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EXTENSION OF FLOWS
VIA DISCONTINUOUS FUNCTIONS

P. D. ALLENBY AND M. SEARS

We consider flows (X, T) with X compact Hausdorff, and suitable
discontinuous functions / : X —> W where W is an arbitrary com-
pact Hausdorff space. A ring extension of the ring of all continuous
complex valued functions on X(C(X)) is formed and equipped with
a norm. The Gelfand-Naimark theorem is applied to the comple-
tion of this normed ring to produce an almost one-to-one extension
p:{Xf,T)-+(X.T).

The question of isomorphism of flows (Xf, T) and (Xg, T) corre-
sponding to functions / and g is discussed, as well as the lifting of
dynamical properties from (X, T) to (Xft T). Extension of flows via
classes of discontinuous functions is considered, showing that no new
examples arise in this way. A characterization theorem for extensions
is proved when T is locally compact Hausdorff, showing that every
minimal almost one-to-one extension of (X, T) can be obtained using
our construction.

Introduction. In this paper we are concerned with creating exten-
sions of flows by means of discontinuous functions. In essence the
device is to add a suitable discontinuous function to a ring of contin-
uous functions, obtaining a new structure space, in such a way that
a new flow is generated which is an extension of the original one.
Markley investigated extensions involving splitting along a single or-
bit by a somewhat different approach in [6].

The motivation for this theory is two fold. One hopes to modify
existing examples to introduce new desired properties. We are able
to introduce any compact metric space as a fibre in the extension in
a similar way to that used by N. G. Markley in his situation. The
classical Sturmian discrete flows involving adding two point fibres to
a minimal circle rotation, thus obtaining highly proximal flows from
equicontinuous ones, are probably the best known examples of this
type of extension.

Another use for this extension process is to build models of the orig-
inal flow. The initial flow is replaced by one of a desired type which
is still close to the original in the sense that appropriate dynamical
properties lift and the lifting map is "almost" an isomorphism i.e. it
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is injective on a dense second category set. This type of modelling
has been discussed by several authors (see for example H. B. Keynes
and J. R. Robertson [3], R. Bowen and P. Walters [1], H. B. Keynes
and M. Sears [4]). Although a common philosophy underlies each of
these situations, each is approached in a different way. We specify
conditions under which a model of this type will arise automatically,
giving machinery for this type of analysis.

Section 1 discusses the construction of the extension in detail. Sec-
tions 2, 3, and 4 are concerned with lifting properties, when two ex-
tensions will be isomorphic, and extensions using more than one dis-
continuous function. In §5 we note that for a locally compact acting
group, our construction is completely general for minimal flows in that
any minimal almost automorphic (almost one to one) extension arises
in this way.

1. The construction. Let (X, T) be a transformation group with com-
pact Hausdorff phase space X, topological group T acting freely on X.
Suppose that / : X —• W is a function from X into another compact
Hausdorff space W. Denote by t o f the map of X into W defined by
t o f(χ) = f(χή for all x e X, t e T9 and by fx the maps of T into W
given by fx{t) = f{xt) for all x e X, t e T.

1.1. DEFINITION, (i) C(f) = {x e X : / is continuous at x}
(n)Cf={xeX:xTcC(f)} = f]{C(ίof):teT}

(iii) Ω(f,x) = f){c\(f{U Π Cf)) : U e &(x)}> where &{x) is the
neighbourhood filterbase at x, for all x e X. We call Ω(/x) the
variation of / at x.

When there is no danger of ambiguity, Cf is written as C.
Call / acceptable if:
(a) C is dense in X.
(b) {fx : x e C} is an equicontinuous set of maps of T into W.
(c) f(x) e Ω ( / J C ) for all xeX.

We will be concerned with the extension of (X, T) by acceptable
functions. We remark that any continuous function is acceptable.

Let 3ί be the smallest ring containing C(X) (the continuous
complex-valued functions on X) and all maps of the form go
s o f where g e C(JV) and s e T, and identify functions r,rr e 3$
if r{c) = r'{c) for all c e C. If we define || || : 31 -> R by ||r| | =
sup{|r(x)| : x e C}, then {β, || ||) is a normed ring. Denote its com-
pletion by {β, || | |). If c e C and r e l , then T(c) means lim rn(c)
where rn e 3ί for all n and rn —• F.
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1.2. DEFINITION.

Ω(r,JC) = P|{cl(r(ί7n C)) : U e W{x)} for all r e&,x e X,

By the Gelfand-Naimark theorem there is a compact Hausdorff
space X and an isometric isomorphism S of ̂  onto C(X). We show
that (X, T) is a transformation group (under a suitably defined action)
which has (X, T) as a factor. First we have

1.3. THEOREM. IfX and W are metrizable and T is separable, then
X is metrizable.

Proof. Since C(X) and C[W) are separable, we need only find a
countable dense subset of {s o / : s G Γ} with topology given by the
metric d(s o ft o f) = sup{d\y(f(xs), f(xt)) : x G C}. An obvious
candidate is {sn o f : n G N} where {$„ : n G N} is dense in Γ, and
this is dense by the equicontinuity of {fx : x G X}. π

The Action ofT on X. Let p : C(X) -> C(X) be given by p = 5 o 1
where 1 is the inclusion map of C(X) into 1%. Then p is an isometry
of C(X) into C(X). Accordingly there is a continuous map p : X —> X
with />(-£) dense in JSΓ (so p is onto X), and such that p(h) = h o p for
all Λ G C ( X ) .

