THE INJECTIVE FACTORS
 OF TYPE III $_{\lambda}, 0<\lambda<1$

Uffe Haagerup
Dedicated to the memory of Henry A. Dye

Abstract

We give a new proof for Connes' result that an injective factor of type $\mathrm{III}_{\lambda}, 0<\lambda<1$ on a separable Hilbert space is isomorphic to the Powers factor R_{λ}. Our approach is based on lengthy, but relatively simple operations with completely positive maps together with a technical result that gives a necessary condition for that two n-tuples $\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $\left(\eta_{1}, \ldots, \eta_{n}\right)$ of unit vectors in a Hilbert W^{*}-bimodule are almost unitary equivalent. As a step in the proof we obtain the following strong version of Dixmier's approximation theorem for $\mathrm{III}_{\lambda^{-}}$ factors: Let N be a factor of type $\mathrm{II}_{\lambda}, 0<\lambda<1$, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\operatorname{id}\left(t_{0}=-2 \pi / \log \lambda\right)$; then for every $x \in N$ the norm closure of $\operatorname{conv}\left\{u x u^{*} \mid u \in U\left(M_{\varphi}\right)\right\}$ contains a scalar operator.

1. Introduction and preliminaries. In $[6, \S 7]$ Connes proved that, for each $\lambda \in] 0,1[$, there is up to isomorphism only one injective factor of type III_{λ} (with separable predual), namely the Powers factor,

$$
R_{\lambda}=\bigotimes_{n=1}^{\infty}\left(M_{2}, \varphi_{\lambda}\right) .
$$

Here M_{2} is the algebra of complex 2×2-matrices and φ_{λ} is the state on M_{2} given by

$$
\varphi_{\lambda}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=\frac{1}{1+\lambda}\left(\lambda \varphi\left(x_{11}\right)+\varphi\left(x_{22}\right)\right) .
$$

(The notion R_{λ} was introduced by Araki and Woods in [1]. In Powers' original work [19], R_{λ} denoted M_{α}, where $\alpha=\lambda /(1+\lambda)$.)

Connes' approach for proving uniqueness of the injective factor of type $\mathrm{III}_{\lambda}(\lambda \in] 0,1[$ fixed) is the following: By $[4, \S 4]$ every factor N of type III_{λ} has an essentially unique crossed product decomposition

$$
N=P \times_{\theta} Z
$$

where P is a II_{∞}-factor and θ is an isomorphism of P for which $\tau \circ \theta=$ $\lambda \tau$, where τ is a normal faithful semifinite trace on P. Moreover, N is
injective if and only if P is injective. Hence, to prove the uniqueness (up to isomorphism) of N, one needs to show that
(i) There is only one injective factor P of type II_{∞}.
(ii) Any two automorphisms θ_{1}, θ_{2} of the injective factor P in (i) for which

$$
\tau \circ \theta_{1}=\tau \circ \theta_{2}=\lambda \tau
$$

are outer conjugate. Note that by [8, Chapter 3] outer conjugacy of two automorphisms, for which $\tau \circ \theta_{1}=\tau \circ \theta_{2}=\lambda \tau$ implies conjugacy, i.e. there exists $\alpha \in \operatorname{Aut}(P)$ such that $\theta_{2}=\alpha \theta_{1} \alpha^{-1}$.

The proof of (i) was established by Connes previously in the same paper $[6, \S 5]$ by proving that "injective \Leftrightarrow hyperfinite" for factors on a separable Hilbert space, and (ii) was proved one year earlier (1974) also by Connes [5] by developing a powerful machinery for classification of automorphisms of factors up to outer conjugacy. In [11] we gave a simplified proof of Connes' result "injective \Leftrightarrow hyperfinite", and recently Popa [18] has given a third approach to this important biimplication in the type II case.

The purpose of this paper is to give an alternative proof of the uniqueness of the injective factors of type $\mathrm{III}_{\lambda}, 0<\lambda<1$, which still relies on the uniqueness of the injective factors of type II_{1} and I_{∞}, but which substitutes Connes' analysis of outer conjugacy classes of automorphisms with some lengthy, but relatively simple, manipulations involving completely positive maps. The proof follows closely the ideas of our proof of "Injective \Leftrightarrow hyperfinite" for II_{1}-factors given in [11, $\S \S 3,4$ and 5]. The tracial state in the II_{1}-factor case is substituted by a normal faithful state φ on a III_{λ}-factor for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}$, ($t_{0}=-2 \pi / \log \lambda$).

In $\S 5$, we show that in case of an injective factor N of type III_{λ} with separable predual, the identity map on N has an approximate factorization through full matrix algebras (in the sense of Choi and Effros [3, pp. 75-76]) of a very special form:

For $m \in \mathbf{N}$, let ψ_{m} denote the tensor product state

$$
\psi_{m}=\bigotimes_{i=1}^{m} \varphi_{\lambda} \quad \text { on } M_{2^{m}}=\bigotimes_{i=1}^{m} M_{2} .
$$

Then for every finite set x_{1}, \ldots, x_{n} of operators in N and every $\varepsilon>0$, there exist completely positive maps,

$$
S: N \rightarrow M_{2^{m}}, \quad T: M_{2^{m}} \rightarrow N
$$

such that

$$
\begin{gathered}
S(1)=1, \quad T(1)=1, \\
\psi_{m} \circ S=\varphi, \quad \varphi \circ T=\psi_{m}, \\
\sigma_{t}^{\psi_{m}} \circ S=S \circ \sigma_{t}^{\varphi}, \quad \sigma_{t}^{\varphi} \circ T=T \circ \sigma_{t}^{\psi_{m}}, \quad t \in \mathbf{R},
\end{gathered}
$$

and

$$
T \circ S\left(x_{k}\right) \rightarrow x_{k} \quad \sigma \text {-strongly for } k=1, \ldots, n .
$$

In $\S \S 2,3$ and 4 we prove a number of technical results, which enable us to derive from this factorization result that given $x_{1}, \ldots, x_{n} \in N$ and $\varepsilon>0$ there exists a finite dimensional subfactor F on N and $y_{1}, \ldots, y_{n} \in F$, such that

$$
\begin{gathered}
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F^{c}} \quad\left(F^{c}=F^{\prime} \cap N\right), \\
\left(F,\left.\varphi\right|_{F}\right) \cong\left(M_{2^{m}}, \psi_{m}\right) \quad \text { for some } m \in \mathbf{N}
\end{gathered}
$$

and

$$
\left\|x_{k}-y_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n,
$$

where $\|a\|_{\varphi}=\varphi\left(a^{*} a\right)^{1 / 2}$ (cf. Lemma 6.4). From this one obtains quite easily that the factor N is isomorphic to the Powers factor R_{λ} and that the isomorphism can be chosen such that φ corresponds to the infinite product state

$$
\omega_{\lambda}=\bigotimes_{i=1}^{\infty} \varphi_{\lambda},
$$

on R_{λ}. It should be noted that once the uniqueness of the injective factor of type $\mathrm{III}_{\lambda}(\lambda \in] 0,1[$ fixed $)$ is established, one can derive Connes' outer conjugacy result (ii) above by using [4, Theorem 4.4.1 (c)].

In a subsequent paper [13] we will apply similar techniques to give a new approach to Connes' result [7] that injective factors with trivial bicentralizers are isomorphic to the Araki-Woods factor R_{∞}. This result was the key to settle the uniqueness problem for injective factors of type III_{1} (cf. [12]).

We give below some preliminaries on factors of type $\mathrm{III}_{\lambda}, 0<\lambda<1$, which can be extracted from Connes' paper on classification of type III-factors [4]:

Let M be a factor of type III_{λ}. By $[4, \S 4], M$ has a normal faithful semifinite weight ω, such that $\sigma_{t_{0}}^{\omega}=\operatorname{id}\left(t_{0}=-2 \pi / \log \lambda\right)$, and such that the centralizer M_{ω} is a factor of type II_{∞}. Moreover, the restriction of w to M_{ω} is a semifinite trace. Let e be a finite projection in M_{ω} for
which $\omega(e)=1$. Then $\omega_{e}=\left.\omega\right|_{e M e}$ is a normal faithful state on $e M e$ and $\sigma_{t_{0}}^{\omega_{e}}=$ id. If M is σ-finite, then the projection e is equivalent to 1 , and hence $e M e \cong M$. Therefore:

Every σ-finite factor N of type III_{λ} admits a normal faithful state φ, such that $\sigma_{t_{0}}^{\varphi}=\operatorname{id}\left(t_{0}=-2 \pi / \log \lambda\right)$.

Let (N, φ) be as in Proposition 1.1 and let Tr be the trace on $B(H)$, where H is an infinite dimensional separable Hilbert space. Then $\varphi \otimes \operatorname{Tr}$ is a "trace generalisée" in the sense of [4, §4]. Hence, it follows from [4, Theorem 4.2.6] that:
Let N be a factor of type III_{λ}, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. Then
(a) $\operatorname{sp}\left(\Delta_{\varphi}\right)=\left\{\lambda^{n} \mid n \in \mathbf{Z}\right\} \cup\{0\}$.
(b) The centralizer M_{φ} of φ is a factor of type II_{1}.
(c) $M_{\varphi}^{\prime} \cap N=\mathbf{C} I$.

Note that (b) implies that φ is inner homogeneous in the sense of Takesaki [22]. If φ is a normal state, such that $\sigma_{t_{0}}^{\varphi}=\mathrm{id}$, then

$$
\varepsilon(x)=\frac{1}{t_{0}} \int_{0}^{t_{0}} \sigma_{t}^{\varphi}(x) d x
$$

defines a normal faithful φ-invariant conditional expectation of N onto M_{φ}. Hence, if N is injective, so is M_{φ}. By the equivalence of "injectivity" and "hyperfiniteness" for II_{1}-factors, one gets:
Let N be an injective factor of type III_{λ} acting on a separable Hilbert space, and let φ be a normal faithful state for which $\sigma_{t_{0}}^{\varphi}=$ id $\left(t_{0}=\right.$ $-2 \pi / \log \lambda)$. Then M_{φ} is isomorphic to the hyperfinite factor of type II_{1}.
2. Almost unitary equivalence in Hilbert N-bimodules. In this section we will prove a technical result which generalizes [11, Theorem 4.2] to Hilbert W^{*}-bimodules.

Throughout this section N is a von Neumann algebra, and H is a normal Hilbert N-bimodule, i.e. H is a Hilbert space on which there are defined left and right actions by elements from N :

$$
\left.\begin{array}{l}
(x, \xi) \rightarrow x \xi \\
(x, \xi) \rightarrow \xi x
\end{array}\right\}, \quad x \in N, \quad \xi \in H
$$

such that the above maps $N \times H \rightarrow H$ are bilinear and

$$
(x \xi) y=x(\xi y), \quad x, y \in N, \quad \xi \in H .
$$

Moreover $x \rightarrow L_{x}$, where $L_{x} \xi=x \xi, \xi \in H$, is a normal unital *homomorphism, and $x \rightarrow R_{x}$, where $R_{x} \xi=\xi x, \xi \in H$, is a normal unital *-antihomomorphism (see, e.g., [16, §2]).

Definition 2.1. Let N be a von Neumann algebra, let (N, H) be a normal Hilbert N-bimodule, and let $\delta \in \mathbf{R}_{+}$. Two n-tuples $\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $\left(\eta_{1}, \ldots, \eta_{n}\right)$ of unit vectors in H are called δ-related if there exists a family $\left(a_{i}\right)_{i \in I}$ of operators in N, such that

$$
\sum_{i \in I} a_{i}^{*} a_{i}=\sum_{i \in I} a_{i} a_{i}^{*}=1
$$

and

$$
\sum_{i \in I}\left\|a_{i} \xi_{k}-\eta_{k} a_{i}\right\|^{2}<\delta, \quad k=1, \ldots, n
$$

REMARK 2.2. Note that if $\sum_{i \in I} a_{i}^{*} a_{i}=\sum_{i \in I} a_{i} a_{i}^{*}=1$, then for all $\xi, \eta \in H$,

$$
\sum_{i \in I}\left\|a_{i} \xi-\eta a_{i}\right\|^{2}=\sum_{i \in I}\left\|a_{i}^{*} \eta-\xi a_{i}^{*}\right\|^{2}
$$

because the left side is equal to

$$
\|\xi\|^{2}+\|\eta\|^{2}-2 \sum_{i \in I} \operatorname{Re}\left(a_{i} \xi, \eta a_{i}\right)
$$

and the right side is equal to

$$
\|\xi\|^{2}+\|\eta\|^{2}-2 \sum_{i \in I} \operatorname{Re}\left(\xi a_{i}^{*}, a_{i}^{*} \eta\right)
$$

and it is clear that

$$
\operatorname{Re}\left(a_{i} \xi, \eta a_{i}\right)=\operatorname{Re}\left(a_{i} \xi a_{i}^{*}, \eta\right)=\operatorname{Re}\left(\xi a_{i}^{*}, a_{i}^{*} \eta\right)
$$

Hence, δ-relatedness is symmetric with respect to permutation of the two n-tuples.

