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1 -DIMENSIONAL PHENOMENA
IN CELL-LIKE MAPPINGS ON 3-MANIFOLDS

R. J. DA VERM AN

Two 1-dimensional phenomena are studied. One resides in the 3-
manifold domain of a cell-like map /: M3 —> Y a n d c o n s i s t s o f a n

infinite 1-skeleton X on which / is 1-1; if, in addition, the nondegen-
eracy set of/ misses a dense
natural embedding in A/
is a 3-manifold except possibly at points of a 1-complex F, topologi-
cally embedded in Y as a closed subset, then / can be approximated
by another cell-like map p: M —> Y whose no
embedding dimension < 1 and / x Id: M3 x

approximated by homeomorphisms.

1. Introduction. Consider a proper cell-like surjective mapping /:
M —• Y denned on a 3-manifold M. This paper addresses the ques-
tions: Under what conditions can / be approximated by a cell-like
mapping F: M -• Y for which each set F~[^ 1S 1-dimensional?
Under what conditions can it be approximated by F: M —• Y such
that the nondegeneracy set Np of F (denned as

yeY a n d pJ(y) i s n o t a s i n g l e t o n } )

has embedding dimension at most one (in the sense of Stan'ko [St]
and Edwards [El])?

Several reasons can be adduced for interest in these matters. One
simply is to improve known results about which spaces Y are factors
of some 4-manifold or, short of that, about which spaces Y have a
natural embedding in some 4-manifold (such as in M x F?'~ n o e r

reason, part of a personal agenda not completely revealed here, is for
use (to put it optimistically) in sought-for internal characterizations of
those cell-like images Y that are 3-manifolds, a problem in which map
improvement techniques have been exploited with notable success by
Edwards [E2].

Before stating the main results, we need certain fundamental defi-
nitions. A proper (surjective) map p: M —• Y defined on a manifold
M is said to have the Isotopy Disjoint Arcs Property (to be abbreviated
as: Isotopy DAP) if for each pair of disjoint, locally flat arcs a and 0
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in M and for each open cover ^ of Y there exists an isotopy *FZ of
M to itself such that

(i) *Fo is the identity,
(ii) p*¥t is ^-close to p, and

( i i i ) / > ¥ , ( < * ) n / ^ ( 0 ) = 0 .
Similarly, p: M —• 7 is said to have the Homeomorphism Disjoint Arcs
Property (abbreviation: Homeomorphism DAP) if, with the same data
given above, there exists a homeomorphism H: M —• M such that pH
is ^-close to p and pH(a) n />#(/?) = 0.

For comparison, recall that a space Y is said to have the Disjoint
Arcs Property (DAP) if all pairs of maps /, g of a 1-cell Bl i n t o Y c a n

be approximated by maps F, G having disjoint images. Generalized
n-manifolds (n > 3) invariably satisfy this DAP [D2], the weakest
of the disjoint arcs properties; in fact, should an infinite-dimensional
cell-like image of an n -manifold exist, it would satisfy the DAP as
well.

The focus throughout rests on the case n = 3, the only dimension in
which there is any doubt whether the stronger properties are satisfied,
and the paper works around the following unresolved issue:

If p: M —• Y is a cell-like map defined on a 3-
manifold M such that each p-M ^ a neighborhood
that can be embedded in the 3-sphere S 3 , d o e s p h a v e

the Homeomorphism (Isotopy) DAP?

The Homeomorphism DAP is useful, more so than the unadorned
DAP, since maps p: M —> Y satisfying the former can be approx-
imated by comparable maps /: M —• Y for which each f~1(y) i s

1-dimensional. This corresponds precisely to what can be done in
higher dimensions, where p can be approximated by a map / such
that each f-'W 1S ( n - 2)-dimensional, with / attained to be 1-1 on

the union of the 1-skeleta of a preassigned sequence of triangulations
of M (see Proposition 2.4). Better yet, if p: M —> Y is a cellular map
with the Isotopy DAP, then Y admits a natural embedding in the 4-
mitsanaturalembeddinginthe4-manifold M xEx ( C o r o l W 3 - 5 ) - F i n a % ' ^ p: M—>• Y i s a ce ll-like