Next, choose Λ G Γ. Then s determines an isometry s of C(X) onto
C(X) given by s(g) = 5 o^ for all g G C(X), where sog(χ) = ̂ (x.s) for
all x e X. Similarly, s determines an isometry of 31 onto 31, which
can easily be seen to extend to all of 5?, giving an isometry s of Ί%
onto ^ . We use the notation s(r) = sor (with the usual meaning on
C) for all r G ~3Ϊ. Denote by s the corresponding isometry SsS~ι of
C(-Ϋ) onto itself, and by s, again, the induced self-homeomorphism
on X. Writing xs for s(x), we have s(h)(x) = h(s(x)) = s o h(x) for
all h G C(Z), j c e l a n d s e Γ , and p(xs) = p{x)s for all x e X and
seT.

If s,t e T, clearly x(.si) = (xs)t for all x G I , so we can consider
T to be a group acting freely on X, and /? : X —• X is equivariant.
It remains to show that the map X x T -+ X given by (x, t) —• xί is
continuous.

First note that since {fx : x G C} is an equicontinuous family
of maps, it follows that {rx : x G C} is equicontinuous for all r G
Ί%9 where rx(ί) = r(jcί). Also if x e C, s,t G Γ and r G ̂  then
||j o r - t o r|| = sup{|rx(5) - Γjc(ί)| :x eC}. Hence if ε > 0 and ί G Γ
there is an open neighbourhood U(t) of ^ such that \\s o r - t o r\\ < ε
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whenever s e U{t). Thus if {sa} is a net in T converging to /, then
sa o r -> t o r in Ί% for all r € Ί%. Now choose g e C(X). Then
g = Sr for some r e l , a n d s α o g = Sα(#) = Ss^S" 1 (g) = £($<*or) -+

We have shown that if {sa} is a net in T and $α —• t, then sαog —• tog
for all g e C(X). We can now prove the continuity of the action
(x, t) -+xtofT on X.

Suppose that {{xa,sa)} is a net i n ί x ί converging to (x, t)9 and
suppose wlog that xasa —• z. We show that z = xt. Choose any
g e C { X ) . T h e n s a o g - + t o g i . e . \\sa o g - t o g \ \ - + 0 i . e .

sup{|^(^α) - g{yt)\: y e X} -> 0.

Then |^(xαJα) - ίί^oOl "^ ? s o <?(z) = ^(^0 s i n c e S € C(X) is
arbitrary, z = xί. Hence (X, T) is a transformation group and p :
(X, T) —• (X, Γ) is a homomorphism.

Each Γ G ! defines a map r : C -> C which is bounded and con-
tinuous. Hence we can define the map γ : 7% —> C(βC) to be the map
which takes r € 5? to its unique continuous extension yr : βC —• C,
where jffC is the Stone-Cech compactification of C (and we regard C
as a subset of βC). γ is clearly an isomorphism, so h = γS~ι is an
isomorphism of C(X) into C(βC). As usual there is an induced con-
tinuous onto map h : βC -> Z, say, such that h(g) = goA for all
g e C{X). Finally, let τ : /?C -> X be the extension to βC of the
identity 1 : C -+ C.

1.4. THEOREM, (i) τ = ph

(ii) (X h\C) is a compactification ofC
(iii) p : Λ(C) —> C is a homeomorphism ofh(C) onto C.

Proof, (i) If we let τ(g) = g o τ for all g e C{X)9 we obtain τ = Λp.
(ii) Since C is dense in βC and /z is onto, h(C) is dense in Z. If

ci, c 2 e C and Λ(ci) = Λ(c2), then ci = c2 by (i). Clearly h : C-+ h{C)
is continuous, so we need only show that h : C —> A(C) is closed, say.

First note that if 5 c X, then 5 Π C c C C )ffC and h(B n C) =
p~ιBπh(C) from (i). Now, τ : C —• C is the identity homeomorphism
of C c βC onto C c X, so any closed subset of C c /?C has the form
5 Π C for some closed subset B of X. But A(5 Π C) = p~ιB Π h(C) is
closed in A(C), so h : C —> h(C) is a closed map.

(iii) This follows since every closed subset of λ(C) has the form
h(B n C) = p~ιBπC where B ranges over the closed sets of X. α
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Thus p~ιC = h(C) is densely embedded as a copy of C in X, so
we do not distinguish between C c X and C C I ; we will usually
write ρ~ιc = c for c € C. p : (X,T) -^> (X, T) is thus an almost
automorphic extension (i.e. there are fibres of /? which are points).