Theorem 2.3. For every $n \in \mathbf{N}$ and every $\varepsilon>0$, there exists a $\delta=\delta(n, \varepsilon)>0$, such that for all von Neumann algebras N and all δ related n-tuples $\left(\xi_{1} \cdots \xi_{n}\right),\left(\eta_{1} \cdots \eta_{n}\right)$ of unit vectors in a normal Hilbert N-bimodule there exists a unitary $u \in N$ such that

$$
\left\|u \xi_{k}-\eta_{k} u\right\|<\varepsilon, \quad k=1, \ldots, n
$$

The proof of Theorem 2.3 is divided into a series of lemmas:
Lemma 2.4. Let N be a von Neumann algebra, and ξ, η be two vectors in a normal Hilbert N-bimodule H. For $r>0$, put

$$
g_{r}(t)= \begin{cases}1, & 0 \leq t \leq r \\ (r / t)^{1 / 2}, & t>r\end{cases}
$$

If $a \in N$, and $b=g_{r}\left(a a^{*}\right) a$, then

$$
\|b \xi-\eta b\|^{2}+\left\|b^{*} \eta-\xi b^{*}\right\|^{2} \leq\|a \xi-\eta a\|^{2}+\left\|a^{*} \eta-\xi a^{*}\right\|^{2} .
$$

Proof. Let $M_{2}(H)$ be the set of 2×2-matrices $\xi=\left(\xi_{i j}\right)_{i, j=1,2}$ with elements in H and with norm

$$
\|\xi\|^{2}=\sum_{i, j=1}^{n}\left\|\xi_{i j}\right\|^{2}
$$

$M_{2}(H)$ is a normal $M_{2}(H)$-bimodule, where left and right action is defined by formal matrix multiplication. Put

$$
\zeta=\left(\begin{array}{ll}
\xi & 0 \\
0 & \eta
\end{array}\right) \in M_{2}(H) \quad \text { and } \quad h=\left(\begin{array}{cc}
0 & a^{*} \\
a & 0
\end{array}\right) \in M_{2}(N) .
$$

Then $h=h^{*}$ and for $n=0,1,2, \ldots$

$$
h^{2 n+1}=\left(\begin{array}{cc}
0 & a^{*}\left(a a^{*}\right)^{n} \\
\left(a a^{*}\right)^{n} a & 0
\end{array}\right) .
$$

Put

$$
\varphi_{r}(t)=\operatorname{tg}_{r}\left(t^{2}\right)= \begin{cases}-r^{1 / 2}, & t<-r^{1 / 2} \\ t, & -r^{1 / 2} \leq t \leq r^{1 / 2} \\ r^{1 / 2}, & t>r^{1 / 2}\end{cases}
$$

By approximating $g(t)$ uniformly with polynomials on $\operatorname{sp}\left(a a^{*}\right)$ we get

$$
\varphi_{r}(h)=\left(\begin{array}{cc}
0 & a^{*} g_{r}\left(a a^{*}\right) \\
g_{r}\left(a a^{*}\right) a & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & b^{*} \\
b & 0
\end{array}\right) .
$$

Since

$$
h \zeta-\zeta h=\left(\begin{array}{cc}
0 & a^{*} \eta-\xi a^{*} \\
a \xi-\eta a & 0
\end{array}\right)
$$

we have

$$
\|h \zeta-\zeta h\|^{2}=\|a \xi-\eta a\|^{2}+\left\|a^{*} \eta-\xi a^{*}\right\|^{2} .
$$

Similarly

$$
\left\|\varphi_{r}(h) \zeta-\zeta \varphi_{r}(h)\right\|^{2}=\|b \xi-\eta b\|^{2}+\left\|b^{*} \eta-\xi b^{*}\right\|^{2} .
$$

Thus, we only have to prove that

$$
\left\|\varphi_{r}(h) \zeta-\zeta \varphi_{r}(h)\right\|^{2} \leq\|h \zeta-\zeta h\|^{2} .
$$

Let L_{h} (resp. R_{h}) be the operator on $M_{2}(H)$ defined by left (resp. right) multiplication with h on $M_{2}(H)$. Since L_{h} and R_{h} commute, there exists a representation π of the abelian C^{*}-algebra $C(\operatorname{sp}(h) \times \operatorname{sp}(h))$ into $B\left(M_{2}(H)\right)$, such that

$$
\pi(f \otimes g)=L_{f(h)} R_{g(h)}, \quad f, g \in C(\operatorname{sp}(h))
$$

Since $(\varphi(s)-\varphi(t))^{2} \leq(s-t)^{2}, s, t \in \mathbf{R}$ and since π is order preserving,

$$
\left(L_{\varphi_{r}(h)}-R_{\varphi_{r}(h)}\right)^{2} \leq\left(L_{h}-R_{h}\right)^{2} .
$$

Hence

$$
\left\|\varphi_{r}(h) \zeta-\zeta \varphi_{r(h)}\right\|^{2} \leq\|h \zeta-\zeta h\|^{2} .
$$

This completes the proof of Lemma 2.4.
Lemma 2.5. Let N be a von Neumann algebra and let ζ, η be two δ-related unit vectors in N. Then for every $r \in \mathbf{N}$ there exist r operators $b_{1}, \ldots, b_{r} \in N$, such that $\left\|b_{i}\right\| \leq 1, i=1, \ldots, r$ and

$$
\begin{gathered}
\left\|\left(\sum_{i=1}^{r} b_{i}^{*} b_{i}-1\right) \xi\right\|^{2}<\frac{12}{r}, \quad\left\|\left(\sum_{i=1}^{r} b_{i} b_{i}^{*}-1\right) \eta\right\|^{2}<\frac{12}{r} \\
\sum_{i=1}^{r}\left\|b_{i} \xi-\eta b_{i}\right\|^{2}<8 \delta, \quad \sum_{i=1}^{r}\left\|b_{i}^{*} \eta-\xi b_{i}^{*}\right\|^{2}<8 \delta .
\end{gathered}
$$

Proof. By Definition 2.1 there exists a family $\left(a_{i}\right)_{i \in I}$ of operators in N, such that

$$
\sum_{i \in I} a_{i}^{*} a_{i}=\sum_{i \in I} a_{i} a_{i}^{*}=1
$$

and

$$
\sum_{i \in I}\left\|a_{i} \xi-\eta a_{i}\right\|^{2}<\delta
$$

Moreover, by Remark 2.2 also

$$
\sum_{i \in I}\left\|a_{i}^{*} \eta-\xi a_{i}^{*}\right\|^{2}<\delta
$$

Therefore we can choose a finite subset a_{1}, \ldots, a_{p} of $\left(a_{i}\right)_{i \in I}$, such that

$$
\sum_{i=1}^{p}\left(a_{i}^{*} a_{i} \xi, \xi\right)>1-\frac{1}{2 r}, \quad \sum_{i=1}^{p}\left(a_{i} a_{i}^{*} \eta, \eta\right) \leq \frac{1}{2 r} .
$$

Clearly

$$
\sum_{i=1}^{p} a_{i}^{*} a_{i} \leq 1, \quad \sum_{i=1}^{p} a_{i} a_{i}^{*} \leq 1
$$

and

$$
\sum_{i=1}^{p}\left\|a_{i} \xi-\eta a_{i}\right\|^{2}<\delta, \quad \sum_{i=1}^{p}\left\|a_{i}^{*} \eta-\xi a_{i}^{*}\right\|^{2}<\delta .
$$

Let $\Omega=\left\{\left(s_{1}, \ldots, s_{p}\right)\left|s_{i} \in \mathbf{C},\left|s_{i}\right|=1\right\}\right.$ be the p-dimensional torus and let $d \omega$ be the normalized Haar measure on Ω. For $\omega \in \Omega$ we let $s_{1}(\omega), \ldots, s_{p}(\omega)$ denote the coordinate functions. Put

$$
A(\omega)=\sum_{\nu=1}^{p} s_{\nu}(\omega) a_{\nu}, \quad \omega \in \Omega
$$

As in the proof of [11, Lemma 4.3] one gets

$$
\begin{aligned}
& \int_{\Omega} A(\omega)^{*} A(\omega) d \omega=\sum_{i=1}^{p} a_{i}^{*} a_{i} \leq 1, \\
& \int_{\Omega} A(\omega) A(\omega)^{*} d \omega=\sum_{i=1}^{p} a_{i} a_{i}^{*} \leq 1,
\end{aligned}
$$

and

$$
\int_{\Omega}\left(A(\omega)^{*} A(\omega)\right)^{2} d \omega \leq 2, \quad \int_{\Omega}\left(A(\omega) A(\omega)^{*}\right)^{2} d \omega \leq 2
$$

Let g_{r} be as in Lemma 2.4, and put

$$
B(\omega)=g_{r}\left(A(\omega) A(\omega)^{*}\right) A(\omega), \quad \omega \in \Omega .
$$

Since $\operatorname{tg}_{r}(t)^{2} \leq r$, we have $B(\omega) B(\omega)^{*} \leq r 1$; thus

$$
\|B(\omega)\| \leq r^{1 / 2}, \quad \omega \in \Omega
$$

Put

$$
f_{r}(t)=\operatorname{tg}_{r}(t)^{2}= \begin{cases}t, & 0 \leq t \leq r, \\ r, & t>r .\end{cases}
$$

Then

$$
B(\omega) B(\omega)^{*}=f_{r}\left(A(\omega) A(\omega)^{*}\right) .
$$

Moreover, since

$$
B(\omega)=A(\omega) g_{r}\left(A(\omega)^{*} A(\omega)\right)
$$

we have also

$$
B(\omega)^{*} B(\omega)=f_{r}\left(A(\omega)^{*} A(\omega)\right) .
$$

Therefore,

$$
\left(B(\omega)^{*} B(\omega)\right)^{\alpha} \leq\left(A(\omega)^{*} A(\omega)\right)^{\alpha}, \quad \alpha>0,
$$

and

$$
\left(B(\omega) B(\omega)^{*}\right)^{\alpha} \leq\left(A(\omega) A(\omega)^{*}\right)^{\alpha}, \quad \alpha>0
$$

which implies that

$$
\begin{aligned}
\int_{\Omega} B(\omega)^{*} B(\omega) d \omega & \leq 1, \quad \int_{\Omega} B(\omega) B(\omega)^{*} d \omega \leq 1 \\
\int_{\Omega}\left(B(\omega)^{*} B(\omega)\right)^{2} d \omega & \leq 2, \quad \int_{\Omega}\left(B(\omega) B(\omega)^{*}\right)^{2} d \omega \leq 2
\end{aligned}
$$

It is easy to check that

$$
f_{r}(t) \geq t-t^{2} / 4 r, \quad t \geq 0
$$

Therefore

$$
\begin{aligned}
\int_{\Omega}\left(B(\omega)^{*} B(\omega) \xi, \xi\right) d \omega \geq \int_{\Omega}\left(A(\omega)^{*} A(\omega) \xi, \xi\right)-\frac{2}{4 r}\|\xi\|^{2} \\
=\left(\sum_{i=1}^{p}\left(a_{i}^{*} a_{i} \xi, \xi\right)\right)-\frac{1}{2 r}>1-\frac{1}{r}
\end{aligned}
$$

and similarly

$$
\int_{\Omega}\left(B(\omega) B(\omega)^{*} \eta, \eta\right) d \omega>1-\frac{1}{r}
$$

Put $\Omega^{r}=\Omega \times \cdots \times \Omega$ (r factors). Then arguing as in the proof of [11, Lemma 4.3] one gets

$$
\begin{aligned}
& \int_{\Omega^{r}}\left\|\sum_{i=1}^{r} B\left(\omega_{i}\right)^{*} B\left(\omega_{i}\right) \xi\right\|^{2} d \omega_{1} \cdots d \omega_{r} \\
& \quad=r \int_{\Omega}\left(\left(B(\omega)^{*} B(\omega)\right)^{2} \xi, \xi\right) d \omega+r(r-1)\left|\left(\int_{\Omega}\left(B(\omega)^{*} B(\omega) \xi, \xi\right) d \omega\right)^{2}\right| \\
& \quad \leq 2 r+r(r-1)=r(r+1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{\Omega^{r}} & \left\|\left(\frac{1}{r} \sum_{i=1}^{r} B\left(\omega_{i}\right)^{*} B\left(\omega_{i}\right)-1\right) \xi\right\|^{2} d \omega_{1} \cdots d \omega_{r} \\
& \leq \frac{r+1}{r}+1-2 \int_{\Omega}\left(B(\omega)^{*} B(\omega) \xi, \xi\right) d \omega<\frac{3}{r}
\end{aligned}
$$

and similarly

$$
\int_{\Omega^{r}}\left\|\left(\frac{1}{r} \sum_{i=1}^{r} B\left(\omega_{i}\right) B\left(\omega_{i}\right)^{*}-1\right) \eta\right\|^{2} d \omega_{1} \cdots d \omega_{r}<\frac{3}{r}
$$