map such that each p~x(y) h a s a neighborhood embeddable in S

if Y has a closed subset T homeomorphic to a 1-complex, where Y-T
is a 3-manifold, then p has the Isotopy DAP and, furthermore, p can
be approximated by a cell-like map F: M —• Y such that (i) i7 i s

over Y— Tand (ii) Np has embedding d imens ion< 1 ( T h e o r e m 4 .
as a result, YxE1 i s homeomorphic to M x El

not S. p~l(y) h a v e neighborhoods embeddable in S3 (Corollary 4.5).
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The results contained herein pertain to 3-manifolds M, whether
compact or not. In the proofs, for simplicity, M is usually presumed
to be compact. Most arguments go through with little change beyond
the epsilonic controls, which in general should be exercised by means
of a positive-valued mapping rather than by constants. Significant
exceptions occur when certain function spaces M —• [0,1] are con-
sidered; if M is noncompact, one must use the limitation topology,
described in [T], in order to be working with a Baire space, the essen-
tial item needed to validate the arguments presented.

The author wishes to express appreciation to J. J. Walsh for sug-
gestions simplifying the proof of Theorem 3.1, to W. Jakobsche for
several helpful conversations, and to the referee for catching a glaring
oversight.

2. Disjoint arcs properties. The chief concern in this paper will be
with cell-like maps defined on 3-manifolds M, for the ones defined on
higher dimensional manifolds are known to satisfy the strongest possi-
ble disjoint arcs property. The argument is little more than reapplica-
tion to a far simpler situation of an idea used repeatedly by Edwards
[E2].

PROPOSITION 2.1. Each proper cell-like map p: M —> Y defined on
an n-manifold M (n>4) has the Isotopy DAP.

Proof. Given a and ft in M, there is a controlled homotopy between
p\a U ft and some new map / : aUj 8 - » F where /(a) and /(/?) are
disjoint [D2]. The homotopy lifts (approximately) to a homotopy
in M between the inclusion and some locally flat embedding F: a\j
ft -* M, which in turn can be covered (approximately) by a controlled
isotopy of M [BK]. •

Let G be a cell-like use decomposition of a 3-manifold M with
decomposition map it: M —> M/G. In the space of all maps M —» M/G
we identity

%f = C\{nh | h: M —• M is a homeomorphism} and

J" = Cl{nd | 8: M -• M is isotopic to ldM}-

An infinite l-skeleton in a 3-manifold M is the union of the 1-
skeletons from a sequence Tj of triangulations of M, where mesh(7}) —>
0as/—• oo.
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PROPOSITION 2.2. IfG is a cell-like decomposition of a 3-manifold
M and SA1 IS an infinite \-skeleton in M such that n: M —• M/G is

1-1, then n has the Isotopy DAP.

Proof. Consider disjoint arcs a and /? locally flatly embedded in M.
Measure the distance S between a and /?. Fix e > 0 and restrict S
so the image under n of any S-subset of M has diameter less than s.ess than s.
Determine a triangulation T of M for which T^ c X(1) a n d m e s h

T< S. Construct a pseudo-isotopy y/s: M —• M (a homotopy starting
at Idjv/ with each level i//s, s < 1, being a homeomorphism) moving
points less than S and carrying ^ i(a) U V\{fi) into T(1' ; t n e n l W fi

^i(/?) = 0, so 7i^i(a) n ny/i(P) = 0. Choose a value w of 5 close to
1 for which ny/u(a) n ny/u(P) = 0- The isotopy ^ , restricted to run
between 0 and u, shows n has the Isotopy DAP. D

LEMMA 2.3. If it: M -* M/G is a cell-like decomposition map de-
fined on a 3-manifoldM andp €<%*, then

%f = c\{ph \h: M —• M a homeomorphism}.

The argument rests on a simple observation: p(nh,p) < e if and
only if p(n, ph~l) < e.

PROPOSITION 2.4. Suppose G is a cell-like use decomposition of a 3-
manifold M and suppose Z ^ is an infinite l-skeleton in M. Then the

following statements are equivalent:
(A) n: M —# M/G has the Homeomorphism DAP.
(B) n can be approximated, arbitrarily closely, by maps p e3? such

that p\I,W is 1-1.
(C) There exists peJT such that p|l('> M 1-1.