The lift off to X. Let t e T and consider the map (ί o/)~: C(W) ->
3? given by {tof)^(g) = gotof. Then ιS(ίo/)~is a homomorphism of
C(W) into C(X), so there is a corresponding continuous map (t of)1:
X -> W such that 5(ί o f)~ (g) = g o (t o / ) ' for # E C(FF). Let
/ ' = (eofγ where e is the identity of T. It follows that (t of)' = tof
for all t e T, so S{tof)~{g) = ̂ o ί o / for all £ e C(FΓ). The usefulness
of these functions tof will be apparent after a short digression.

Suppose ψ : ̂  —> C is a homomorphism of ̂  onto C. Then ^ S " 1

is a homomoφhism of C(X) onto C and so there is a point y e X
such that ytf-1 = θy, where 0 y : C(X) -> C is defined by 0 y(£) = ^(y)
for all g € C(wΫ). In particular if x e C and ψ = ψx, the evaluation
homomorphism at JC, then it can be shown that py = x.

1.5. LEMMA. Ifre7% andc eC, then (Sr)(c) = r(c).

Proof By the above there is y e p~ιc such that ψcS~x = θy. But
p~ιc = c, so ^ = ΘCS. Now if r e W,r(c) = ψc{r) = θc{Sr) =

Denote the fibre p~ιx over x G I by I x .

1.6. LEMMA. For reΈ:(ϊ)ifyeX then (Sr)(y) e Ω(r,
Sr:Xx-^ Ω(r, JC) /c?r α// X G I

(ii) Sr : Xx —• Ω(r, x) w onto for all x eX.

Proof (i) Suppose that J / G I X . Choose a net {ca} c C c X such
that cα -> y. Then 5r(cα) = r(cα) for all α, and ASr(cα) —• Sr(y). Thus
^ ( O -• Sr(y). Finally, ca = pca -+ py = x, so Sr(y) e Ω(r,x).

(ii) Let a e Ω(r,x). Then there is a net {cα} c C c I such that
ca —• x and r(cα) —> a. In ̂  we may assume wlog that ca -» y, say.
Clearly *Sr(y) = α and py = x. D

We now return to the main development.

1.7. THEOREM. IfxeX,teT and g e C{W): (i) S(g otof) =
gotof.

(ϋ) f'(c) = f(c) for all ceC. Moreover, t o f(c) = t o f(c) for all
ceC.
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(iii) t o f : Xx —• Ω(ί o fx) and is onto.
(iv) ifx G C(t o /) , then f(yt) = f{xt) for all yeXx

(v) Ω(fx) = {/(*)} # * G C(/).

/ (i) S(gotof) = (S(to f)-)(g) = (/o/) ' (*) = gotof.
(ii) For any * G C{W),g(f(c)) = S(g oeo f)(c) = goeo f(c) =

g{f(c)) by Lemma 1.5 and by (i) above. So f{c) = /(c) for all ceC.
(iii) This follows by (ii) and the fact that C is dense in X and X.
(iv) follows from (iii).
(v) Suppose x φ C(f). Then there is an open neighbourhood V of

f(x) in W such that /(£/) n (W\F) ^ 0 for each U e W{x\ so for
each U e Vί{x) there is a point xυ e U with /(X[/) e FF\K. Since
by hypothesis f(y) e Ω(f,y) for each y e X, it follows that for each
1/ e S (̂JC) there is cjy € C such that cv e U and /(<:#) e ίΓ\F.
Suppose wlog that f(cjj) —• ^. Then <z G Ω(/JC) and α Φ f(x), so

{/(*)}. The converse is trivial. D

1.8. COROLLARY. The following are equivalent:
(i)Ω(fxt) = {f(xt)}forallteT.

(ii) JC G C.
(iii) Xx is a singleton.

So p~ιx is a point if and only ifx G C.

An embedding of X. For each t G T, let ^ = W, and define
3Γ = U{Wt: t e T} and F : X -> W x X by F = U{to f : t e T} x p.

1.9. THEOREM. F is an embedding.

Proof F is clearly continuous and closed, so we need only show
that F is injective. Suppose that F{x\) = F(x2). Then px\ = px2 = x
say. We show that {Sr)(x\) = {Sr)(x2) for all r e Ίiΐ i.e. ^(xi) = g{x2)
for all g G C(X), whence Xi = x2.

Clearly (5Γ)(JCI) = (5r)(x2) for all r e 31, by (i) of Theorem 1.7,
since f{x\t) = /(X2O f o r all ί € Γ by hypothesis. Now let r e7%.
Then there is a sequence (rπ) c ^ such that \\rn - r\\ —> 0, so that

O. But

\Sr{xx) - 5r(x2)| < |5r(xO - 5^(^)1 + \Srn(xx) - Srn{x2)\

+ \Srn(x2)-Sr(x2)\

= |Sr(jcO - Srn{xx)\ + \Srn(x2) - 5r(x2)| for any n.