Using that $\left(s_{1}, \ldots, s_{p}\right)$ are orthogonal vectors in $L^{2}(\Omega, d \omega)$ one gets

$$
\int_{\Omega}\|A(\omega) \xi-\eta A(\omega)\|^{2} d \omega=\sum_{i=1}^{p}\left\|a_{i} \xi-\eta a_{i}\right\|^{2}<\delta
$$

and

$$
\int_{\Omega}\left\|A(\omega)^{*} \eta-\xi A(\omega)^{*}\right\|^{2} d \omega=\sum_{i=1}^{p}\left\|a_{i}^{*} \eta-\xi a_{i}^{*}\right\|^{2}<\delta
$$

Hence by Lemma 2.4

$$
\begin{aligned}
& \int_{\Omega}\|B(\omega) \xi-\eta B(\omega)\|^{2} d \omega<2 \delta \\
& \int_{\Omega}\left\|B(\omega)^{*} \eta-\xi B(\omega)^{*}\right\|^{2} d \omega<2 \delta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \int_{\Omega^{r}} \frac{1}{r} \sum_{i=1}^{r}\left\|B\left(\omega_{i}\right) \xi-\eta B\left(\omega_{i}\right)\right\|^{2} d \omega_{1} \cdots d \omega_{r}<2 \delta \\
& \int_{\Omega^{r}} \frac{1}{r} \sum_{i=1}^{r}\left\|B\left(\omega_{i}\right)^{*} \eta-\xi B\left(\omega_{i}\right)^{*}\right\|^{2} d \omega_{1} \cdots d \omega_{r}<2 \delta
\end{aligned}
$$

Put now

$$
\begin{aligned}
& E_{1}=\left\{\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r} \left\lvert\,\left\|\left(\frac{1}{r} \sum_{i=1}^{r} B\left(\omega_{i}\right)^{*} B\left(\omega_{i}\right)-1\right) \xi\right\|^{2} \geq \frac{12}{r}\right.\right\} \\
& E_{2}=\left\{\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r} \left\lvert\,\left\|\left(\frac{1}{r} \sum_{i=1}^{r} B\left(\omega_{i}\right) B\left(\omega_{i}\right)^{*}-1\right) \eta\right\|^{2} \geq \frac{12}{r}\right.\right\} \\
& E_{3}=\left\{\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r} \left\lvert\, \frac{1}{r} \sum_{i=1}^{r}\left\|B\left(\omega_{i}\right) \xi-\eta B\left(\omega_{i}\right)\right\|^{2} \geq 8 \delta\right.\right\} \\
& E_{4}=\left\{\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r} \left\lvert\, \frac{1}{r} \sum_{i=1}^{r}\left\|B\left(\omega_{i}\right)^{*} \eta-\xi B\left(\omega_{i}\right)^{*}\right\|^{2} \geq 8 \delta\right.\right\}
\end{aligned}
$$

By the inequalities proved above,

$$
\int_{E_{l}} d \omega_{1} \cdots d \omega_{r}<\frac{1}{4}, \quad i=1,2,3,4
$$

Therefore $\Omega^{r} \backslash\left(E_{1} \cup E_{2} \cup E_{3} \cup E_{4}\right)$ is non-empty.
Choose now $\left(\omega_{1}, \ldots, \omega_{r}\right) \in \Omega^{r} \backslash\left(E_{1} \cup E_{2} \cup E_{3} \cup E_{4}\right)$, and put $b_{i}=$ $r^{-1 / 2} B\left(\omega_{i}\right)$. Then $\left\|b_{i}\right\| \leq 1, i=1, \ldots, r$, and the four inequalities in the lemma are satisfied.

Lemma 2.6. Let A be a unital C^{*}-algebra and let $U(A)$ be its unitary group. Let ξ, η be two unit vectors in a (unital) Hilbert A-bimodule
H. Assume that for every $\gamma>0$, there exists a finite set of operators $b_{1}, \ldots, b_{r} \in A$, such that

$$
\left\|\left(\sum_{i=1}^{r} b_{i}^{*} b_{i}-1\right) \xi\right\|^{2}<\gamma, \quad\left\|\left(\sum_{i=1}^{r} b_{i} b_{i}^{*}-1\right) \eta\right\|^{2}<\gamma
$$

and

$$
b_{i} \xi=\eta b_{i}, \quad b_{i}^{*} \eta=\xi b_{i}^{*}, \quad i=1, \ldots, r .
$$

Then

$$
\inf _{u \in U(A)}\|u \xi-\eta u\|=0 .
$$

Proof. The left and right actions can by standard techniques be extended (uniquely) to normal left and right actions of $A^{* *}$ on H. In this way H becomes a normal Hilbert $A^{* *}$-bimodule. As in the proof of Lemma 2.4 we can consider the 2×2-matrices with elements in H as a normal Hilbert $M_{2}\left(A^{* *}\right)$-Hilbert bimodule. Let ζ be the unit vector in $M_{2}(H)$ given by

$$
\zeta=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
\xi & 0 \\
0 & \eta
\end{array}\right)
$$

and put

$$
P=\left\{x \in M_{2}\left(A^{* *}\right) \mid x \zeta=\zeta x \text { and } x^{*} \zeta=\zeta x^{*}\right\} .
$$

Then P is clearly a von Neumann subalgebra of $A^{* *}$. Let τ be the vector functional on P given by ζ. For $x, y \in P$,

$$
(x y \zeta, \zeta)=(x \zeta y, \zeta)=\left(x \zeta, \zeta y^{*}\right)=\left(x \zeta, y^{*} \zeta\right)=(y x \zeta, \zeta),
$$

so τ is a tracial state on P. Therefore the support projection e of τ is a central projection in P, and $e P$ is a finite von Neumann algebra. It is clear that the two projections

$$
1 \otimes e_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad 1 \otimes e_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

in $M_{2}\left(A^{* *}\right)$ are contained P. We will prove that $e\left(1 \otimes e_{11}\right)$ and $e\left(1 \otimes e_{22}\right)$ are equivalent projections in P. Since τ is a faithful trace on $e P$ it is sufficient to prove that for every central projection f in $P, f \leq e$, one has

$$
\tau\left(f\left(1 \otimes e_{11}\right)\right)=\tau\left(f\left(1 \otimes e_{22}\right)\right) .
$$

Let $\gamma>0$. By the assumptions there exist $b_{1}, \ldots, b_{r} \in N$ such that

$$
\left\|\left(\sum_{i=1}^{r} b_{i}^{*} b_{i}-1\right) \xi\right\|^{2}<\gamma, \quad\left\|\left(\sum_{i=1}^{r} b_{i} b_{i}^{*}-1\right) \eta\right\|^{2}<\gamma
$$

and

$$
b_{i} \xi=\eta b_{i}, \quad b_{i}^{*} \eta=\xi b_{i}^{*}, \quad i=1, \ldots, r
$$

Put

$$
c_{i}=\left(\begin{array}{cc}
0 & 0 \\
b_{i} & 0
\end{array}\right) \in M_{2}\left(A^{* *}\right), \quad i=1, \ldots, r
$$

One checks easily that $c_{i} \zeta=\zeta c_{i}$ and $c_{i}^{*} \zeta=\zeta c_{i}^{*}$, i.e. $c_{i} \in P$ for $i=$ $1, \ldots, r$. Moreover

$$
\sum_{i=1}^{r} c_{i}^{*} c_{i}=\left(\sum_{i=1}^{r} b_{i}^{*} b_{i}\right) \otimes e_{11}, \quad \sum_{i=1}^{r} c_{i} c_{i}^{*}=\left(\sum_{i=1}^{r} b_{i} b_{i}^{*}\right) \otimes e_{22}
$$

Therefore

$$
\left\|\left(\sum_{i=1}^{r} c_{i}^{*} c_{i}-1 \otimes e_{11}\right) \zeta\right\|^{2}=\frac{1}{2}\left\|\left(\sum b_{i}^{*} b_{i}-1\right) \xi\right\|^{2}<\frac{1}{2} \gamma
$$

and

$$
\left\|\left(\sum_{i=1}^{r} c_{i} c_{i}^{*}-1 \otimes e_{22}\right) \zeta\right\|^{2}=\frac{1}{2}\left\|\left(\sum b_{i} b_{i}^{*}-1\right) \eta\right\|^{2}<\frac{1}{2} \gamma
$$

Hence for every central projection $f \in P, f \leq e$ we get

$$
\begin{aligned}
& \tau\left(f\left(\sum_{i=1}^{r} c_{i}^{*} c_{i}-1 \otimes e_{11}\right)\right)<\left(\frac{\gamma}{2}\right)^{1 / 2} \\
& \tau\left(f\left(\sum_{i=1}^{r} c_{i} c_{i}^{*}-1 \otimes e_{22}\right)\right)<\left(\frac{\gamma}{2}\right)^{1 / 2}
\end{aligned}
$$

However $\tau\left(f\left(\sum_{i=1}^{r} c_{i}^{*} c_{i}\right)\right)=\tau\left(f\left(\sum_{i=1}^{r} c_{i} c_{i}^{*}\right)\right)$, because $\tau(f \cdot)$ is a trace on P. Hence

$$
\left|\tau\left(f\left(1 \otimes e_{11}\right)\right)-\tau\left(f\left(1 \otimes e_{22}\right)\right)\right|<(2 \gamma)^{1 / 2}
$$

Since $\gamma>0$ was arbitrary, we get

$$
\tau\left(f\left(1 \otimes e_{11}\right)\right)=\tau\left(f\left(1 \otimes e_{22}\right)\right)
$$

which proves that $e\left(1 \otimes e_{11}\right) \sim e\left(1 \otimes e_{22}\right)$ in P.
Let $w \in P$ be a partial isometry in P for which

$$
w^{*} w=e\left(1 \otimes e_{11}\right), \quad w w^{*}=e\left(1 \otimes e_{22}\right)
$$

Since $w^{*} w \leq 1 \otimes e_{11}$ and $w w^{*} \leq 1 \otimes e_{22}, w$ is of the form

$$
w=v \otimes e_{21}=\left(\begin{array}{ll}
0 & 0 \\
v & 0
\end{array}\right)
$$

for some $v \in A^{* *}$. Clearly v is a partial isometry, and since $w \zeta=\zeta w$, we have $v \xi=\eta v$. Moreover

$$
\left(\left(1-v^{*} v\right) \xi, \xi\right)=2\left(\left(1 \otimes e_{11}-w^{*} w\right) \zeta, \zeta\right)=2 \tau\left((1-e)\left(1 \otimes e_{11}\right)\right)=0 .
$$

Therefore

$$
\|v \xi+\eta v\|=2\|v \xi\|=2\|\xi\|=2 .
$$

Thus, by Kaplansky's density theorem,

$$
\sup \{\|a \xi+\eta a\| \mid=a \in A,\|a\| \leq 1\}=2
$$

By the Russo-Dye-theorem [20] the unitball of A is the norm closed convex hull of $U(A)$. Hence also

$$
\sup \{\|u \xi+\eta u\| u \in U(A)\}=2 .
$$

By the parallellogram identity

$$
\|u \xi-\eta u\|^{2}+\|u \xi+\eta u\|^{2}=4
$$

for all $u \in U(A)$. Therefore

$$
\inf _{u \in U(A)}\|u \xi-\eta u\|=0 .
$$

Proof of Theorem 2.3. Let us first treat the case $n=1$: Assume that Theorem 2.3 is false for $n=1$. Then there exists an $\varepsilon_{0}>0$, such that for any $\gamma>0$ there exists a von Neumann algebra N, a normal Hilbert N-bimodule H and two γ-related unit vectors ξ, η, such that

$$
\inf _{u \in U(N)}\|u \xi-\eta u\| \geq \varepsilon_{0}
$$

Hence we can choose a sequence $\left(N_{m}\right)_{m \in \mathbf{N}}$ of von Neumann algebras, a sequence $\left(H_{m}\right)_{m \in \mathbf{N}}$ of normal Hilbert N_{m} bimodules and two sequences $\left(\xi_{m}\right)_{m \in \mathbf{N}}$ of unit vectors such that for each $m \in \mathbf{N}, \xi_{m}$ and η_{m} are ($1 / m$)-related unit vectors in H_{m}, and such that for all $m \in \mathbf{N}$

$$
\inf _{u \in U\left(N_{m}\right)}\left\|u \xi_{m}-\eta_{m} u\right\| \geq \varepsilon_{0}
$$