Proof. The implication (A) => (B) involves an application of the
Baire Category Theorem. Enumerate all pairs A; of disjoint 1-simplex-
es {a, T) in TL^ or any of the successive barycentric subdivisions of its
simplexes. Let J#J denote the subset of %? denned as:

j*i = {pe2'\p(a) n P{T) = 0},

where At = (a, T). By hypothesis, sfi is dense in %*, and by a standard
argument, as in [HW], it is open there. The Baire Category Theorem
ensures the existence of a map p: M —• M/G in f\s/j close to n.
Finally, to any distinct points x, y eX'1' t h e r e corresponds an index i

such that x e a and yet, where At = (a, T); hence, p \ 2 ( 1 ) i s 1-1.
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That (B) => (C) is obvious.
For the remaining implication, (C) =>• (A), the hypothesis and the

comment about the proof of Lemma 2.3 establish the existence of a
(£/3>ch^ to n TlienheproofofLemma2.3establishtheexistenceofahomeomorphism h: M-> M with p ' = ph~x (£/3)-close to n. Then

p ' is 1-1 on the infinite 1-skeleton h(L^). Given disjoint arcs a and
P locally flatly embedded in M, apply Proposition 2.2 to obtain a
homeomorphism h'\ M —• M such that p ' h ' is within e/3 of p ' and
p'h'(a) n p'h'ifi) = 0. Finish this off by putting Lemma 2.3 into
operation to determine another homeomorphism H: M —>• M such
that nH is at least (e/3)-close to p ' h ' and, moreover, nH(a)C\nH(ji) =
0. Then H has the desired effect on M and nH is £-close to n. •

A characterization of the Isotopy DAP can be derived with a similar
argument.

PROPOSITION 2.4'. ForM, G and It1) as in Proposition 2.4, the fol-
lowing statements are equivalent:

(A) n: M -> M/G has the Isotopy DAP.
(B) For each e > 0 there exists an isotopy *Ff: M —> M definedfor

t e [0,1) such that p(n, iWt) < e/w «//1 € [0,1), f/ze limit p ofiC¥t

as t—> 1 w continuous, andp\Z^ w 1-1.
(C) 77zere exw? p € S and an isotopy *F;: M —• M definedfor

t G [0,1) swc/z f/za? p = Iim7r^ (a* t -» 1) anrf p |IO w 1-1.

The preceding expose invariance properties.

COROLLARY 2.5. Let G be a cell-like use decomposition of a 3-man-
ifold M. Then n: M -* M/G has the Homeomorphism DAP (Isotopy
DAP) if and only if each p € %* (each p e S) does.

Proof. When n has the Homeomorphism DAP, then certainly so
does each member of {nh\h: M —> M a homeomorphism}, which is
dense in J". On any given infinite 1-skeleton I (1 ) , {q € % ^ 1S 1

I(1)} is dense in X b y Proposition 2.4. Hence, for any p e / the

combination of Lemma 2.3 and a second application of Proposition
2.4 implies p has the Homeomorphism DAP. •

The next result can be proved using the Baire Category Theorem
and an adaptation of the proof of Proposition 2.4 (2.4'). It reveals
that the restriction in the definitions of Homeomorphism DAP and
Isotopy DAP to locally flat arcs a and /? is dispensible. Details are
left to the interested reader.
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PROPOSITION 2.6. Suppose G is a cell-like use decomposition of a
3-manifold M such that n: M -> M/G has the Homeomorphism DAP
{Isotopy DAP), and suppose Y is a a-compact set in M having embed-
ding dimension < 1. Then n can be approximated by a map p € %?
, e J ' such thm P^Y is 1

PROPOSITION 2.7. Suppose M is a 3-manifold, I ( 1 ) is an infinite V

skeleton ofM, and p: M —>• M/G is a proper, cell-like mapsuchthat
/ ? | I(1) is 1-1. Then each point preimage p~l(x), x e mK*> ms a

neighborhood in M that embeds in S3.