For ε > 0 choose n such that HS^-Srll < e/2. Then \Sr(xι)-Sr(x2)\ <
ε. As e > 0 is arbitrary,
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1.10. COROLLARY. If Y is a space and G :Y —> X is a map, then G
is continuous if and only ifpG is continuous and tofoGis continuous
for all t e T.

For all x e X let D(x) = {/ e T : xt £ C(f)}9 and let 3{x) =
Π{Ω(fxs): s e D(x)}. Define FX:XX-+ 3f{x) by Fx = Π{s o / ' : s e

1.11. THEOREM, (i) If D(x) Φ 0, then Fx : Xx -• 3[x) is an
embedding.

(ii) D{x) = 0 # x e C iffXx is a singleton.

Proof (i) Fx is continuous and closed. Suppose /^(JCI) = Fx{xι)
for some X\,X2 € Xxr Then ί o f{x\) = ί o / '(JC 2) for all ί € Z)(jc),
and the same is true of all t $. D(x) by Theorem 1.7 (iv), so that
F(xχ) = F(x 2 ). Now by 1.9, JCI = x2-

(ii) is clear by 1.8. D

An interesting special case of this theorem is

1.12. COROLLARY. Suppose that D(x) is at most one point for all
x e X. Ifxt £ C(/), then tof;Xx-+ Ω(f9xt) is a homeomorphism
ofXx onto Ω(fxt).

Proof By 1.11 and 1.7(iii). D

REMARKS, (i) It is not true in general that Fx of 1.11 is onto 3f{x\
as the examples below demonstrate.

(ii) Corollary 1.12 provides a way of "building in" precisely the
fibres that we want. It is just necessary to define appropriate functions
/ with a single discontinuity along any particular orbit.

1.13. COROLLARY. IfD(x) is at most one point for each x e X, if
each Ω(f,x) is connected, then for an open or closed A c X, p~ιA is
connected if and only if A is connected. In particular, X is connected
ifX is connected.

1.14. EXAMPLES. Let X = [0,1) where addition in X is modulo 1
i.e. X is the circle group, and let φ : X -* X be a nontrivial group
rotation. Then X and φ determine a discrete transformation group
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(X, Z). Let / = [—1,1] and choose any a,b e I. Choose x e X such
that 0 < x < φ(x) < 1, and define / : X -> / by

at/x9 0 < t < x,

fit) = i y

 x "" 5

. (1 - t)b/{\ - φ(x))9 φ{x) <t<\.

Then / is acceptable with

C{f) = X\{x,0(JC)}, C/ = *\{0"* :neZ},

D(x) = {0,1} and Ω(/x) = / = Ω(fφx).

The extension (Jf, Z) of (X, Z) by / is determined by the space X and
a surjective homeomorphism $ : X —• X with />$ = <̂>/?.

If i^ : Xx -> Ω(/x) x Ω(/0(JC)) is the embedding of Theorem
1.11, then Fx = /' x 1 o f = f x / ;0, and it is easy to see that
FX(XX) = {a} x [-1,1] U [-1,1] x {b}, so that the fibre Xx over x is
isomorphic to this space. Clearly Fx is not onto 3f(x). D

DEFINITION. The extension (X, T) of (X, T) via an acceptable func-
tion / is denoted by (Xf, T) and is called the /-extension of (X, T).

A metric for Xf. We know that when X and W are metrizable and
T is separable, then Xf is metrizable. The following corollary of 1.9
allows us to write down a convenient metric for Xf.

1.15. THEOREM. Suppose {tn : n e N } is a dense subset ofT, and

let F' = τi{tn of:neN}xρ. IfWn = W for all n e N, then

F1 :Xf-+ U{Wn :neN}xX is an embedding.

Now suppose X and W are metrizable with metrics dx and dw
respectively. In view of 1.15 it is clear that the map df .XfxXf-*
[0, oo) given by

df{x, y) = max $up{nun(dw(f(xtn), f(ytn))/2n, 1)}, dx{px, py)
L«€N

is a metric for Xf.

Another embedding ofXf. To end this section we state yet another
corollary of 1.9. Let WT be the space of all continuous maps from T
into W with compact-open topology.
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1.16. THEOREM. If T is a locally compact Hausdorffgroup, then the
map x -* (f'x, px) is an embedding ofXf in Wτ x X.

Proof. Let π : Xf x T —> X/ be given by π(x,/) = xt, and let
(? : Xf x Γ -> W be given by G = f o π. Then (? is continuous, so the
map Gf: Xf-+ Wτ defined by Gf(x) = fx is also continuous. Finally,
Gr x p : Xf -+ Wτ x X is continuous, closed and, by 1.9, injective. D

2. Lifting some dynamical properties.

2.1. LEMMA, (i) Ifx is a transitive point of(X, T), then every point
of p~xx is transitive in (Xf, Γ).

(ii) If (x, x1) is a transitive point of (X x X, T), then every point of
p~ιx x ρ~ιx' is transitive in (Xf x Xfy T).

