particular for every $x \in G(s_0)$, $G(s_0)$ is an
infinite union of sets S^X_m. This implies that if $x, y \in G(s_0)$ then $S^X_m \cup S^X_m \subset G(s_0)$. Therefore $S^X_m \subset G(s_0)$ implies that:

$$
\bigcup_{j=0}^{+\infty} S^X_{jm} \subset G(s_0).
$$

If $G(s_0)$ contains vertices x and y with $d(x, y) = 1$, then $G(s_0) = X$ and G is transitive on X. Suppose now $G(s_0) \neq X$; thus $G(s_0) \subset X^+$. Let $t = \min\{m > 0 : S^X_m \subset G(s_0)\}$. It follows that $G(s_0) \cap S^X_m = \emptyset$ for $0 < m < 2t m \neq t$ and $\bigcup_{j=0}^{+\infty} S^X_{jm} \subset G(s_0)$. Let $x \in S^s_t$ and $[s_0, x] = \{s_0, x_1, x_2, \ldots, x_{t-1}, x\}$ the geodesic connecting s_0 to x; we can choose $y \in X$ in such a way that $d(y, x) = t$, $d(y, s_0) = 2t - 2$ and $[x, s_0] \cap [x, y] = [x, x_{t-1}] = \{x, x_{t-1}\}$. Since $d(x, y) = t$, $y \in G(s_0)$ but $y \in S^X_{2t-2}$ so that $S^X_{2t-2} \subset G(s_0)$. This implies that $2t - 2 = t$, that is, $t = 2$ and $G(s_0) = X^+$. Similarly, we can prove that $G(s_1) = X^-$, with $d(s_0, s_1) = 1$.

The aim of this note is to prove the following Theorem.

Theorem 1. Every closed subgroup G of Aut(X) acting transitively on Ω is a Kunze-Stein group.

It is enough to prove the Theorem for noncompact groups. First, we observe that:

$$
\int_{\Omega} \|\pi_{1/2+it}|G(u)\|_{HS}^2 dm(t) \leq \|u\|^2_2
$$

for every $u \in C_{00}(G)$.

Indeed (G, K_0) is a Gelfand pair because K_0 acts transitively on Ω and $g^{-1} \in K_0 g K_0$ for every $g \in G$ [9, Prop. 1.2]. The representations $\pi_{1/2+it}|G$ are irreducible iff 1 (the function identically one on Ω) is a cyclic vector. By Proposition 2, we have two possibilities: if G is transitive on X, then the representations $\pi_{1/2+it}|G$ are irreducible for every $t \in \mathbb{J}$ [12, pg. 76; 1]; otherwise for $t \in \mathbb{J}$, $t \neq \pi/2lg(r - 1)$ [2, pg. 39, pg. 62].

Since, for Gelfand pairs, the Plancherel measure on the irreducible unitary representations of G having a K_0-fixed vector depends only on the right K_0-invariant functions [9, Th. 4.2; 16, pg. 65], to prove the inequality, it is enough to prove that

$$
\int_{\Omega} \|\pi_{1/2+it}|G(u)\|_{HS}^2 dm(t) = \|u\|^2_2
$$

for every right K_0-invariant function u in $C_{00}(G)$. To show this, let T be the following projection on $L^2(\Omega)$: $Tf = \int_{\Omega} f(\omega) dv(\omega)]1$, for
We have \(T = \int_{K_0} \pi_{1/2+it}(k) \, dk \) (recall that \(K_0 \) is transitive on \(\Omega \)). Let \(\text{Aut}(X) = \Gamma K \); every function \(u \) right \(K_0 \)-invariant on \(G \) corresponds to a function \(\tilde{u} \) on \(\Gamma \) in such a way that \(\|u\|_2 = \|\tilde{u}\|_2 \) and \(\pi_{1/2+it}|_G(u) = [\pi_{1/2+it}|_{\Gamma}(\tilde{u})]T \).