Proof. Being cel l - l ik
W. Because
embedding d
handles H in W containing p~
embedding dimension < 1 [El]. Therefore, there exists a cube-with-

^ in lts interior P ^ - D

3. Trivially extended decompositions. Given a cell-like use decom-
position G of a 3-manifold M, whererM/is WeAliM iedwithMx{0}
L M i71' its trivial extension Gf Hsver M %^
in lvi x tL , ,, , ...

r e x t e n sionGT o verMxElisthe decomposition
into elements of G and thesingletonsfrom M x (£"' — {0}). Typically
we will use nT: M xEwe will use nT:

map associated with this trivial extension.

THEOREM 3.1. Suppose M is a 3-manifold, E ^ is an infinite 1-
skeleton in M, and G is cell-like use decomposition ofM such that
n |ZOis1-1and£(')DNGis^-dimensional. Then the trivial extension
(-<! Of Lr tO lvl X tL

Proof. Express E^ as the union of 1-complexes TJ- , where Tj de-
notes some triangulation ofM having mesh less than l/i. Thestrategy
is to reorganize GT' v i a a homeomHrphism 6 o f M i / ^ ™

commuting with the projection M x E* M' s o t h a t

(1) each nondegenerate element <b(g*), g* € GT, l i e s i n a l e v e l

M x{t} ofM xEl, w h e r e t G [0 , 1] ,
 r) o n a n v s l i c e

(2) the decomposition &1 o f M i n d u c e d by O (G r ) °D m ^
M x {t} is 1-dimensional, where the nondegenerate elements of S?1

are {geHG\<t>(g x {0}) c M x {;}}, and
(3) for a dense set 3i of values d € (0,1), the decomposition "3d i s

of (source) embedding dimension < 1. z WJJJ ^ e snrinkable
According to [DP2], the decompositions "§d x E

decompositions ofMxtf W W * € 2' a n d ^ ^ ^ t h e t r i v i a l
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extensions of each - over M xEl w i l l b e s h r i n k a b l e . W i t h t h a t d a t a ,
the Theorem of [DPI] will attest O((jr) i s s h r i n k a b l e a n d , h e n c e , t h e

same is true of GT i t s e l f .
The homeomorphism O will be denned by means of a map p: M/G

—• [0,1] and will be specified as

s)) = {x,s + /uc(x)).

It is an exercise that such a map O^ is a homeomorphism ofM x E1

onto itself, and it should be clear why O^ then must satisfy (1) above.
It is useful to note M/G is 3-dimensional, by the result of

Kozlowski and Walsh [KW] (see also [W]). Since S(1) - NG i s d e n s e

in M, dim No <2 and, as a consequence, dim7r(iVG) < 2, because n
cannot raise dimension.

We pause to establish two facts of a dimension-theoretic nature.

LEMMA 3.2. Let W denote the space of maps X —# / = [0,1], en-
dowed with the sup-norm metric, defined on a separable metric space
X, and let Z denote a ^-dimensional Fa-set in X. Then

j * = {XeW\X is 1-1 onZ}

is a dense Gg-subset ofW.

Proof. Write Z as the countable union of sets Z, (/ = 1,2,...)
closed in X, and set

&(i.j) = {X<EW\X\ZI is a (l/7>map}.

A combination of techniques from [HW] and a controlled version
of the Borsuk Homotopy Extension Theorem yields that ^{i,j) is
dense in W. Clearly sf =f]W(i,j). Application of the Baire Category
Theorem completes the proof. •

LEMMA 3.3. IfN is a k-dimensional Fa-set in the space X of Lemma
ntain
and

3.2, where 0 < k < oo, then X contains a dense G§-set s/' such that
ft)) < k for each tel nnA , af)

Proof. By [HW, pp. 30-32], iV can be expressed as P U Z, where
dimP < k and Z is a 0-dimensional Fa-set. Lemma 3.2 provides a
dense Q-set J / ' in W, where each X £ sf' is 1-1 on Z. Then, for
11 t € I N X l^' i n P plusat m o s t 1 point of Z, yielding
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Completion of Proof of Theorem. 3.1 Now let W denote the space
of all maps fx: M/G —• [0,1], with the sup-norm metric. Express
n(£(') n NQ) as the union of compact 0-dimensional sets Q. (k =
1,2,...). By Lemma 3.2, W contains a dense Gj-set

sf = U € WIA is 1-1 on ( J Ck } ,

and by Lemma 3.3, W contains another dense G -̂set $/' such that
N nk~1^ *s 1 -dimensional, for all k e sZ' and t e [0,1]. The

Baire Category Theorem provides /u e {$? C\s/'), which gives rise to
the desired homeomorphism O^ satisfying Conditions (1), (2) and (3)
above. •

THEOREM 3.4. Let G be a cell-like decomposition of a 3-manifoldM
such that n has the Isotopy DAP and

W "' cellular inI € M/G | n ' x

is dense in M/G. Then the trivial extension GT °fG to M x E

shrinkable.