Proof (i) Choose y e p~xx, and let B = yT. Then pB is closed
in X and pB D xT, so pB = X. Thus B meets every fibre of /?, so
BDC. Therefore B = Xf.

(ii) Similar.

2.2. THEOREM, (i) (Xf> T) is topologically transitive iff (X, T) is
topologically transitive.

(ii) (Xf, T) is minimal iff(Xf T) is minimal
(in) (Xf, T) is weak mixing iff(X, T) is weak mixing.

2.3. THEOREM. If (X, T) is minimal, then (Xf, T) is a minimal
proximal extension.

Proof Suppose y, y1 e Xf are distinct and py = py1 = x. If c e C
we can choose a net (ta) c T such that xta —• c. Hence p(yta) —• c
and p(y'ta) -» c, so yία -> c and j ; ' ^ -* c. n

This result is clearly true for any almost automorphic extension of
a minimal flow (Brόnstein 3.12.7).

2.4. DEFINITION, (i) In the group Γ, write ta -» oo if the net (ta) c
Γ has no convergent subnets. (If T is locally compact Hausdorff, this
means that ta -* oo in the one-point compactification Γ = Γu{oo}.)

(ii) If (X, T) is a transformation group and A c X, then 4̂ is called
asymptotic if whenever (ta) c T is a net with ία —> oo and there is
x e A such that xta -+ y say, then zta ~> y for all z eA.

(iii) An extension π :(Y,T) -> (X,T) is called an asymptotic exten-
sion if π~ιx is asymptotic for all Λ: G Λf.
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2.5. THEOREM, (i) Ifx e X and D(x) is compact in T, then ρ~ιx
is asymptotic.

(ii) IfD{x) is compact for all xeX, then p : (Xf, T) -+ (X, T) is an
asymptotic extension.

Proof, (i) Suppose x € X with D(x) compact. Let y e p ιx and
let (ta) be a net in T such that ta —> oo and yta —> z say. Choose
yf e p~ιx and suppose wlog that y'ta —> z'. If t e T then tat -> oo,
so there is /? such that /αί £ D(x) f°Γ a ^ a > β> a n ( * since /?y' =
^ = x, f(y'tat) = f(xtat) = /(yίβί) for all α > ^, by 1.7. Therefore
f(z't) = /(zί) . Since ί was arbitrary in Γ, 1.9 implies z' = z.

(ii) is immediate, by (i). D

2.6. COROLLARY. 7/7) (X) is finite for all X eX,p: (Xf, T) -+ (X, Γ)
w an asymptotic extension.

As an application of the metric derived from 1.15 when T = Z and
(X, rf r) and {Wydw) are metric space, we examine expansiveness. An
acceptable function / : X —• W is said to satisfy property (*) if there
exists ε > 0 such that whenever ω\,cύ2€ Ω(/x) for some Λ: € X and
β>i ^ α>2, then df^(ωi, (02) > ε.

2.7. THEOREM. 7/1/ satisfies property (*) on an expansive transfor-
mation group (X, Z) with metric phase space, then {Xf, Z) is expansive.

Proof Suppose x\, x-i € X/ are distinct. If ρx\ = /7X2 = x say, then
by Theorems 1.9 and 1.7(iii) there is an n e Z such that n o / 7 ^ ) / no
Γixi) and both belong to Ω(fxn). By hypothesis dw(f(x\ n)>f{x2n))
> ε. Now for any m e Z we have

df(xιm,x2m) = sup{min(^(/ /(x1/),/(x20)/2 | /-m |, 1): 1 6 Z}

since />Xi = /7X2 Hence df(x\n,X2n) > min(ε, 1).
If on the other hand px\ φ pxi, there is n € Z such that

dx(px\n,px2n) > δ, where δ is an expansive constant for (X,Z).
Hence min(ε, δ, 1) is an expansive constant for (Xf, Z). D

REMARK. In the case where D(x) is a singleton or empty for each
x € X, the expansiveness of (Xf, Z) implies that / satisfies property



EXTENSION OF FLOWS VIA DISCONTINUOUS FUNCTIONS 219

2.8. PROPOSITION. Let f : X —• W be acceptable on (X, Γ), and
suppose that T is separable with {tn: n e N} dense in T. Then

(i)C = Γ\{C(tnof):neN}.
(ii) IfC{tnof) isaGδ set for each neN, then C c X andp~ιC c Xf

are G$ sets, so C and ρ~ιC are dense second category sets in their
respective spaces.

Proof, (i) By definition C c C\{C{tn o f) : n e N}. Now suppose
x e f\{C(tn o f) : n e N}, and let y, y1 e p~xx. If t e T is arbitrary,
there is a sequence (tk) from {tn : n e N} such that tk -• t. Now
/ ( y ^ ) = f{y'tk) for all A: by 1.7(iv), so f'(yt) = f'(y't) by continuity.
1.9 now implies that y = yf, so p~ιx is a singleton. Now by 1.11 (ii),
xeC.