Therefore \(\|\pi_{1/2+it}|_G(u)\|_{HS} = \|\pi_{1/2+it}|_{\Gamma}(\tilde{u})\|_{L^2(\Omega)} \); hence the equality follows from \([12, \text{pg. 86; 1}]\). The proof of Theorem 1 is based on the following two Lemmas.

In the next Lemma, we denote by \(G \) a locally compact group and by \(L^\infty_1(G) \) the space of all functions \(f \) in \(L^\infty(G) \) such that \(\|f\|_\infty \leq 1 \); we assume \(\phi \) to be a complex continuous function on the strip \(S = [\alpha, \beta] \times \mathbb{R} \) with \(0 < \alpha < \frac{1}{2} < \beta < 1 \), analytic on \(S^0 = (\alpha, \beta) \times \mathbb{R} \) and such that (1) \(\phi \) is bounded on \(S \); (2) \(|\phi(x + it)| \geq h(x) > 0 \) for every \(t \in \mathbb{R} \) and \(\alpha \leq x \leq \beta, x \neq \frac{1}{2} \). With these notations, we have:

Lemma 1 (M. Cowling [6]). Let \(F: S \to L^\infty_1(G) \) be a continuous map, analytic on \(S^0 \) (i.e. \(\langle F_z, u \rangle \) is an analytic function for every \(u \) in \(C_0(G) \)). If there exists a positive constant \(c \) such that

\[
\int_{\mathbb{R}} |\langle F_{1/2+it}, u \rangle|^2 |\phi(1/2 + it)| \, dt \leq c \|u\|^2_2 \quad \text{for every } u \text{ in } C_0(G),
\]

then the function \(F_{1/2} \) is in \(L^q(G) \) for every \(q > 2 \).

Proof. This Lemma is obtained from Lemma 2.1 of \([6, \text{pg. 215}]\) where \(S = [\alpha, \beta] \times \mathbb{R}, q = q' = 2, X = G \) and \(X_0 \) is a singleton, observing that the function \((z/z-2)^n\) could be replaced with a general analytic function \(\phi \) with the properties (1) and (2).

Lemma 2. The coefficients of the quasi-regular representation on \(\Omega \), that is the functions:

\[
\langle \pi_{1/2}(g) \xi, \eta \rangle = \int_{\Omega} P^{1/2}(g, \omega) \xi(g^{-1}(\omega)) \overline{\eta(\omega)} \, d\nu(\omega)
\]

for \(\xi, \eta \) in \(L^2(\Omega) \) and \(g \) in \(G \)

are in \(L^q(G) \) for every \(q > 2 \).

Proof. Since \(|\langle \pi_{1/2}(g) \xi, \eta \rangle| \leq \langle \pi_{1/2}(g) |\xi|, |\eta| \rangle \) it is enough to prove the Lemma for \(\xi \geq 0, \eta \geq 0 \) and \(\|\xi\|_2 = \|\eta\|_2 = 1 \). Define \(\xi_z = \xi^{2z} \) and \(\eta_z = \eta^{2z} \) for \(\xi(\omega) \neq 0 \neq \eta(\omega), \xi_z(\omega) = 0 \) for \(\xi(\omega) = 0 \); similarly \(\eta_z(\omega) = 0 \) for \(\eta(\omega) = 0 \). In particular \(\xi_{1/2} = \xi \) and \(\eta_{1/2} = \eta \). Let \(z = \delta + it \in S \) and \(p = 1/\delta > 1, q = p/(p - 1) = 1/(1 - \delta) \) the
conjugate index of \(p \); it is easy to see that:

1. \(\xi_z \in L^p(\Omega), \|\xi_z\|_p = 1. \)
2. \(\eta_z \in L^q(\Omega), \|\eta_z\|_q = 1. \)
3. \(\|\pi_z(g)u\|_p = \|u\|_p \) for every \(u \) in \(L^p(\Omega) \) and \(g \) in \(G \).