Proof. The idea is to produce another cell-like map p: M -* M/G
from the limit as t -> 1 of n^t, where 4V M -> M is an isotopy
beginning at Id ^ and defined for t e [0,1), with p 1-1 on some infinite
1-skeleton Z(1) s u c h t h a t

It is convenient to regard *Fi: M —> M as a set-valued function (or,
relation) determined by the limit of^ as t —• 1. To each x G M there

7 ^will correspond gx 6 G suchthat*Fi(x)cgx. We will prescribe a new
cell-like map p

T:MxEl->•( M x L

P
i f ^ 1,

< 1.

T . T will behave like /? on M x {0}, and Theorem 3.1 will implyinen p .
the shrinkability of the decomposition induced byt^^hnw^^c^n he
bility of GT follow, either by redesigning p

made arb g ™ %^&^T
(M x EX)/

imation Theorem [Q, Corollary 2.6.2] (a nice exposition of Quinn's
result can be found in [A]).
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In order to obtain p = l i m ^ ^ , name an infinite 1-skeleton Z^1' i n

M and a countable set Z = {z,\ i = 1,2,...} c Z^1) s u c h t h a t Z n a 1S

dense in each arc a c Z(1). D e f i n e

^ = {pe J"\ diamp-1(ZJ) < l / i

Not only is J?i open and dense in J', each nh € J^ (h: M -^ M
a homeomorphism) is close to some p e ^ under a short isotopy,
obtained by first pushing z,- to a point in some cellular preimage and
then isotopically shrinking that preimage to small size. Consequently,
we can build an isotopy ¥, : M —»• M, defined for t € [0,1), such
that, in the notation develope

P
p , % j p p ^ p ^ nVl cM

p e (P\^i)n(fl-O- T h e n P

reveals dim(E(1) n Np) < ° , a s d e s i r e d . D

COROLLARY 3.5. IfG is a cellular use decomposition of a 3-manifold

embedding in M x El.

Heretofore the strongest result comparable to Corollary 3.5 reached
the same conclusion for cell-like decompositions G of M such that
dim^(G) < 1 [DPI, Corollary 8].

4. Decompositions of embedding dimension < 1. Several years ago
the author asserted [Dl, p. 135], without proof, that the following was
true. This section sets forth details.

THEOREM 4.1. Suppose G is a cell-like use decomposition of a 3-
manifold Mfor which the singular set, S(M/G)), lies in a {-complex
F embedded in M/G as a closed subset and suppose each g e G has
a neighborhood Ug embeddable in S3. Then n: M —• M/G has the

Isotopy DAP; furthermore, arbitrarily close to n is a map / ) G / such
that Np has embedding dimension < 1.

What is needed to establish Theorem 4.1 is a controlled arc-pushing
property, describing how to divert a given arc in M away from n~" '
by means of a motion whose image under n is small. McMillan (cf.
[Ml] [M2] [M3]) and also Row [R] have studied less strictly con-
trolled arc-pushing properties extensively and have demonstrated the
close connection to cubes-with-handles properties. Stated next is a
controlled cubes-with-handles result that leads to a useful arc-pushing
property, presented in Proposition 4.4.
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LEMMA 4.2. Suppose U is an open subset ofE3 with connectedfron-
tier, v X -* Ex i s a proper cell-like map defined on a closed subset

XofU.A is a PL l-manifold embedded inU asa closedsubset, and
i([ay oj) JOT some [ay uj c tL

— p~
Then there exist a cube-with-handles H and a compact 2-manifold

F in dH satisfying:
( 1 ) YclntHcHc U,
(2) each component ofF is a 2-cell,
(3)IntFDXndH, and
(4) FDA = 0.
Proof. Being contractible in U, X has a neighborhood U* con-

tractible in U. The cell-like set Y c X lies interior to some cube-
with-handles H* in U* [Ml, Theorem 2'].