(ii) follows from (i). D

The results of this section enable us to construct models of flows in
the sense described in the introduction. All that is required (provided
T is separable) is that C(tnof) is a dense G$ set for each tn (usually we
can arrange that these sets are actually open). Dynamical properties
lift as in the above theorems.

In the case of discrete flows, the process is immediate by choos-
ing a suitable function (e.g. a characteristic function defined on the
circle with minimal rotation immediately produces a minimal exten-
sion and the lift is injective except on a set of 1° Category). When
handling continuous flows we need to construct our functions more
carefully using sections. As an example we outline the construction of
a suspension model for real flows using our approach (see [4]).

DEFINITION. Let (X, R) be a real flow. A section of a point x G l i s
a closed set S c X with x eS and such that for some δ > 0 (a section
time), S n S(0, δ] = Sn S[-δ, 0) = 0.

We define S* as the relative interior of S i.e. S* = Int(S(-<$,<5)) Π
S. Then S* is open in S,S*(—δ,δ) is open in X, and we can choose
sections in such a way that S* is dense in S. Furthermore we have the
following result (Lemma 7 of [1]):

2.9. THEOREM. There is a ζ > 0 so that the following holds: For
each a > 0 there is a finite family S? of pairwise disjoint sections of
time ζ and diameter at most a such that X = Y[-a, 0] = Y[0, a] where
Y =

Z.10. THEOREM. Every real flow is modelled by a real suspension.
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Proof. We will construct an extension which has a global section
i.e. a section Γ with the property that every orbit intersects Γ and that
T(-δ, δ) is open for δ sufficiently small. It is well known that such a
flow can be realised as a suspension over Γ.

Let 5? = {S\, S2,... > Sn} be chosen as above with ζ small enough so
that S/[-C ζ] ΓΊ Sj[-ζ, ζ] = 0 for i φ j . Define / on X by f{x t) =
1 - \t\/ζ if x e Si (for some /) and |ί | < ζ, and f(x) = 0 otherwise. It
is clear that / is an acceptable function which satisfies the conditions
of Proposition 2.8. Form the extension (Xf,ΈL). We will show that
Γ = f~ι(l) is a global section for this flow. First note that Γ will be
a section with time ζ.

Now if x e Xf, then for some t e R and Si, p(xt) e S*. Since S* c
C{f),f{xt) = f(p(x)t) = 1. Thus every orbit intersects Γ. Suppose
that Γ(-C ζ) is not open. Then we can find a point x e Γ(-ζ, ζ) and
a sequence cn e p~x(C) with cn £ Γ(—C, ζ) and cn —> x. Equivalently,
we can find Λ: e Γ and a sequence cn $ Γ(-δ,δ) and cΛ —• x for
some δ > 0. Now /(cπ) = /'(c r t) —• 1. We deduce cn = 5rtίrt where
crt € 5/ for some / and tn € R with ίw -^ 0. Thus cn(-tn) € 5Ί , so
f(cn(—tn)) = 1 and for « sufficiently large crt € Γ(—ί, 5) which is a
contradiction.

REMARK. Since R" parallels can be obtained for Theorem 2.9, the
same process can be used to obtain models for Rn flows which have
global sections. A difficult open question is which of those flows are
Rn suspensions (see [5]).

3. An isomorphism theorem. Let / and g be acceptable functions
on a flow (X, T) producing extensions pf : (Xf, T) —• (X, T) and
pg : (Xg, T) -» (X, T) respectively. For each x e X let cθf(x) =
Π{Ω(/jcί) : t e T} x {x}, and let Ω(/) = \J{ωf(x) : x e X}. Refer-
ring to Theorem 1.9 and its notation, regard Ω(/) as a subspace of
WfxX\ then F:Xf-+ Ω(/) is an embedding. Let G : Xg -> Ω(#) be
the corresponding embedding for Xg.

One might imagine that if / and g have homeomorphic variations
at each point, the resulting extensions (Xf, T) and (Xg, T) would be
isomorphic. In fact, one needs some sort of uniformity across the vari-
ations in the sense that not only can we map (θf(x) homeomorphically
onto o)g(x)9 but that the resulting collection of homeomorphisms acts
in a continuous way from Ω(/) to Ω(g). In this case the resulting
isomorphism maps fibres to fibres. This is made concrete in the next
theorem.
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3.1. THEOREM. Suppose that f and g are acceptable on (X, T) and
let m : (X, T) —> (X, T) be a homomorphism. If there is a continuous
surjection mf : Ω(/) —• Ω(g) such that m' : (ύf(x) —• ωg(mx) and is
onto for all x G X, then there is a homomorphism π : (Xf, T) —• (Xg, T)
such that pgTt = mpf. Moreover, π is an isomorphism ifm1 is infective.

Proof If c G Cf then ωy(c) is a point. Therefore ωg(mc) is a
point, so me G Cg. Thus m(Cf) c C£. Also, m'({/'(rt)}ί x {e}) =
({g/(mcί)}ί x {me}) so m'F = Gm on C/.