Choose now a free ultrafilter ω on \mathbf{N}, and let H_{ω} be the ultraproduct of the Hilbert spaces $\left(H_{m}\right)_{m \in \mathbf{N}}$ along ω (cf. [15]), i.e. H_{ω} is the quotient Banach space

$$
H_{\omega}=\mathscr{H} / I_{\omega}
$$

where

$$
\mathscr{H}=\left\{\left(\xi_{m}^{\prime}\right)_{m \in \mathbf{N}} \mid \xi_{m}^{\prime} \in H_{m}, \sup _{m \in \mathbf{N}}\left\|\xi_{m}^{\prime}\right\|<\infty\right\}
$$

with norm

$$
\left\|\left(\xi_{m}^{\prime}\right)_{m \in \mathbf{N}}\right\|=\sup _{m \in \mathbf{N}}\left\|\xi_{m}^{\prime}\right\|
$$

and I_{ω} is the closed subspace,

$$
I_{\omega}=\left\{\left(\xi_{m}^{\prime}\right)_{m \in \mathbf{N}} \in \mathscr{H} \mid \lim _{m \rightarrow \omega}\left\|\xi_{m}^{\prime}\right\|=0\right\}
$$

The quotient $H_{\omega}=\mathscr{H} / I_{\omega}$ is a Banach space with norm

$$
\left\|\xi^{\prime}\right\|=\lim _{m \rightarrow \omega}\left\|\xi_{m}^{\prime}\right\|
$$

where $\left(x_{m}\right)_{m \in \mathbf{N}}$ is any representing sequence for x. Moreover H_{ω} is a Hilbert space with inner product

$$
\left(\xi^{\prime}, \eta^{\prime}\right)=\lim _{m \rightarrow \omega}\left(\xi_{m}^{\prime}, \eta_{m}^{\prime}\right)
$$

Put $A=\bigoplus_{m=1}^{\infty} N_{m}$ in the von Neumann algebra sense. Then H_{ω} is a Hilbert A-bimodule with the following definition of left and right action:

If $x \in A, x=\left(x_{m}\right)_{m \in \mathbf{N}}$ and $\xi^{\prime} \in H_{\omega}$ has representing sequence $\left(\xi_{m}^{\prime}\right)_{m \in \mathbf{N}}$, then $x \xi^{\prime}$ has representing sequence $\left(x_{m} \xi_{m}^{\prime}\right)_{m \in \mathbf{N}}$ and $\xi^{\prime} x$ has representing sequence $\left(\xi_{m}^{\prime} x_{m}\right)_{m \in \mathbf{N}}$. The bimodule will in general not be normal, so therefore we will only consider A as a C^{*}-algebra.

Let $\gamma>0$, and choose $r \in \mathbf{N}$, such that $12 / r<\gamma$. By Lemma 2.5 we can for each $m \in \mathbf{N}$ find r operators $b_{i}^{(m)}, \ldots, b_{r}^{(m)}$, such that $\left\|b_{i}^{(m)}\right\| \leq 1, i=1, \ldots, r$, and

$$
\begin{aligned}
& \left\|\left(\sum_{i=1}^{r}\left(b_{i}^{(m)}\right)^{*} b_{i}^{(m)}-1\right) \xi_{m}\right\|^{2}<\frac{12}{r} \\
& \left\|\left(\sum_{i=1}^{r} b_{i}^{(m)}\left(b_{i}^{(m)}\right)^{*}-1\right) \eta_{m}\right\|^{2}<\frac{12}{r} \\
& \quad \sum_{i=1}^{r}\left\|b_{i}^{(m)} \xi_{m}-\eta_{m} b_{i}^{(m)}\right\|^{2}<\frac{8}{m} \\
& \sum_{i=1}^{r}\left\|\left(b_{l}^{(m)}\right)^{*} \eta_{m}-\xi_{m}\left(b_{l}^{(m)}\right)^{*}\right\|^{2}<\frac{8}{m}
\end{aligned}
$$

Let $\xi, \eta \in H_{\omega}$ be the two unit vectors in H_{ω} with representing sequences $\left(\xi_{m}\right)_{m \in \mathbf{N}}$ and $\left(\eta_{m}\right)_{m \in \mathbf{N}}$, and let b_{1}, \ldots, b_{r} be the elements in A defined by the sequences $\left(b_{i}^{(m)}\right)_{n \in \mathbf{N}}, i=1, \ldots, r$. Then $\left\|b_{l}\right\| \leq 1$,
$i=1, \ldots, r$, and

$$
\begin{array}{r}
\left\|\left(\sum_{i=1}^{r} b_{i}^{*} b_{i}-1\right) \xi\right\|^{2} \leq \frac{12}{r}<\gamma, \quad\left\|\left(\sum_{i=1}^{r} b_{i} b_{i}^{*}-1\right) \eta\right\|^{2} \leq \frac{12}{r}<\gamma \\
b_{i} \xi=\eta b_{i}, \quad b_{i}^{*} \eta=\xi b_{i}^{*}, \quad i=1, \ldots, r
\end{array}
$$

Hence by Lemma 2.6, there exists a unitary $u \in A$ such that

$$
\|u \xi-\eta u\|<\varepsilon_{0}
$$

The operator u is of the form $u=\left(u_{m}\right)_{m \in \mathbf{N}}$, where $u_{m} \in U\left(N_{m}\right)$. Since

$$
\lim _{m \rightarrow \omega}\left\|u_{m} \xi_{m}-\eta_{m} u_{m}\right\|=\|u \xi-\eta u\|<\varepsilon_{0}
$$

we must have

$$
\left\|u_{m} \xi_{m}-\eta_{m} u_{m}\right\|<\varepsilon_{0}
$$

for some $m \in \mathbf{N}$, contradicting that

$$
\inf _{u \in U\left(N_{m}\right)}\left\|u \xi_{m}-\eta_{m} u\right\| \geq \varepsilon_{0} \quad \text { for all } m \in \mathbf{N}
$$

This proves Theorem 2.3 for $n=1$. Let now $n \geq 2$. The Hilbert space $H^{n}=H \oplus \cdots \oplus H$ (n terms) is a normal Hilbert N-bimodule, where the left and right action is defined by

$$
x\left(\xi_{i}\right)_{i=1}^{n}=\left(x \xi_{i}\right)_{i=1}^{n}, \quad\left(\xi_{i}\right)_{i=1}^{n} x=\left(\xi_{i} x\right)_{i=1}^{n}
$$

for $x \in \mathbf{N}$ and $\left(\xi_{1}, \ldots, \xi_{n}\right) \in H^{n}$. Let $\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $\left(\eta_{1}, \ldots, \eta_{n}\right)$ be two δ-related n-tuples of unit vectors in H. Then

$$
\xi=\frac{1}{\sqrt{n}}\left(\xi_{1}, \ldots, \xi_{n}\right), \quad \eta=\frac{1}{\sqrt{n}}\left(\eta_{1}, \ldots, \eta_{n}\right)
$$

are two unit vectors in H^{n}. Moreover, ξ and η are δ-related, because for any set $\left(a_{i}\right)_{i \in 1}$ of operators in N

$$
\begin{aligned}
\sum_{i \in I}\left\|a_{i} \xi-\eta a_{i}\right\|^{2} & =\frac{1}{n} \sum_{i \in I} \sum_{k=1}^{n}\left\|a_{i} \xi-\eta_{k} a_{i}\right\|^{2} \\
& \leq \max _{1 \leq k \leq n}\left(\sum_{i=I}\left\|a_{i} \xi_{k}-\eta_{k} a_{i}\right\|^{2}\right)
\end{aligned}
$$

Since Theorem 2.3 is valid for $n=1$, we can for every $\varepsilon>0$ choose a $\delta>0$, such that when $\xi, \eta \in H^{n}$ comes from two δ-related n-tuples as above, then there exists $u \in u(N)$, such that $\|u \xi-\eta u\|<\varepsilon / \sqrt{n}$ or equivalently

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|u \xi_{k}-\eta_{k} u\right\|^{2}<\frac{\varepsilon^{2}}{n}
$$

Hence

$$
\left\|u \xi_{k}-\eta_{k} u\right\|<\varepsilon, \quad k=1, \ldots, n
$$

This completes the proof of Theorem 2.3.
3. A relative Dixmier property for factors of type III_{λ}. Let N be a (σ-finite) factor of type III_{λ}, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. Then the centralizer M_{φ} of φ has trivial relative commutant

$$
M_{\varphi}^{\prime} \cap N=\mathbf{C} I
$$

(cf. §1). Since the unitary group $U\left(M_{\varphi}\right)$ leaves the faithful state φ invariant, it follows from [17, $\S 2$, Theorem 1] that for every $x \in M$ the σ-weak closure of

$$
\operatorname{conv}\left\{u x u^{*} \mid u \in U\left(M_{\varphi}\right)\right\}
$$

contains a scalar operator. We prove below that already the norm closure of the convex set contains a scalar operator. It is not known whether the same holds if ψ is an unbounded (normal semifinite faithful) weight on M with $\sigma_{t_{0}}^{\psi}=$ id, i.e. ψ is a "trace généralisée" in the sense of Connes [4, §4.3]. By a result of Halpern, Kaftal and Weiss [14, Theorem 4.6 and §5] one has in this case that the norm closure of $\operatorname{conv}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\}$ contains a scalar operator for all $x \in M$ for which $t \rightarrow \sigma_{t}^{\psi}(x)$ is norm-continous.

Theorem 3.1. Let N be a factor of type III_{λ}, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. Then for every $x \in N$

$$
\varphi(x) 1 \in \overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\varphi}\right)\right\}
$$

(norm closure).
Following [22] we put

$$
N_{n}=\left\{x \in N \mid \sigma_{t}^{\varphi}(x)=\lambda^{\text {int }}, t \in \mathbf{R}\right\}
$$

and we let ε_{n} be the projection of norm 1 of N onto N_{n} given by

$$
\varepsilon_{n}(x)=\frac{1}{t_{0}} \int_{0}^{t_{0}} \sigma_{t}^{\varphi}(x) \lambda^{-\mathrm{int}} d t
$$

Note that $N_{0}=N_{\varphi}$ and that:

$$
\begin{array}{lll}
\varepsilon_{0}(1)=1, & \varphi \circ \varepsilon_{n}=1 & \text { for } n \neq 0, \\
\varphi \circ \varepsilon_{0}=\varphi, & \varphi \circ \varepsilon_{n}=0 & \text { for } n \neq 0 .
\end{array}
$$

Every $x \in N$ has a formal expansion

$$
x \sim \sum_{n=-\infty}^{\infty} \varepsilon_{n}(x)
$$

The sum is in general not σ-strongly convergent. By standard Fourier analysis one gets that for $x, y \in N$,

$$
x=y \Leftrightarrow \varepsilon_{n}(x)=\varepsilon_{n}(y) \quad \text { for all } n \in \mathbf{Z}
$$

We prove first

Lemma 3.2. If $x \in N_{n}, n \neq 0$, then

$$
0 \in \overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\varphi}\right)\right\}
$$

(norm closure).
Proof. If $x \in N$ then $x^{*} \in N_{-n}$, so it is sufficient to consider the case $x \in N_{n}, n>0$: let $x=u|x|$ be the polar decomposition of x. Since $x^{*} x \in N_{0}=N_{\varphi}$, and since

$$
u=\lim _{\varepsilon \rightarrow 0} x\left(x^{*} x+\varepsilon\right)^{-1 / 2} \quad(\sigma \text {-strongly })
$$

it follows that $u \in N_{n}$. Hence by [22, Lemma 1.6],

$$
\varphi\left(u u^{*}\right)=\lambda^{n} \varphi\left(u^{*} u\right) \leq \lambda^{n}
$$

Choose an integer $m \in N$, such that

$$
1 / m<1-\lambda^{n}
$$

Since N_{φ} is a II_{1}-factor with trace φ, we can choose projection $q \leq$ $1-u u^{*}$, such that

$$
\varphi(q)=1 / m
$$

Note that

$$
q x=q\left(1-u u^{*}\right) u|x|=0
$$

By comparison theory there exists m orthogonal projections q_{1}, \ldots, q_{m} in N_{φ} with sum 1, such that $q=q_{m}$ and

$$
\varphi\left(q_{i}\right)=1 / m, \quad i=1, \ldots, m
$$

Moreover we can choose a unitary $u \in M_{\varphi}$, such that

$$
\begin{aligned}
u q_{i} u^{*} & =q_{i+1}, \quad i=1, \ldots, m-1 \\
u q_{m} u^{*} & =q_{1}
\end{aligned}
$$