The argument involves modification of H* by simple moves, in the
sense of McMillan [M3]. The first step causes the boundary of the
resulting manifold K to meet X in a finite union F* of pairwise dis-
joint 2-cells in dK - A. The second, entailing further alteration to K,
resurrects a cube-with-handles.

To get started, determine a PL manifold neighborhood N of X n
dH* in dH* —A such that each loop in IntN is null homotopic in
(U* - (YliAUdH*)) U IntiV (this can be arranged by locating TV so
close to X that loops in Int iV are homotopic there to loops very near
X, which then can be contracted missing YU A and striking dH* only
inside N).

If every component of N should happen to be included in some disk
in dH* - A, these disks easily could be cut apart to form the required
F*. Otherwise, one prepares to make a simple move by identifying a
simple closed curve / in Int N not bounding a disk in ./V (equivalently,
/ not contractible in N). There exists a map

fi:B
2^(U*-(YuAU dH*)) U IntiV

tracing out / homeomorphically along the boundary. Assuming V to
be PL and in general position with respect to dH*, one can find a disk
withrespecttodH*,onecanfindadiskwith holes D in B2 s u c h t h a t n(dD) c N, fi(IntD) n N = ° , a n d o n

precisely one component C of dD jn\C: C —# Int N is ho mo topically
nontrivial. As a result, one can regard /i as defined on a disk D without
holes, where C = dD. Invoke the Loop Theorem to obtain a PL
embedding ;U* of A either into Int Nu(IntH*-(YuA)) orintoIntiVU
(U* - (A U H*)), with n*{dD) C Int N in homotopically nontrivial
fashion. Write n*(D) as B and thicken it to a 3-cell B x / in either
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H*-(Yl)A) or in U* - (AulntH*) with (B x I)ndH* = (dB) x / c
IntiV. LFBCH*-(YUA), define a new manifold K as H*-(BxIntI);
otherwise, define K as H* l) (B x I).

No matter which side of dH* includes B, let NK denote (iV n dK) U
(5 x dl). Then X n dK c iV>, a 2-manifold in dK - A. Observe how
every loop in K contracts in U, for when K is larger than H* each
loop there is homotopic through K to one in H*. Also observe that
loops in NK contract in [U* - (YUA U dK)] U IntNK, by performing
an initial homotopy through NK into N.

Consequently, upon verification of the claim below, Lemma 4.2 will
follow from the forthcoming Lemma 4.3.

Claim by a finite number of simple moves H* can be transformed
to a PL 3-manifold K with Y c Int K, all loops in K null homotopic
in U, and X ndK contained in a finite union F* of pairwise disjoint
2-cells in dK - A.

Proof of the Claim. Define the complexity q(P) of a compact 2-
manifold with boundary P as

q(P) = (number of components of dP) - x(P)

(X = Euler characteristic). Provided no component of P is a 2-sphere
or a projective plane, (i) q(P) > 0 and (ii) the components of q{P)
are all 2-cells if and only if q(P) = 0. In the situation at hand, no
component of iV or NK can be a projective plane, because U c E2, a n

by construction no component of N is a 2-sphere so the same holds
for NK. Hence, the claim follows from the straightforward verification
(in the terminology used for the elementary modification above) that
q(NK) < q(N).

LEMMA 4.3. Under the hypotheses of Lemma 4.2, letKbea compact
PL 3-manifold such that Y c IntK c K c U and each loop in K is
contractible in U, andletF*beafiniteunionofpairwisedisjoint2-cells
in dK-A with ln\F* DXndK.

Then there exist a cube-with-handles H and a compact 2-manifold
F in (dH) - A satisfying:

(I)KCHCU,
(2) each component ofF is a 2-cell, and
{3)IntFDXndH.

Proof. Except for the part about the 2-cells F* and F, the argument
is given in [Ml, Lemma 1]. Following McMillan's procedure, every
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time we add a thickened disk to K or delete one from K, we operate in
the complement ofF*. This procedure involves compressing dK with
a succession of compressing disks, some of which compress (initially)
to the outside of K and some to the inside.