If JC G X/, choose a net (ca) c C/ c X/ converging to x. We
may assume that mca —• y say, in X^. But mfF(ca) —• m'F(x) and

-^ G(j ), so m ' F ^ ) = G(y). This shows that m'F{Xf) c
g so 7Γ : Xy -> Xg given by π = G~xm!F is well-defined and

continuous.
π is equivariant. For if c e Cf and ί G Γ, then π(ct) = m{ct) =

m(c)t = π(c)ί and continuity does the rest. Similarly, if c e Cf
then pgn{c) = ρgm(c) = m(c) = mpf(c), so again by continuity,

π is also surjective: ρgπ(Xf) = mpf(Xf) = raX = I as m is
surjective, so n(X/} meets every fibre of Xg. Thus τr(Zy) D C^, and,
being closed, n(Xf) = Xg. Clearly π is injective if mf is injective. D

3.2. COROLLARY. Lίtf / : X -> ίF ό^ acceptable on (X, T) and let
W be a compact Hausdorjf space and H : W —> W continuous. Then
Hf: X —• W is acceptable and there is a homomorphism π : (Xf, T) -•
{XH/> T) such that pjjfπ = Pf- n is injective ifH is injective.

3.3. COROLLARY. Iff : X —• W is acceptable on (X, T), then there
is an acceptable map g : X -• W x X such that Ω(g, x) Π Ω(g, y) = 0
for all distinct x,yeX, and an isomorphism π : (Xg, T) -• (Xf, T)
such that pf% = /?̂ .

Proof Lctg:X^ WxXbe defined by g(x) = (/(JC), JC) and apply
3.1. D

In view of 3.3, we remark that any acceptable map / on a transfor-
mation group (X, T) can be replaced by an injective acceptable map
producing the same extension of (X, T).

4. Class extensions. So far we have considered the extension of
flows by means of a single function. A natural question is whether we
could obtain different examples by using classes of functions. We will
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show below that this is not the case. We just sketch the development
which parallels §1.

Let 9* = {fi : / G Λ} be a set of functions on the phase space
X of a transformation group (X, T), the range space Wt of f being
compact Hausdorff for each / G Λ. For each / let C\ = Cf, and let fix

(x e X),tofι (t e T) and Ω(fi9 x) (wrt C, ) have their usual meanings.

4.1. DEFINITION. & is called acceptable on (X, T) if:
(i) C = f]{Ci : / G A} is dense in X.

(ii) {fix : x eCi} is equicontinuous on T for each / G Λ.
(iii) fi(x) e Ω(fif x) for each x eX,i G A.
(iy) {//* : / € Λ, Λ: € C} is equicontinuous.
Define 3H? to be the smallest ring containing C(X) and all compo-

sitions g o t o f where t e T,i e A and g e C(Wi). Proceeding in a
way similar to that of § 1, one obtains a transformation group (X&Ί T)
with associated homomorphism p : (X^, Γ) —• (X, T), and the set C
is densely embedded in XSF with /Γ"1^) a singleton iff x G C.

If we let / : X -> Π{H^ : / G Λ} be defined by / = Ylfh then / is
acceptable on (X, T) and

4.2. THEOREM. 77*m> w an isomorphism π : (X/ , T) -> (JίΓ "̂, Γ)
that pπ = /?/.

On the other hand, construct the extension /?/: (Xi} T) —• (X, Γ) of
(X, T) via /; for each / G Λ. Let C ; c U{Xt : i e A} be defined by
C" = {{Ci} : a = cV/ for some c G C}. Let 7 = cl(C) in U{Xt: i e A}.
Then (1ΓΓ) is a transformation group and if {>>/} G Γ, /?/yz = /?7^7

for each /, j G Λ. Let p :(XT) —> (X,T) be any of the maps />;.

4.3. THEOREM. There is an isomorphism π : (X9'i T) —> (XT) such
that pπ = p.

4.4. THEOREM. Let (Z, Γ) ^ a transformation group and SF an
acceptable set of functions on (X, T), and suppose that for each i e
A there is a homomorphism π, : (Z, T) —> (Xj, T) such that p^i =

for each i, j G Λ. Then there is a homomorphism π : (Z, T) —•
, Γ). //*{πz : / G Λ} separates points ofZ, π is an isomorphism.

4.4. DEFINITION. The fibered product #{(ΛΓ, , T): i e A} of a set of
extensions p, : (Xι, T) -+ (X, T) is the transformation group (#Xu T)
where

#Xi = {{xj G ΓUf/: p Λ = pjXj V/, G A}.
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It is clear that with notation as above, (XT) is a sub-transformation

group of #(Xi, T). In the case where Cf uCj = X whenever /, J G Λ
are distinct, it is easy to show that Y =

4.5. COROLLARY (of 4.3). IfCiUCj = X for all distinct i, j e Λ, then
there is an isomorphism π : (X9~, T) -> #(Xif T) such that pπ = p.