Put $x_{j}=u^{j} x\left(u^{j}\right)^{*}, j=1, \ldots, m$. Since $q_{m} x=q x=0$, we have

$$
q_{j} x_{j}=\left(u^{j} q_{m}\left(u^{j}\right)^{*}\right)\left(u^{j} x\left(u^{j}\right)^{*}\right)=0
$$

for $j=1, \ldots, m$. Moreover $\left\|x_{j}\right\|=\|x\|$.
Let $\xi \in H$ (the Hilbert space on which N acts), then

$$
\begin{aligned}
\sum_{j=1}^{m}\left\|\left(1-q_{j}\right) \xi\right\|^{2} & =\sum_{i=1}^{m}\left(\left(1-q_{j}\right) \xi, \xi\right) \\
& =m\|\xi\|^{2}-\sum_{i=1}^{m}\left(q_{j} \xi, \xi\right)=(m-1)\|\xi\|^{2}
\end{aligned}
$$

Since $x_{j}^{*} q_{j}=0, j=1, \ldots, m$, it follows that

$$
\begin{aligned}
\left\|\sum_{j=1}^{m} x_{j}^{*} \xi\right\| & =\left\|\sum_{j=1}^{m} x_{j}^{*}\left(1-q_{j}\right) \xi\right\| \\
& \leq\left(\sum_{j}^{m}\left\|x_{j}\right\|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{m}\left\|\left(1-q_{j}\right) \xi\right\|^{2}\right)^{1 / 2} \\
& \leq m^{1 / 2}\|x\|(m-1)^{1 / 2}\|\xi\|
\end{aligned}
$$

which shows that

$$
\left\|\sum_{j=1}^{m} x_{j}\right\|=\left\|\sum_{j=1}^{m} x_{j}^{*}\right\| \leq m^{1 / 2}(m-1)^{1 / 2}\|x\| .
$$

Put

$$
y=\frac{1}{m} \sum_{j=1}^{m} u_{j} x u_{j}^{*}=\frac{1}{m} \sum_{j=1}^{m} x_{j} .
$$

Then

$$
\|y\| \leq\left(1-\frac{1}{m}\right)^{1 / 2} x
$$

Since $u_{j} \in M_{\varphi}, y \in N_{n}$, so we can iterate the argument and get that for every $l \in \mathbf{N}$, there exist

$$
\alpha_{1}, \ldots, \alpha_{l} \in \operatorname{conv}\left\{\operatorname{ad}(u) \mid u \in U\left(M_{\varphi}\right)\right\}
$$

such that

$$
\left\|\alpha_{l} \circ \alpha_{l-1} \circ \cdots \circ \alpha_{1}(x)\right\| \leq\left(1-\frac{1}{m}\right)^{l / 2}\|x\| .
$$

Since $(1-1 / m)^{l / 2} \rightarrow 0$ for $l \rightarrow \infty$, Lemma 3.2 is proved.

Lemma 3.3. Let $n>0$ be an integer for which

$$
4 \lambda^{n} \leq 1-\lambda .
$$

If $x \in N$ and $\varepsilon_{k}(x)=0$ for $|k|<n$, then

$$
0 \in \overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in M_{\varphi}\right\}
$$

(norm closure).
Proof. Let r_{k} (resp. s_{k}) be the support projection (resp. range projection) of $\varepsilon_{k}(x), k \in \mathbf{Z}$. By the proof of Lemma 3.2

$$
\varphi\left(r_{k}\right) \leq \lambda^{k}, \quad k>0,
$$

and since $\varepsilon_{-k}(x)^{*}=\varepsilon\left(x^{*}\right)$, we have also

$$
\varphi\left(s_{-k}\right) \leq \lambda^{k}, \quad k>0 .
$$

Moreover, $r_{k}, s_{k} \in M_{\varphi}$ for all $k \in \mathbf{Z}$. Put

$$
q=\left(\bigvee_{k=n}^{\infty} r_{k}\right) \vee\left(\bigvee_{k=n}^{\infty} s_{k}\right)
$$

Since φ is a trace on M_{φ},

$$
\varphi(q) \leq \sum_{k=n}^{\infty}\left(\varphi\left(r_{k}\right)+\varphi\left(s_{k}\right)\right) \leq \frac{2 \lambda^{n}}{1-\lambda} \leq \frac{1}{2} .
$$

Hence we can choose a projection $p \in M_{\varphi}, p \leq 1-q$, such that

$$
\varphi(p)=1 / 2 .
$$

Clearly

$$
\begin{aligned}
p \varepsilon_{k}(x)=0, & & k \geq n \\
\varepsilon_{k}(x) p=0, & & k \leq-n
\end{aligned}
$$

Since $\varepsilon_{k}(x)=0$ for $|k|<n$, we get

$$
p \varepsilon_{k}(x) p=0 \text { for all } k \in \mathbf{Z}
$$

Moreover, since $p \in M_{\varphi}=N_{0}$,

$$
\varepsilon_{k}(p x p)=p \varepsilon_{k}(x) p \quad \text { for all } k \in \mathbf{Z}
$$

which implies that $p x p=0$.
Since $\varphi(p)=\varphi(1-p)=\frac{1}{2}$, there exists a selfadjoint unitary $u \in M_{\varphi}$, such that

$$
u p u^{*}=1-p .
$$

Put

$$
y=\frac{1}{2}\left(x+u x u^{*}\right) .
$$

Then

$$
\|p y p\|=\frac{1}{2}\left\|p u x u^{*} p\right\| \leq \frac{1}{2}\|x\|
$$

and since $(1-p) u=u p$, we get also

$$
\|(1-p) y(1-p)\|=\frac{1}{2}\|(1-p) x(1-p)\| \leq \frac{1}{2}\|x\| .
$$

Put next $v=2 p-1$, and put

$$
z=\frac{1}{2}\left(y+v y v^{*}\right)=p y p+(1-p) y(1-p) .
$$

Then

$$
\|z\|=\max \{\|p y p\|,\|(1-p) y(1-p)\|\} \leq \frac{1}{2}\|x\|
$$

and

$$
z \in \operatorname{conv}\left\{u x u^{*} \mid u \in U\left(M_{\varphi}\right)\right\} .
$$

It is clear that

$$
\varepsilon_{k}(z)=0 \quad \text { for }|k|<n,
$$

so by iterating the argument as in Lemma 3.2, we get

$$
0 \in \overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\varphi}\right)\right\}
$$

Proof of Theorem 3.1. Let $x \in N$, and let n be as in Lemma 3.3. Then

$$
x=\varepsilon_{0}(x)+\sum_{0<|k|<n} \varepsilon_{k}(x)+x^{\prime}
$$

where

$$
\varepsilon_{k}\left(x^{\prime}\right)=0 \quad \text { for }|k|<n .
$$

Let $\varepsilon>0$ and put $\sigma=\varepsilon / 2 n$. Since $\varepsilon_{0}(x) \in N_{0}=M_{\varphi}$, and since $\varphi\left(\varepsilon_{0}(x)\right)=\varphi(x)$, it follows by the Dixmier approximation theorem for II_{1}-factors (cf. [9, Chapter III, $\left.\S 5\right]$) that there exists

$$
\alpha_{0} \in \operatorname{conv}\left\{\operatorname{ad}(u) \mid u \in M_{\varphi}\right\}
$$

such that

$$
\left\|\alpha_{0}\left(\varepsilon_{0}(x)\right)-\varphi(x) 1\right\|<\sigma
$$

Using that every

$$
\alpha \in \operatorname{conv}\left\{\operatorname{ad}(u) \mid u \in M_{\varphi}\right\}
$$

commutes with every $\varepsilon_{k}, k \in \mathbf{Z}$, we can by Lemma 3.2 find

$$
\alpha_{1}, \ldots, \alpha_{2 n-2} \in \operatorname{conv}\left\{\operatorname{ad}(u) \mid u \in M_{\varphi}\right\}
$$

such that

$$
\begin{aligned}
& \left\|\alpha_{1} \alpha_{0} \varepsilon_{1}(x)\right\|<\sigma \\
& \left\|\alpha_{2} \alpha_{1} \alpha_{0} \varepsilon_{2}(x)\right\|<\sigma \\
& \vdots \\
& \left\|\alpha_{n-1} \alpha_{n-2} \cdots \alpha_{0}\left(\varepsilon_{n-1}(x)\right)\right\|<\sigma \\
& \left\|\alpha_{n} \alpha_{n-1} \cdots \alpha_{0}\left(\varepsilon_{-1}(x)\right)\right\|<\sigma \\
& \left\|\alpha_{n+1} \alpha_{n} \cdots \alpha_{0}\left(\varepsilon_{-2}(x)\right)\right\|<\sigma \\
& \vdots \\
& \left\|\alpha_{2 n-2} \alpha_{2 n-3} \cdots \alpha_{0}\left(\varepsilon_{-n+1}(x)\right)\right\|<\sigma
\end{aligned}
$$

Since for $|k|<n$,

$$
\begin{aligned}
& \varepsilon_{k}\left(\alpha_{2 n-2} \alpha_{2 n-3} \cdots \alpha_{0}\left(x^{\prime}\right)\right) \\
& \quad=\alpha_{2 n-2} \alpha_{2 n-3} \cdots \alpha_{0}\left(\varepsilon_{k}\left(x^{\prime}\right)\right)=0
\end{aligned}
$$

we can by Lemma 3.3 find

$$
\alpha_{2 n-1} \in \operatorname{conv}\left\{\operatorname{ad}(u) \mid u \in M_{\varphi}\right\}
$$

such that

$$
\left\|\alpha_{2 n-1} \alpha_{2 n-2} \cdots \alpha_{0}\left(x^{\prime}\right)\right\|<\sigma
$$

Put $\beta=\alpha_{2 n-1} \alpha_{2 n-2} \cdots \alpha_{0}$. Then

$$
\begin{aligned}
& \left\|\beta\left(\varepsilon_{0}(x)\right)-\varphi(x) 1\right\|<\sigma \\
& \left\|\beta\left(\varepsilon_{k}(x)\right)\right\|<\sigma \quad \text { for } 0<|k|<n \\
& \left\|\beta\left(x^{\prime}\right)\right\|<\sigma
\end{aligned}
$$

Hence

$$
\|\beta(x)-\varphi(x) 1\|<2 n \sigma=\varepsilon
$$

This completes the proof of Theorem 3.1.
It is clear that by repeated use of Theorem 3.1one gets the following "Relative Dixmier averaging process" (cf. [9, Chapter III, §3, proof of Lemma 5]):

Corollary 3.4. Let N and φ be as in Theorem 3.1. Then for every finite set x_{1}, \ldots, x_{n} of operators in N and every $\varepsilon>0$ there exists a convex combination α of inner automorphisms implemented by unitaries
from M_{φ}, such that

$$
\left\|\alpha\left(x_{k}\right)-\varphi\left(x_{k}\right) 1\right\|<\varepsilon
$$

for $k=1, \ldots, n$.
4. A result on σ^{φ}-invariant completely positive maps. Let N be a von Neumann algebra with a faithful normal state φ, and let $F \subseteq N$ be a von Neumann subalgebra for which

$$
\sigma_{t}^{\varphi}(F)=F, \quad t \in \mathbf{R}
$$

We say that a linear map $T: F \rightarrow N$ is σ^{φ}-invariant if

$$
T\left(\sigma_{t}^{\varphi}(x)\right)=\sigma_{t}^{\varphi}(T(x)), \quad x \in F
$$

Note that if F is a finite dimensional subfactor of N, then $N \cong F \otimes$ F^{c}, where F^{c} is the relative commutant of F in N. In this case the condition
(i)

$$
\sigma_{t}^{\varphi}(F)=F, \quad t \in \mathbf{R}
$$

is equivalent to
(ii)

$$
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F c}
$$

Indeed, the implication (ii) \Rightarrow (i) is obvious, and if F satisfies (i), then by [21] there is a (unique) normal faithful conditional expectation $\varepsilon: N \rightarrow F$ for which

$$
\varphi \circ \varepsilon=\varphi
$$

For $x \in F$ and $y \in F^{c}$,

$$
\varphi(x y)=\varphi \circ \varepsilon(x y)=\varphi(x \varepsilon(y))
$$

But $\varepsilon(y)$ must commute with every element in F, and so $\varepsilon(y)=\lambda 1$ for some $\lambda \in \mathbf{C}$. Moreover

$$
\lambda=\varphi \circ \varepsilon(y)=\varphi(y)
$$

Hence

$$
\varphi(x y)=\varphi(x) \varphi(y)
$$

which shows that (i) \Rightarrow (ii).
The main result of this section is the following generalization of [11, Proposition 5.2] to factors of type III_{λ} :

Theorem 4.1. Let N be a factor of type III_{λ}, let φ be a normal faithful state on N, such that $\sigma_{t_{0}}^{\varphi}=\mathrm{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. Let F be a finite dimensional subfactor of N for which

$$
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F c}
$$

and let $T: F \rightarrow N$ be a σ^{φ}-invariant completely positive map, satisfying

$$
T(1)=1 \quad \text { and } \quad \varphi \circ T=\left.\varphi\right|_{F} \text {. }
$$