It is easy to adjust so those compressing to the outside pass nicely
through thickenings of earlier compressing disks. The boundary of the
resulting cube with handles H is a subset of d(K\J(\JEj x/)), where Et

is a disk with holes obtained from the rth outside compressing disk by
deleting its intersection with the thickenings of the earlier compressing
disks, the Ej x / are pairwise disjoint, their interiors miss K, and
Ei x / meets dK along dEi x / c dK. [Remark: if no boundary of an
outside compressing disk ever separates dK, then H actually equals
KudJEjXl); generally H is determined by an outermost component
of the boundary just named.] We conclude by showing how to adjust
the relevant cores \JEt x {0} so they lie in U - (A UXUIntK).

To simplify notation identify £, with Ei x {0} and write Q = \JEj.
Thus, Q, is a compact (disconnected) planar surface in U for which
QnK = dQcdK -(A\JF*). Each dEi has a distinguished compo-
nent Li—namely, the boundary of the larger compressing disk. The
adjustment amounts to building (1) another compact planar surface
Q! = UE'j, where Q' has the same number of components (the sets E\)
as Q, Lt c E\, and Q' n K = Q' ndK= dQ', and (2) a corresponding
finite union F' of pairwise disjoint disks with

I n i i ' c IntF ' c f ' c (IntQ') -A.

Here Q, n Y = 0. Choose a neighborhood W of X - Y in U - [A U
(dK-IntF*)], and find a smaller neighborhood W such that loops in
W are contractible in W. In case Q, n X is not contained in a finite
union of disks in Q, some simple closed curve / in, say, £, n W must
separate two components of dEi in Q. Let i? denote the component
of Ej - J containing L,. One can use iA -properties of the inclusion
W —> W to define a natural map of R U disk into i^UfF and then
can apply the proof of a generalized Dehn's lemma due to Shapiro
and Whitehead [SW] (or the controlled version of Dehn's lemma by
Henderson [H]) to find a disk with holes Z>, having fewer holes than Ei
such that Li c dDj c dE, and A c Et• u W. Because the last condition
forces £>/ ndK c IntF*, one can improve D, by trading disks between

A and F* to make ZfyAT = dDt
ll ll

make DtnK = Dt ndK = dDt. Repeating as often as
necessary, one eventually will produce such a compact planar surface
£1 * for which Q*nX is contained in a finite union A of pairwise disjoint
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disks in IntQ*. Should some component B of A then meet A, one can
decrease the size of B to avoid A unless BC\X (note: BnX c X -Y)
separates dB from a point of B n A, but then more or less as before
Dehn's Lemma (usual form) yields a map

y/:A^ U -[Au(dK-lntF*)l\(Q* -intA)]

which reduces to the identity on dA and is 1-1 on each component of
A. Again, disk trading gives an embedding

¥: A -> U - [A UKU (Q* - IntA)].

Set Q! = (Q* - A) u¥(A) and i?' = *F(A), to complete the description
of the modifications to Q and construction of disks F'.

Finally, the compact 2-manifold F called for in Lemma 4.3 is F' U
(F*ndH). u

PROPOSITION4.4. Let Gbea cell-likedecompositionofa3-manifold
M satisfying the hypotheses of Theorem 4.1, A a PL arc in M, and
V a neighborhood ofTI~XTI(A). Thenfor each e > 0 there exists a
homeomorphism h ofM onto itself such that:

(1) p(n(x),nh(x)) < efor each x e M,
(2) h moves no point ofM— V, and
(3) nh(A) nT = 0.

Proof. First modify A slightly to ensure X n dA = 0. Afterwards
choose a finite collection of points Q\,... ,q^ separating T so that, for
any component C of T— U{<7/} whose closure meets n(A),

C is homeomorphic to E{,

diamC< e/2,
r ' ( C l C ) c K and
7r~'(ClC) has a neighborhood embeddable in E3.