Let \(\psi(z) = \exp(z^2 - 1); |\psi(z)| \leq 1 \) on \(S \) and the map \(F_z = \psi(z)\pi_z(\cdot, \xi_z, \eta_z) \) is a continuous map on \(S \) into \(L^\infty_G \), analytic on \(S^0 \). Since \(F_{1/2} = \exp(-\frac{3}{4})\langle \pi_{1/2}(\cdot, \xi, \eta) \rangle \), to prove the Lemma, it suffices to show that:

\[
\int_\mathbb{R} |\langle F_{1/2+it}, u \rangle|^2 |\phi(\frac{1}{2} + it)| |dt| \leq c \|u\|_2^2 \quad \text{for every } u \in C_0(\mathbb{G})
\]

and some analytic function \(\phi \).

Let \(\phi(z) = \frac{(r-1)lg(r-1)}{[4\pi rc(z)c(1-z)]} \) where \(c(z) \) is the function defined in the preliminaries. \(\phi(z) = \phi(z + \pi i/lg(r-1)) \) and so \(\phi \) is bounded. Since \(\phi(z) \neq 0 \) for \(\Re z \neq \frac{1}{2} \), it follows that:

\[
|\phi(x + it)| \geq \min\{|\phi(x + it)| : t \in \mathbb{R}\} > 0 \quad \text{for every } x \neq \frac{1}{2}, \alpha \leq x \leq \beta.
\]

We have \(|\phi(\frac{1}{2} + it)| \leq d \leq dm(t) \). Let \(J_k \) be the interval

\[
J_k = [k\pi/lg(r-1), (k+1)\pi/lg(r-1)] \quad \text{for } k \in \mathbb{Z};
\]

therefore \(J_0 = J \). The functions \(\|\pi_{1/2+it}(u)\|_\text{HS} \) and \(dm(t) \) are periodic; hence, for every \(k \in \mathbb{Z} \):

\[
\int_{J_k} \|\pi_{1/2+it}(u)\|_\text{HS}^2 dm(t) = \int_{J} \|\pi_{1/2+it}(u)\|_\text{HS}^2 dm(t).
\]

Let \(h_k \) be the maximum of the function

\[
|\psi(\frac{1}{2} + it)|^2 = \exp(-3/2 - 2t^2) \quad \text{on } J_k \quad \text{and } \sum_{-\infty}^{+\infty} h_k = c < +\infty.
\]

Finally, we have:

\[
\int_{\mathbb{R}} |\langle F_{1/2+it}, u \rangle|^2 |\phi(\frac{1}{2} + it)| dt
\]

\[
= \sum_{-\infty}^{+\infty} \int_{J_k} |\psi(\frac{1}{2} + it)|^2 |\langle \pi_{1/2+it}(u), \xi_{1/2+it}, \eta_{1/2+it} \rangle|^2 dm(t)
\]

\[
\leq \sum_{-\infty}^{+\infty} h_k \int_{J_k} \|\pi_{1/2+it}(u)\|_\text{HS}^2 dm(t) = c \int_{J} \|\pi_{1/2+it}(u)\|_\text{HS}^2 dm(t)
\]

\[
\leq c \|u\|_2^2,
\]

(recall that \(\|\xi_{1/2+it}\|_2 = \|\eta_{1/2+it}\|_2 = 1 \)).
Proof of Theorem 1. If G acts transitively on Ω, then $\Omega \simeq G/G_0$ where G_0 is the stability subgroup of a fixed point ω_0 in Ω. By the "principe de majoration" of C. Herz [14], for every f in $A(G)$ there exists a coefficient of $\pi_{1/2}$ such that: $|f(g)| \leq \langle \pi_{1/2}(g)\xi, \eta \rangle$ for every g in G. Hence, from Lemma 2, $A(G) \subset L^q(G)$ for every $q > 2$ and G is a Kunze-Stein group.

Remark. We shall say that a vertex v of a tree is of homogeneity l if v belongs to exactly l edges. Let $X_{l,q}$ be a semihomogeneous tree, that is, a tree such that every vertex is of homogeneity l or q and two adjacent vertices are of homogeneity l and q, respectively. We suppose $l \neq q$, otherwise X is a homogeneous tree. Let S_l and S_q be the subsets of vertices of homogeneity l and q, respectively. Theorem 1 is true for semihomogeneous trees, with the same proof.