Then for every $\delta>0$ there exists a sequence $\left(a_{i}\right)_{i=1}^{\infty}$ of operators in the centralizer M_{φ} of φ, such that

$$
\sum_{i=1}^{\infty} a_{i}^{*} a_{i}=\sum_{i=1}^{\infty} a_{i} a_{i}^{*}=1
$$

and

$$
\left\|T(x)-\sum_{i=1}^{\infty} a_{i}^{*} x a_{i}\right\| \leq \delta\|x\| \quad \text { for all } x \in F
$$

Lemma 4.2. Let N be a III_{λ}-factor and φ a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. If e, f are two projections in the centralizer M_{φ}, such that

$$
\varphi(f)=\lambda^{n} \varphi(e)
$$

for some $n \in \mathbf{Z}$, then there is a partial isometry $u \in N_{n}$, i.e.

$$
\sigma_{t}^{\varphi}(u)=\lambda^{\mathrm{int}} u, \quad t \in \mathbf{R}
$$

such that $e=u^{*} u, f=u u^{*}$.
Proof. Let ω be the functional on M_{2} given by

$$
\omega=\operatorname{Tr}(h \cdot), \quad \text { where } h=\left(\begin{array}{cc}
\lambda^{n} & 0 \\
0 & 1
\end{array}\right) .
$$

Let $\left(e_{r s}\right)_{j=1,2}$ be the matrix units in M_{2}. Then $\sigma_{t_{0}}^{\omega}=$ id. Let $\chi=\varphi \otimes \omega$. Since $\sigma_{t_{0}}^{\chi}=$ id and since $N \otimes M_{2} \cong N$ is of type III_{λ}, the centralizer M_{χ} is a II_{1}-factor. Put

$$
\tilde{e}=e \otimes e_{11}, \quad \tilde{f}=f \otimes e_{22}
$$

Then

$$
\tilde{e}, \tilde{f} \in M_{\chi}, \quad \text { and } \quad \chi(\tilde{e})=\lambda^{n} \tau(e)=\tau(f)=\chi(\tilde{f}) .
$$

Since χ is a scalar multiple of the unique tracial state on M_{χ}, we have $\tilde{e} \sim \tilde{f}$ in M_{χ}. Hence, there exists $v \in M_{\chi}$, such that

$$
\left(\begin{array}{ll}
e & 0 \\
0 & 0
\end{array}\right)=v^{*} v, \quad\left(\begin{array}{ll}
0 & 0 \\
0 & f
\end{array}\right)=v v^{*}
$$

Since $v^{*} v \leq 1 \otimes e_{11}$ and $v v^{*} \leq 1 \otimes e_{22}, v$ is of the form $v=u \otimes e_{21}$ for some $u \in M$. Clearly

$$
u^{*} u=e \quad \text { and } \quad u u^{*}=f .
$$

Moreover, since $v \in M_{\chi}$,

$$
\sigma_{t}^{\varphi}(u) \otimes \sigma_{t}^{\omega}\left(e_{21}\right)=u \otimes e_{21}, \quad t \in \mathbf{R} .
$$

But $\sigma_{t}^{\omega}\left(e_{21}\right)=h^{i t} e_{21} h^{-i t}=\lambda^{- \text {int }} e_{21}$. Hence

$$
\sigma_{t}^{\varphi}(u)=\lambda^{\text {int }} u, \quad t \in \mathbf{R} .
$$

Lemma 4.3. Let N be a factor of type III_{λ}, let φ be a normal faithful state on N such that $\sigma_{t_{0}}^{\varphi}=\mathrm{id}$. For each $n \in \mathbf{Z}$ there exists a finite set v_{1}, \ldots, v_{p} partial isometries in

$$
N_{n}=\left\{x \in N \mid \sigma_{t}^{\varphi}(x)=\lambda^{\text {int }} x, t \in \mathbf{R}\right\}
$$

such that

$$
\sum_{i=1}^{p} v_{i}^{*} v_{i}=1 .
$$

Proof. The case $n=0$ is trivial (take $p=1$ and $v_{1}=1$). Assume next $n>0$. Since M_{φ} is a II_{1}-factor with trace φ, we can choose a projection $f \in M_{\varphi}$, such that $\varphi(f)=\lambda^{n}$. By Lemma 4.2 there exists an isometry $v \in N_{n}$, for which $v^{*} v=1$ and $v v^{*}=f$, so $p=1$ and $v_{1}=v$ can be used. Let now $n<0$. Then $\lambda^{n}>1$. Let q (resp. r) be the integer part (resp. fractional part) of λ^{n} :

$$
\lambda^{n}=q+r, \quad q \in \mathbf{N}, \quad 0 \leq r<1 .
$$

Choose q orthogonal projections e_{1}, \ldots, e_{q} in M_{φ} with $\varphi\left(e_{j}\right)=\lambda^{-n}$, and put

$$
e_{q+1}=1-\sum_{j=1}^{q} e_{j} .
$$

Then $\varphi\left(e_{q+1}\right)=\lambda^{-n} r$. Let $f \in M_{\varphi}$ be a projection for which $\varphi(e)=r$. By Lemma 4.2 there exist partial isometries $v_{1}, \ldots, v_{q+1} \in N_{n}$, such that

$$
v_{j}^{*} v_{j}=e_{j}, \quad j=1, \ldots, q+1
$$

and

$$
v_{j} v_{j}^{*}= \begin{cases}1, & j=1, \ldots, q \\ f, & j=q+1\end{cases}
$$

Clearly

$$
\sum_{j=1}^{q+1} v_{j}^{*} v=1
$$

Lemma 4.4. Let N be a factor of type III_{λ}, let φ be a normal faithful state on N, for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}$. Let $F \subseteq N$ be a finite dimensional subfactor, such that

$$
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F c}
$$

and let $T: F \rightarrow N$ be a σ^{φ}-invariant completely positive map. Then there exists a finite set $a_{1}, \ldots, a_{l} \in M_{\varphi}$, such that

$$
T(x)=\sum_{j=1}^{l} a_{j}^{*} x a_{j}, \quad x \in M_{\varphi}
$$

Proof. Let h be the Radon-Nikodym derivative of $\varphi=\left.\varphi\right|_{F}$ with respect to the trace Tr on F. We can choose a system $\left(e_{r s}\right)_{r, s=1, \ldots, m}$ of matrix units for F, such that

$$
h=\sum_{r=1}^{m} \lambda_{r} e_{r r}, \quad \lambda_{1}, \ldots, \lambda_{m} \in \mathbf{R}_{+}
$$

Since $\sigma_{t_{0}}^{\varphi}=\mathrm{id}$, it follows that

$$
\lambda_{r} / \lambda_{s} \in\left\{\lambda^{n} \mid n \in \mathbf{Z}\right\}
$$

Let $n_{r} \in \mathbf{Z}$ be the integer for which

$$
\lambda_{r} / \lambda_{1}=\lambda^{n_{r}} .
$$

Note that for $r, s \in\{1, \ldots, m\}$,

$$
\sigma_{t}^{\varphi}\left(e_{r s}\right)=\sigma_{t}^{\psi}\left(e_{r s}\right)=h^{i t} e_{r s} h^{-i t}=\lambda^{i t\left(n_{r}-n_{s}\right)} e_{r s}
$$

Since T is completely positive, the operator

$$
a=\sum_{r, s=1}^{m} T\left(e_{r s}\right) \otimes e_{r s}
$$

in $N \otimes F$ is positive (cf. [3, Lemma 2.1]). Let $b=a^{1 / 2}$. Then b is of the form

$$
b=\sum_{r, s=1}^{m} b_{r s} \otimes e_{r s}, \quad b_{r s} \in N
$$

and

$$
T\left(e_{r s}\right)=\sum_{k=1}^{m} b_{k r}^{*} b_{k s}, \quad r, s=1, \ldots, m
$$

Put

$$
c_{k l}=\sum_{r=1}^{m} e_{r l} b_{k r}, \quad k, l=1, \ldots, m
$$

Then a simple calculation (cf. [11, proof of Proposition 2.1]) shows that

$$
\sum_{k, l}^{m} c_{k l}^{*} e_{r s} c_{k l}=T\left(e_{r s}\right)
$$

Hence,

$$
T(y)=\sum_{k, l=1}^{m} c_{k l}^{*} y c_{k l}, \quad y \in F .
$$

Let ω be the positive functional on F given by

$$
\omega(y)=\operatorname{Tr}\left(h^{-1} y\right), \quad y \in F .
$$

Then

$$
\sigma_{t}^{\omega}\left(e_{r s}\right)=\lambda^{-i t\left(n_{r}-n_{s}\right)} e_{r s} .
$$

Since T is σ^{φ}-invariant,

$$
\sigma_{t}^{\varphi}\left(T\left(e_{r s}\right)\right)=T\left(\sigma_{t}^{\varphi}\left(e_{r s}\right)\right)=\lambda^{i t\left(n_{r}-n_{s}\right)} e_{r s} .
$$

Hence

$$
\sigma_{t}^{\varphi \otimes \omega}\left(T\left(e_{r s}\right) \otimes e_{r s}\right)=T\left(e_{r s}\right) \otimes e_{r s},
$$

and therefore $a \in M_{\varphi \otimes \omega}$. Thus also $b=a^{1 / 2} \in M_{\varphi \otimes \omega}$, which implies that

$$
\sigma_{t}^{\varphi}\left(b_{r s}\right)=\lambda^{i t\left(n_{r}-n_{s}\right)}, \quad r, s=1, \ldots, m .
$$

Therefore

$$
\sigma_{t}^{\varphi}\left(c_{k l}\right)=\lambda^{i t\left(n_{k}-n_{l}\right)}, \quad k, l=1, \ldots, m
$$

Hence we have shown that there exist $d=m^{2}$ operators c_{1}, \ldots, c_{d} in N, such that

$$
T(y)=\sum_{j=1}^{d} c_{j}^{*} y c_{j}, \quad y \in F
$$

and integers n_{1}, \ldots, n_{d}, such that

$$
\sigma_{t}^{\varphi}\left(c_{j}\right)=\lambda^{i n, t} c_{j}, \quad t \in \mathbf{R}, j=1, \ldots, d
$$

Since $N=F \otimes F^{c} \cong M_{m} \otimes F^{c}, F^{c}$ is also a factor of type III_{λ}. Moreover, $\sigma_{t}^{\left.\varphi\right|_{F c}}$ is just the restriction of σ_{t}^{φ} to F^{c}. Particularly $\sigma_{t_{0}}^{\left.\varphi\right|_{c}}=$ $\operatorname{id}_{F^{c} .}$. Therefore we can apply Lemma 4.3 to the pair $\left(F^{c},\left.\varphi\right|_{F^{c}}\right)$ and obtain:
For $j=1, \ldots, d$ there exists a finite set $v_{j, 1}, \ldots, v_{j, p(j)}$ of operators in F^{c} for which

$$
\sigma_{t}^{\varphi}\left(v_{j l}\right)=\lambda^{-i n, t}
$$

and

$$
\sum_{l=1}^{p(j)} v_{j l}^{*} v_{j l}=1
$$

Put

$$
a_{j l}=v_{j l} c_{j}, \quad j=1, \ldots, d, l=1, \ldots, p(j)
$$

Then $\sigma_{t}^{\varphi}\left(a_{j l}\right)=a_{j l}$ for all j and l. Moreover, since $v_{j l} \in F^{c}$, we get for $x \in F$:

$$
\begin{aligned}
T(x) & =\sum_{j=1}^{d} c_{j}^{*} x c_{j}=\sum_{j=1}^{d} c_{j}^{*}\left(\sum_{l=1}^{p(j)} v_{j l}^{*} x v_{j l}\right) c_{j} \\
& =\sum_{j=1}^{d}\left(\sum_{l=1}^{p(j)} a_{j l}^{*} x a_{j l}\right) .
\end{aligned}
$$

This proves Lemma 4.4.
Lemma 4.5. Let N, φ and F be as in Lemma 4.4 and let ε be the (unique) φ-invariant conditional expectation of N onto F. Then for every $a \in N$

$$
\varepsilon(a) \in \overline{\operatorname{conv}}\left\{u a u^{*} \mid u \in U\left(F^{c} \cap M_{\varphi}\right)\right\}
$$

(norm closure).
Proof. Using that $\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F^{c}}$ it is easily seen that

$$
\varepsilon(x y)=x \varphi(y), \quad x \in F, y \in F^{c} .
$$

Let $\left(e_{i j}\right)_{i, j=1, \ldots, m}$ be a system of matrix units for F. Then

$$
a=\sum_{i, j=1}^{m} e_{i j} a_{i j}
$$

where $a_{i j} \in F^{c}$. Hence

$$
\varepsilon(a)=\sum_{i, j=1}^{m} \varphi\left(a_{i j}\right) e_{i j} .
$$

Let $\delta>0$. By Corollary 3.4 there exists a convex combination α of inner automorphisms of F^{c} given by unitaries in $\left.F^{c} \cap M_{\varphi}\right|_{F^{c}}=F^{c} \cap M_{\varphi}$ such that

$$
\left\|\alpha\left(a_{i j}\right)-\varphi\left(a_{i j}\right) 1\right\|<\delta / m^{2}
$$

for $i, j=1, \ldots, m$. Let $\beta=\operatorname{id}_{F} \otimes \alpha$. Then

$$
\beta \in \operatorname{conv}\left\{\operatorname{ad}_{N}(u) \mid u \in U\left(F^{c}\right)\right\}
$$

and

$$
\beta(a)=\sum_{i, j=1}^{m} e_{i j} \alpha\left(a_{i j}\right)
$$

Hence

$$
\|\beta(a)-\varepsilon(a)\|<\sum_{i, j}^{m}\left\|\alpha\left(a_{i j}\right)-\varphi\left(a_{i j}\right) 1\right\|<\delta
$$

This proves Lemma 4.5.