Restrict V to makecertain t hat,if C is
which V n n~ *• / 0

X(Q1) a r e defined by cubes-with-handles [Ml], it is possible to
find a PL homeomorphism h\ of Af to itself such that

p(n(x),nh\(x)) < e/2,
hi is fixed outside of V, and

Consider those components C of T— U{#/} intersecting n)
The same process will take place near each, so for simplicity assume
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there to be onl
cont

in is

to be only one such component C. Construct an open set U in V
aining «~'' ' a ndhaving connected frontier, with U embeddable
3 a w ^ diamnfC/j < e/2. Apply Lemma 4.2 to find a cube-

a n d
with-handles H with U D H D IntH D h\(A) n n~
finite union F ofpairwise disjoint disks in dH — h\(A) whose interiors

.T, ;(C). Specify a PL spine L of H to which H collapses,

with L consisting of a bouquet of circles plus some arcs, a distinct arc
from the bouquet to each of the components of F. Finally, determine
a homeomorphism /z2 of M to itself fixed outside of, U such that
hih\{A) misses H U n~^C)' b ? & s t § e n e r a 1 P o s l t l o n a d J u s t m § ^
to avoid LUF and then exploiting the regular neighborhood structure
of H relative to L to do the rest. The composition h = /Z2/21 has the
desired effect. D

Proof of Theorem. 4.1 Based upon Proposition 4.4 and the now-
typical approximation methodology, one can produce a new cell-like
map p: M —# M/G near n in <y (in fact, with p = limn<$>t as t —> 1,
where <£, is an isotopy of M defined for r e [0, 1) and nQ>t is close to
p for all /) such that /?(X(1)) n T = ° a n d / ? 1S U o v e r M/G-T. T
forces the nondegeneracy set of p to miss £(1) a n d y i e l d s dem(JV/>)
< 1. D

For studying the generalized manifold M/G itself, the specific
source manifold M and the specific cell-like map n: M —>• A//G may
not be of fundamental importance. If not, the next result indicates
how to circumvent the second hypothesis in Theorem 4.1, which calls
for point preimages under n to have neighborhoods embeddable in

PROPOSITION 4.5. Ifn:M—*Yisa proper cell-like map from a 3-
manifold M onto a generalized 3-manifold Y, then there exist another
3-manifold M' and a proper cell-like map q: M' —> Y such that each

i i{yj< y G Y, has a neighborhood in M that embeds in S '

Proof. The argument imitates one presented in [BL] for a related
result.

Theorem 1 of [K] helps certify that
n o neighborhood embeddable in S3'Q _ t

is a locally finite subset of Y (for the nonorientable case, see also
[RL, Proposition 2.1]). The same modification will be done near each
c G C, so for simplicity assume C consists of a single point.
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Set P = n~x(C). B y [BL, L e m m a C ] , P = f\Ni, where Nt consists
of a homotopy 3-cell Q, with some attached 1-handles, and where
Nj+i c N, (i — 1,2,...). Trim Qt by deleting an open collar on its
boundary to form a smaller homotopy 3-cell Q\, and obtain M' as the
decomposition of M determined by identifying Q[ to a point. Ac-

p: M - • M' on M-N\. Then^-1(C) C p{N\), w h i c h b y construction
is a cube-with-handles. Application of the homeomorphism 6 quickly
shows the other point preimages q-W t 0 h a v e neighborhoods em-
beddable in S3 a s w e l l

COROLLARY 4.6. If G is a cell-like decomposition of a 3-manifold
M such that the singular set S(M/G) lies in a 1 -complex topologically
embedded in M/G as a closed subset, then (M/G)xE1isa4-manifold
and the natural map M x El— > ( M / G ) x fi

homeomorphisms.

Proof. To see why (M/G)xEl i s a 4-manifold, use Proposition 4.5 to
reduce to the case where each g € G has a neighborhoodembeddable
• c 3 , and apply Theorem 4.1 and [DP2]. T h a t M x F ^ ( W o r M
in o

can be approximated by homeomorphisms then follows from Quinn's
Cell-like Approximation Theorem [Q]. •

COROLLARY 4.7. If G is a cell-like decomposition of a 3-manifold
M such that the singular set S(M/G) lies in a 2-complex embedded in
M/G as a closed subset, then the trivial extension GT °fG over M xE

is shrinkable.

Proof. As in Theorem 3.1, construct a
to itself commuting with the projection M x Ex—•Exandsat

(1) each nondegenerate element <£(#*), g* e GT, l i e s i n a l e v e l

its singular set, S(M/&1), c o n f i n e d t o a 1-complex embedded in
as a closed subset.

Again apply [DPI].
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