4.6. THEOREM. Let (X, T) be minimal and let fg be acceptable
functions on (X, T) such that Cfn Cg is non-empty and CfuCg = X.
Then the extensions pf and ρg are disjoint

Proof By the preceding results, (Xfi T)#(Xgi T) is the {fg} exten-
sion of (X, Γ), so is minimal. The result follows as in [2]. D

5. Characterization of /-extensions. The characterization of
/-extensions presented here shows that every minimal almost auto-
morphic extension of a transformation group (X, T), with compact
HausdorfT phase space and locally compact Hausdorff group Γ, is an
/-extension of (X, T). This gives an alternative proof of Theorem 4.2
in this situation.

5.1. LEMMA. Let (X, T) be a transformation group with T locally
compact Hausdorff. Consider X as a set of maps ofT into X. Then X
is equicontinuous on T.

Proof n : X x T —• X given by π(x, t) = xt is continuous, so
π : X —• Xτ is continuous and injective, where π(x)(t) = π(x, t), and
where Xτ is the set of continuous maps from T into X with compact-
open topology. As Xτ is Hausdorff and X is compact, ft is a closed
map, so πX is homeomorphic to X. But πX c Xτ is closed and
compact, so is equicontinuous. D

5.2. THEOREM. Let π : (XT) —• (XT) be a homomorphism, where
T is locally compact and Hausdorff. Suppose that the set of all singleton
fibres ofπ is dense in Y. Then there is an acceptable f : X —• Y such
that f : (Xf, T) —> (XT) is an isomorphism and πf = pf.

This immediately shows that every minimal almost automorphic
extension is an /-extension:

5.3. COROLLARY. If π : (XT) -> (X, T) is a minimal almost auto-
morphic extension and T is locally compact Hausdorff, then there is an
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acceptable f: X -> Y such that f : (Xf, T) -* (XT) is an isomorphism
and πf = pf.

Proof of"5.2. Define C = {y : π~ιπ(y) = {y},y G Y}. Then C is
dense in 7 and C = πC is dense in ^ . Next we define / : X -+ 7 as
follows. If c G C, let /(c) = π " 1 ^ . On the other hand, let O be any
orbit in X with O n C = 0. Choose x 0 Ξ 0 and /(xo) € π" 1 -*^ a n ( i

define / ( * 0 0 = /(*o)ί f o r all / e Γ. So / : X -> 7 is defined (using
the axiom of choice).

(i) C(f) C C. Let x G C(f) and suppose y,y' e π~ιx. As C is
dense in 7, suppose ca -+ y>c'a -> y' where (cα) and (c'a) are nets in
C . Then πcα —• x and πc'a —• x. Now as x G C{f),f(πca) —• /(Λ:)
and f(ncf

a) —• /(x). But /(πc) = c for all c G C, so cα —• /(Λ:) and
c^ —• /(x) i.e. y = y'. Thus π~λx is a singleton, so x G C.

(ii) C c C(f). Suppose C G C . Choose a net xα —• c in X such that
f(Xa) -+ /- As π/(xα) = jcα, π(/) = c. Hence / = f(c) as / G C .

Hence C(/) = C, so C/ = C.

(iii) Ω ( / J C ) = TΓ"^ for all x e X. If y e Ω(f,x), there is a net
cα —• x from C such that f(ca) —> y. Thus πf(ca) -+ πy, i.e., cα -* πy.
Thus πy = x, i.e., y G π " 1 ^ . On the other hand, let y G π~ιx. Then
there is a net (c£) C C such that c^ -• y, i.e., f(πc'a) -• y. But
πc^ -> πy = x, so y G Ω(/x).

Hence f(x) e Ω(fx) for all xeX.

(iv) {^ : x G C} w equicontinuous on T. This follows by Lemma
5.1 applied to (XT).

Hence / : X —• Y is acceptable on (X, Γ), so we can construct the
/-extension p : (Xf, T) -> (X, T). Iff is the usual lift of/to Xf, then
/ ' : Xf -+ Y is onto as f(Xf) D f(C) = f(C) = C ; and / ' is closed.
/ ' is also clearly equivariant, and since nf(c) = nf(c) = c = pc
Vc G C ^/ r = />. Lastly, we show that f is injective.

Suppose x,xf G Xf and /'(x) = /'(x') Then px = πf(x) =
πf(x') = px'. Now the map i7 of Theorem 1.9 is an embedding. But
for each t G T,f(xt) = /(x)ί = / ' (* ' ) ' = / ( ^ O , so F(x) = F(x').
Hence x = JC;.

Thus / ' : (X/Γ) -> (If Γ) is an isomorphism and πf = p. D

5.4. COROLLARY. Suppose (X,T) and {XT) are transformation
groups with T locally compact Hausdorjf, and let (Xf, T) be an f-
extension of(Xf T). If there are homomorphisms p : (X/T) -> (XT)
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and π : {XT) —> (X, T) such that πp = pf, then there is an accept-
able g : X -> Y and an isomorphism G : {XT) -+ {Xg, T) such that
pgG = π.

Proof, We need only show that A = {y : y e Y and π~ιπy = {y}}
is dense in Y. But A D pCf (where Cf c X/). Π
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