Proof of Theorem 4.1. At this stage we can almost copy the proof of [11, Proposition 5.2]:

By Lemma 4.4 there exists a finite set b_{1}, \ldots, b_{d} of operators in M_{φ}, such that

$$
T(x)=\sum_{i=1}^{d} b_{i}^{*} x b_{i}, \quad x \in F
$$

Particularly

$$
\sum_{i=1}^{d} b_{i}^{*} b_{i}=T(1)=1
$$

Let $\varepsilon: N \rightarrow F$ be as in Lemma 4.5. Since $\varphi \circ T=\left.\varphi\right|_{F}$, we get for $x \in F$:

$$
\begin{aligned}
\varphi\left(x \varepsilon\left(\sum_{i=1}^{d} b_{i} b_{i}^{*}\right)\right) & =\varphi \circ \varepsilon\left(x\left(\sum_{i=1}^{d} b_{i} b_{i}^{*}\right)\right) \\
& =\varphi\left(x\left(\sum_{i=1}^{d} b_{i} b_{i}^{*}\right)\right)=\varphi\left(\sum_{i=1}^{d} b_{i}^{*} x b_{i}\right) \\
& =\varphi \circ T(x)=\varphi(x)
\end{aligned}
$$

Since $\varepsilon\left(\sum_{i=1}^{d} b_{i} b_{i}^{*}\right) \in F$, and since φ is faithful, this equality implies that

$$
\varepsilon\left(\sum_{i=1}^{d} b_{i} b_{i}^{*}\right)=1
$$

By Lemma 4.5 there exists a convex combination α of inner automorphisms

$$
\alpha=\sum_{j=1}^{r} \lambda_{j} \operatorname{ad}\left(u_{j}\right)
$$

where $u_{j} \in U\left(F^{c} \cap M_{\varphi}\right)$, such that

$$
\left\|\alpha\left(\sum_{i=1}^{d} b_{i} b_{i}^{*}\right)-1\right\|<\delta / 2
$$

Put $b_{i j}=\lambda_{j}^{1 / 2} u_{j} b_{i}, i=1, \ldots, d, j=1, \ldots, r$.
Then as in [11, p. 194]

$$
\sum_{i, j} b_{i j}^{*} b_{i j}=1,\left\|\sum_{i, j} b_{i j} b_{i j}^{*}-1\right\|<\delta / 2
$$

and

$$
T(x)=\sum_{i, j} b_{i j}^{*} x b_{i j}, \quad x \in F
$$

Let us reindex the $b_{i j}$-operators to

$$
b_{1}, \ldots, b_{p}, \quad \text { where } p=d r
$$

Put next

$$
a_{i}=(1-\delta / 2)^{1 / 2} b_{i}
$$

Then

$$
\sum_{i=1}^{p} a_{i}^{*} a_{i} \leq 1-\delta / 2 \text { and } \sum_{i=1}^{p} a_{i}^{*} a_{i} \leq(1-\delta / 2)(1+\delta / 2) \leq 1
$$

Since $a_{i} \in M_{\varphi}$ which is a II_{1}-factor we can by [11, Lemma 5.1] find operators $\left(a_{i}\right)_{i=p+1}^{\infty}$ in M_{φ}, such that

$$
\sum_{i=1}^{\infty} a_{i}^{*} a_{i}=\sum_{i=1}^{\infty} a_{i} a_{i}^{*}=1
$$

Since $\sum_{i=p+1}^{\infty} a_{i}^{*} a_{i}=\delta / 2$, we get as in [11, p. 195] that

$$
\left\|T(x)-\sum_{i=1}^{\infty} a_{i}^{*} x a_{i}\right\| \leq \delta\|x\|, \quad x \in F
$$

For the applications of Theorem 4.1 in $\S 6$ we shall need the following:
Proposition 4.6. Let N be a factor of type $\mathrm{III}_{\lambda}, 0<\lambda<1$, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}$. Let $m \in \mathbf{N}$ and let $\psi=\operatorname{Tr}(h \cdot)$ be a normal faithful state on M_{m} for which $\sigma_{t_{0}}^{\psi}=\mathrm{id}$. Then there exists an isomorphism α of M_{m} onto a subfactor F of N, such that

$$
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F^{c}} \quad \text { and } \quad \psi=\varphi \circ \alpha
$$

Proof. We can assume that h is a diagonal matrix

$$
h=\sum_{j=1}^{m} \lambda_{j} e_{j j}, \quad \lambda_{1}, \ldots, \lambda_{m} \in \mathbf{R}_{+} .
$$

The condition $\sigma_{t_{0}}^{\psi}=$ id implies that $\lambda_{i} / \lambda_{j} \in\left\{\lambda^{n} \mid n \in \mathbf{Z}\right\}$. Clearly

$$
\sum_{j=1}^{m} \lambda_{j}=\psi(1)=1
$$

and since M_{φ} is a II_{1}-factor we can choose orthogonal projections $f_{1}, \ldots, f_{m} \in M_{\varphi}$ with sum 1 , such that

$$
\varphi\left(f_{j}\right)=\lambda_{j}, \quad j=1, \ldots, m
$$

Moreover, by Lemma 4.2 there exist partial isometries $v_{1}, \ldots, v_{n} \in M$, such that

$$
v_{j}^{*} v_{j}=f_{1}, \quad v_{j} v_{j}^{*}=f_{j} \quad \text { and } \quad \sigma_{t}^{\varphi}\left(v_{j}\right)=\lambda^{i n_{j} t} v_{j}, \quad t \in \mathbf{R}
$$

where $n_{j} \in \mathbf{Z}$ is given by $\lambda^{n_{j}}=\lambda_{j} / \lambda_{1}$. Put now

$$
f_{r s}=v_{r} v_{s}^{*}, \quad r, s=1, \ldots, m
$$

Then $\left\{f_{r s} \mid r, s=1, \ldots, n\right\}$ form a system of matrix units, and

$$
\sum_{r=1}^{m} f_{r r}=\sum_{r=1}^{m} f_{r}=1
$$

Moreover,

$$
\sigma_{t}^{\varphi}\left(f_{r s}\right)=\lambda^{i\left(n_{r}-n_{s}\right) t} f_{r s}, \quad t \in \mathbf{R},
$$

so σ_{t}^{φ} leaves the factor

$$
F=\operatorname{span}\left\{f_{r s} \mid r, s=1, \ldots, m\right\}
$$

globally invariant. Hence by the remarks in the beginning of $\S 4$

$$
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F c} .
$$

Since $\sigma_{t}^{\varphi}\left(v_{j}\right)=\lambda^{i n, t} v_{j}$, we have by [22, Lemma 1.6] that for $r \neq s$

$$
\varphi\left(f_{r s}\right)=\varphi\left(v_{r} v_{s}^{*}\right)=\lambda^{n_{r}} \varphi\left(v_{s}^{*} v_{r}\right) .
$$

Thus $\varphi\left(f_{r s}\right)=0$, because v_{r} and v_{s} have orthogonal range projections. If $r=s$

$$
\varphi\left(f_{r s}\right)=\varphi\left(f_{r}\right)=\lambda_{r} .
$$

This shows that if $\alpha: M_{m} \rightarrow F$ is the isomorphism given by $\alpha\left(e_{r s}\right)=$ $f_{r s}$, then

$$
\varphi \circ \alpha=\operatorname{Tr}(h \cdot)=\psi .
$$

5. Completely positive factorizations through matrix algebras. In [3, pp. 75-76] Choi and Effris proved that a von Neumann algebra N is semidiscrete ($=$ injective by [24]) if, and only if, the identity map on N has an approximate factorization through full matrix algebras in the sense that there exists a net $\left(m_{\alpha}\right)$ of integers, and two nets of σ-weakly completely positive maps

$$
S_{\alpha}: N \rightarrow M_{m}, \quad T_{\alpha}: M_{m} \rightarrow N,
$$

such that $S_{\alpha}(1)=1, T_{\alpha}(1)=1$ and $T_{\alpha} \circ S_{\alpha}$ converges pointwise σ weakly to the identity map on N. In this section we shall show that in case of an injective factor N of type III_{λ}, the approximate factorization can be chosen in a special form, which takes the modular automorphism group of a fixed state on N into account. For any faithful state φ on a von Neumann algebra N, we put

$$
\|a\|_{\varphi}=\varphi\left(a^{*} a\right)^{1 / 2}, \quad a \in N
$$

THEOREM 5.1. Let N be an injective factor of type $\mathrm{III}_{\lambda}, 0<\lambda<1$ with separable predual and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\mathrm{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. Let φ_{λ} be the state on the 2×2 matrices M_{2} given by

$$
\varphi_{\lambda}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=\frac{1}{1+\lambda}\left(\lambda x_{11}+x_{22}\right)
$$

and put $\psi_{m}=\varphi_{\lambda} \otimes \cdots \otimes \varphi_{\lambda}$ (m times). Then for every finite set x_{1}, \ldots, x_{n} of operators in N and every $\varepsilon>0$, there exists $m \in \mathbf{N}$ and completely positive maps,

$$
S: N \rightarrow M_{2^{m}}, \quad T: M_{2^{m}} \rightarrow N
$$

such that

$$
\begin{aligned}
S(1)=1, & T(1)=1 \\
\psi_{m} \circ S=\varphi, & \varphi \circ T=\psi_{m} \\
\sigma_{t}^{\psi_{m}} \circ S=S \circ \sigma_{t}^{\varphi}, & \sigma_{t}^{\varphi} \circ T=T \circ \sigma_{t}^{\psi_{m}}
\end{aligned}
$$

for $t \in \mathbf{R}$, and

$$
\left\|T \circ S\left(x_{k}\right)-x_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n
$$

Let (N, φ) be as in Theorem 5.1. As in the preceding sections

$$
N_{n}=\left\{x \in N \mid \sigma_{t}^{\varphi}(x)=\lambda^{\text {int }} x, t \in \mathbf{R}\right\}
$$

and $\varepsilon_{n}: N \rightarrow N_{n}$ is given by

$$
\varepsilon_{n}(x)=\frac{1}{t_{0}} \int_{0}^{t_{0}} \lambda^{-\mathrm{int}} \sigma_{t}^{\varphi}(x) d t
$$

Lemma 5.2. Let (N, φ) be as in Theorem 5.1.
For $p \in \mathbf{N}$, put

$$
\gamma_{p}(x)=\sum_{n=-(p-1)}^{p-1}\left(1-\frac{|n|}{p}\right) \varepsilon_{n}(x), \quad x \in \mathbf{R}
$$

Then γ_{p} is a completely positive map on N,

$$
\gamma_{p}(1)=1, \quad \varphi \circ \gamma_{p}=\varphi
$$

and

$$
\lim _{p \rightarrow \infty}\left\|\gamma_{p}(x)-x\right\|_{\varphi}=0 \quad \forall x \in M
$$

Proof. It is easily seen that $\varepsilon_{0}(1)=1, \varphi \circ \varepsilon_{0}=\varphi$ and for $n \neq 0$, $\varepsilon_{n}(1)=0, \varphi \circ \varepsilon_{n}=0$. Hence

$$
\gamma_{p}(1)=1 \quad \text { and } \quad \varphi \circ \gamma_{p}=\varphi
$$

Put

$$
g_{p}(u)=\sum_{|n|<p}\left(1-\frac{|n|}{p}\right) e^{i n u}, \quad p \in \mathbf{N}, u \in \mathbf{R}
$$

Then g_{p} is the Fejér kernel from the theory of Fourier series (cf. [10, p. 79]):

$$
g_{p}(u)=\frac{1}{p} \frac{\sin ^{2}(p u / 2)}{\sin ^{2}(u / 2)}, \quad u \notin 2 \pi \mathbf{Z}
$$

Note that $g_{p}(u) \geq 0$ for all $u \in \mathbf{R}, g$ is periodic with period 2π, and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{p}(u) d u=1
$$