Indeed, if G is a closed noncompact subgroup of $\text{Aut}(X_{l,q})$ acting transitively on the boundary of $X_{l,q}$, then $G \cap K_{v_0}$ acts transitively on the boundary for every vertex v_0. Moreover $G(v_0) = S_l$ and $G(w_0) = S_q$ for every $v_0 \in S_l$ and $w_0 \in S_q$. Hence, without loss of generality, we can suppose that $l < q$. The representations $\pi_{1/2+i\nu|G}$ are irreducible [2, pg. 62] and the Plancherel measure of the Gelfand pair $(G, G \cap K_{v_0})$ is a multiple of $|c(\frac{1}{2} + it)|^{-2}$ for an analytic function $c(z)$ [10, pg. 153]. The proof proceeds in the same fashion as for homogeneous trees.

4. Simply transitive subgroups. Let Γ be a simply transitive subgroup of $\text{Aut}(X)$; for $\eta \in L^2(\Omega)$ we define, as in [11; 1], the Poisson transform of Γ: $\varphi(\eta)(x) = \langle \pi_{1/2}(x)\mathbf{1}, \eta \rangle$.

Corollary. $\varphi(L^2(\Omega)) \subset l^q(\Gamma)$ for every $q > 2$.

Proof. By Theorem 1, $f(g) = \langle \pi_{1/2}(g)\mathbf{1}, \eta \rangle \in L^q(\text{Aut}(X))$ for every $q > 2$. Let $\text{Aut}(X) = \Gamma K$ and $g = xk$ with $x \in \Gamma$ and $k \in K$; therefore $\pi_{1/2}(g)\mathbf{1} = \pi_{1/2}(x)\mathbf{1}$ because ν is K-invariant and so

$$\|\varphi(\eta)\|_{l^q(\Gamma)} = \|f\|_{L^q(\text{Aut}(X))}.$$

The Corollary follows.

Γ is not a Kunze-Stein group (in a discrete Kunze-Stein group every amenable subgroup is finite); nevertheless, we can prove a "weak Kunze-Stein property":

$l^p(\Gamma) *_{\Gamma} l^2(\Gamma) \subset l^2(\Gamma)$ for every $1 < p < 2$, where l^p is the space of radial functions in l^p, that is, the functions which depend only on the length of the words of Γ and $*_{\Gamma}$ means the convolution product of...
It is easy to see that the "weak Kunze-Stein property" is equivalent to the following: $A_r(\Gamma) \subset l^q(\Gamma)$ for every $q > 2$. This was proved in [5] for free groups on finitely many generators. Notice that $A_r(\Gamma) = l^2(\Gamma) * \Gamma l^2(\Gamma)$.

Theorem 2. The following hold:

1. $l^2(\Gamma) * \Gamma l^2(\Gamma) \subset l^q(\Gamma)$ for every $q > 2$.
2. $l^p(\Gamma) * \Gamma l^2(\Gamma) \subset l^2(\Gamma)$ for every $1 < p < 2$.

Proof. It is enough to prove (2); (1) follows by duality argument. Putting $\hat{f}(xk) = f(x)$ with $x \in \Gamma$ and $k \in K$, it is possible to identify the functions f on Γ with the right K-invariant functions \hat{f} on $\text{Aut}(X) = \Gamma K$. The radial functions on Γ correspond to the bi K-invariant functions on $\text{Aut}(X)$. Let $f \in l^p(\Gamma)$ for $1 < p < 2$ and $\phi \in l^2(\Gamma)$, then the function $\hat{f} \ast \phi$ is right K-invariant; hence, by Theorem 1, the restriction to Γ is in $l^2(\Gamma)$. Moreover: $(\hat{f} \ast \phi)|_{\Gamma} = f \ast \Gamma \phi$ and, from this, Theorem 2 follows.

References

Received September 1, 1985 and in revised form July 15, 1987. This work was partially supported by G.N.A.F.A. of the C.N.R., Italy.

Università degli Studi di Roma “La Sapienza”
Città Universitaria–00187 Roma, Italy