Since $\lambda=e^{-t_{0}}$,

$$
\sum_{|n| \leq p-1}\left(1-\frac{|n|}{p}\right) \lambda^{-\mathrm{int}}=g_{p}\left(2 \pi t / t_{0}\right)
$$

Hence

$$
\gamma_{p}(x)=\frac{1}{t_{0}} \int_{0}^{t_{0}} g_{p}\left(2 \pi t / t_{0}\right) \sigma_{t}^{\varphi}(x) d t, \quad x \in N
$$

The complete positivity of γ_{p} follows now from the positivity of the function g_{p}. For $x \in N$

$$
\begin{aligned}
\left\|\gamma_{p}(x)-x\right\|_{\varphi} & =\left\|\frac{1}{t_{0}} \int_{0}^{t_{0}} g_{p}\left(2 \pi t / t_{0}\right)\left(\sigma_{t}^{\varphi}(x)-x\right) d t\right\|_{\varphi} \\
& \leq \frac{1}{t_{0}} \int_{0}^{t_{0}} g_{p}\left(2 \pi t / t_{0}\right)\left\|\sigma_{t}^{\varphi}(x)-x\right\|_{\varphi} d t \\
& \rightarrow 0 \text { for } p \rightarrow \infty
\end{aligned}
$$

because $\left(g_{p}\right)_{p \in \mathbf{N}}$ form an approximate unit in the sense that

$$
\lim _{p \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} g_{p}(u) f(u) d u=f(0)
$$

for every continuous function f on \mathbf{R} with period 2π.
Lemma 5.3. Let (N, φ) be as in Theorem 5.1, and let (R, τ) be the hyperfinite II_{1}-factor with tracial state τ. For every finite set $x_{1}, \ldots, x_{n} \in$ N and every $\varepsilon>0$, there exist completely positive maps

$$
S: N \rightarrow R \text { and } T: R \rightarrow N
$$

and a normal faithful state ψ on R, such that $h=d \psi / d \tau$ has finite spectrum and

$$
\lambda_{1} / \lambda_{2} \in\left\{\lambda^{n} \mid n \in \mathbf{Z}\right\} \quad \text { for all } \lambda_{1}, \lambda_{2} \in \operatorname{sp}(h)
$$

Moreover

$$
\begin{aligned}
S(1)=1, & T(1)=1, \\
\psi \circ S=\varphi, & \varphi \circ T=\psi, \\
\sigma_{t}^{\psi} \circ S=S \circ \sigma_{t}^{\varphi}, & \sigma_{t}^{\varphi} \circ T=T \circ \sigma_{t}^{\psi},
\end{aligned}
$$

for $t \in \mathbf{R}$, and

$$
\left\|T \circ S\left(x_{k}\right)-x_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n .
$$

Proof. By Lemma 5.2, we can choose $p \in \mathbf{N}$, such that

$$
\left\|\gamma_{p}\left(x_{k}\right)-x_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n .
$$

Let M_{p} be the algebra of $p \times p$ complex matrices with matrix units $\left(e_{r s}\right)_{r, s=1, \ldots, p}$ and let ω be the state on M_{p} given by

$$
\omega=\operatorname{Tr}\left(h_{0} \cdot\right), \quad \text { where } h_{0}=c \cdot \sum_{r=1}^{p} \lambda^{r} e_{r r}
$$

and c is the normalization constant $c=\left(\sum_{r=1}^{p} \lambda^{r}\right)^{-1}$.
Note that for $r, s=1, \ldots, p$:

$$
\sigma_{t}^{\omega}\left(e_{r s}\right)=h_{0}^{i t} e_{r s} h_{0}^{-i t}=\lambda^{i(r-s) t} e_{r s} .
$$

Particularly $\sigma_{t_{0}}^{\omega}=$ id. Put $\chi=\varphi \otimes w$ on $N \otimes M_{p}$. Then also $\sigma_{t_{0}}^{\chi}=\mathrm{id}$.
Since $N \otimes M_{p} \cong N$ is a factor of type III_{λ}, the centralizer M_{χ} is a II_{1}-factor. Moreover, since $N \otimes M_{p}$ is injective with separable predual, M_{χ} is injective with separable predual. Hence $M_{\chi} \cong R$.

For $x \in N$, and $r, s \in\{1, \ldots, n\}$:

$$
\sigma_{t}^{\chi}\left(x \otimes e_{r s}\right)=\lambda^{i(r-s)} \sigma_{t}^{\varphi}(x) \otimes e_{r s}
$$

Therefore

$$
M_{\chi}=\left\{\sum_{r, s=1}^{p} x_{r s} \otimes e_{r s} \in N \otimes M_{p} \mid x_{r s} \in N_{s-r}\right\}
$$

where $\left(N_{n}\right)_{n \in \mathbf{Z}}$ are the subspaces of N defined in the beginning of $\S 3$. Moreover, since $\sigma_{t_{0}}^{\chi}=\mathrm{id}$, the χ-invariant conditional expectation of $N \otimes M_{p}$ onto R is given by

$$
\varepsilon_{\chi}(x)=\frac{1}{t_{0}} \int_{0}^{t_{0}} \sigma_{t}^{\chi}(x) d t
$$

Hence for $x_{r s} \in N$,

$$
\varepsilon_{\chi}\left(\sum_{r, s=1}^{p} x_{r s} \otimes e_{r s}\right)=\sum_{r, s=1}^{p} \varepsilon_{s-r}\left(x_{r s}\right) \otimes e_{r s}
$$

Define now linear maps $S: N \rightarrow M_{\chi}$ and $T: M_{\chi} \rightarrow N$ by

$$
\begin{gathered}
S(x)=\sum_{r, s=1}^{p} \varepsilon_{s-r}(x) \otimes e_{r s}, \quad x \in N, \\
T\left(\sum_{r, s=1}^{p} y_{r s} \otimes e_{r s}\right)=\frac{1}{p} \sum_{r, s=1}^{p} y_{r s}, \quad y_{r s} \in N_{s-r}
\end{gathered}
$$

Clearly $S(1)=1$ and $T(1)=1$. We show next that S and T are completely positive:

Let $e_{0} \in M_{m}$ be the orthogonal projection on the 1-dimensional subspace of \mathbf{C}^{n} spanned by the vector $(1,1, \ldots, 1)$. Then

$$
e_{0}=\frac{1}{p} \sum_{r, s=1}^{p} e_{r s}
$$

Hence

$$
S(x)=p \varepsilon_{\chi}\left(x \otimes e_{0}\right), \quad x \in N
$$

which shows that S is completely positive. Let ω_{0} be the pure state on M_{m} given by

$$
\omega_{0}(z)=\operatorname{Tr}\left(e_{0} z\right), \quad z \in M_{m}
$$

Then $\omega_{0}\left(e_{r s}\right)=1 / p$ for $r, s=1, \ldots, p$. Therefore

$$
T(y)=\left(\mathrm{id}_{N} \otimes \omega_{0}\right)(y)
$$

for all $y \in M_{\chi} \subseteq N \otimes M_{p}$. This shows that T is completely positive.

The number of pairs $(r, s) \in\{1, \ldots, p\}^{2}$ for which $s-r=k$ is $p-|k|$ when $|k|<p$, and 0 when $|k| \geq p$. Hence for $x \in N$,

$$
T \circ S(x)=\frac{1}{p} \sum_{r, s=1}^{p} \varepsilon_{s-r}(x)=\sum_{|k|<p}\left(1-\frac{|k|}{p}\right) \varepsilon_{k}(x)=\gamma_{p}(x)
$$

where $\gamma_{p}: N \rightarrow N$ is the map defined in Lemma 5.2. Hence

$$
\left\|T \circ S\left(x_{k}\right)-x_{k}\right\|_{\varphi}<\varepsilon \quad \text { for } k=1, \ldots, n
$$

Put $\psi=\varphi \circ T$. Then $\psi \circ S=\varphi \circ \gamma_{p}=\varphi$. For $y_{r s} \in N_{s-r}$,

$$
\gamma\left(\sum_{r, s=1}^{p} y_{r s} \otimes e_{r s}\right)=\frac{1}{p} \sum_{r, s=1}^{p} \varphi\left(y_{r r}\right)
$$

because φ vanishes on N_{k} when $k \neq 0$. Hence

$$
\psi(y)=\frac{1}{p}(\varphi \otimes \operatorname{Tr})(y), \quad y \in M_{\chi} \subseteq N \otimes M_{p} .
$$

Let τ be the tracial state on M_{χ}, i.e. τ is the restriction of χ to M_{χ}. Then

$$
\tau(y)=(\varphi \otimes \omega)(y)=(\varphi \otimes \operatorname{Tr})\left(\left(1 \otimes h_{0}\right)(y)\right) .
$$

Since $h_{0} \in M_{\chi}$ it follows that

$$
\frac{d \psi}{d \tau}=\left(\frac{d \tau}{d \psi}\right)^{-1}=\frac{1}{p}\left(1 \otimes h_{0}^{-1}\right)
$$

By definition

$$
\operatorname{sp}\left(h_{0}\right)=\left\{c \lambda, c \lambda^{2}, \ldots, c \lambda^{p}\right\}
$$

for some $c>0$. Hence $h=d \psi / d \tau$ has finite spectrum, and

$$
\lambda_{1} / \lambda_{2} \in\left\{\lambda^{n} \mid n \in \mathbf{Z}\right\}
$$

for all $\lambda_{1}, \lambda_{2} \in \operatorname{sp}(h)$.
It is clear that $\sigma^{\varphi \otimes \mathrm{Tr}}=\sigma^{\varphi} \otimes \mathrm{id}$ leaves M_{χ} globally invariant. Since ψ is the restriction of $(1 / p)(\varphi \otimes \mathrm{Tr})$ to M_{χ} it follows that

$$
\sigma_{t}^{\psi}(y)=\left(\sigma_{t}^{\varphi} \otimes \mathrm{id}\right)(y), \quad y \in M_{\chi} .
$$

Hence, by the definition of S and T

$$
\begin{aligned}
\sigma_{t}^{\psi} \circ \sigma(x) & =S \circ \sigma_{t}^{\varphi}(x), & x \in M, \\
\sigma_{t}^{\psi} \circ T(y) & =T \circ \sigma_{t}^{\psi}(y), & y \in M_{\chi} .
\end{aligned}
$$

Since $M_{\chi} \cong R$ we have proved Lemma 5.3.

Lemma 5.4. Let R_{λ} be the Powers factor with infinite tensor product state ω_{λ}. If ψ is a normal faithful state on the hyperfinite II_{1}-factor R of the form

$$
\psi=\tau(h \cdot)
$$

where τ is the tracial state on R, and h is a positive self-adjoint operator with finite spectrum for which

$$
\lambda_{1} / \lambda_{2} \in\left\{\lambda^{n} \mid n \in \mathbf{Z}\right\} \quad \text { for all } \lambda_{1} / \lambda_{2} \in \operatorname{sp}(h),
$$

$$
(R, \psi) \cong\left(P,\left.\omega_{\lambda}\right|_{P}\right)
$$

Proof. By the assumptions on h,

$$
h=\sum_{i=1}^{r} \lambda_{i} e_{i}
$$

where e_{i}, \ldots, e_{r} are orthogonal projections in R with sum 1 , and $\lambda_{i} / \lambda_{j}$ is of the form $\lambda^{n}, n \in \mathbf{Z}$ for $i, j=1, \ldots, n$. Put $\alpha_{i}=\lambda_{i} \tau\left(e_{i}\right)$. Then

$$
\sum_{i=1}^{r} \alpha_{i}=\sum_{i=1}^{r} \psi\left(e_{i}\right)=1 .
$$

Since R_{λ} is of type III_{λ}, the centralizer of ω_{λ} is a II_{1}-factor, so we can choose orthogonal projections f_{1}, \ldots, f_{r} in $M_{w_{k}}$, such that $\sum_{i=1}^{r} f_{i}=1$, and

$$
\omega_{\lambda}\left(f_{i}\right)=\alpha_{i}, \quad i=1, \ldots, r .
$$

Put $=\sum_{i=1}^{r} \lambda_{i} f_{i}$, and put $\chi(x)=\omega_{\lambda}\left(k^{-1} x\right), x \in R_{\lambda}$.
Then χ is a positive normal faithful functional on R_{λ}. In fact χ is a state, because

$$
\chi\left(f_{i}\right)=\lambda_{i}^{-1} \alpha_{i}=\tau\left(e_{i}\right), \quad i=1, \ldots, r,
$$

which implies that $\chi(1)=1$. Moreover,

$$
\sigma_{t}^{\chi}(x)=k^{-i t} \sigma^{\omega_{\lambda}}(x) k^{+i t}, \quad x \in R_{\lambda} .
$$

By the assumption on $\lambda_{i} / \lambda_{j}, k^{i t_{0}}$ is a scalar operator $\left(t_{0}=\right.$ $-2 \pi / \log \lambda$), and therefore $\sigma_{t_{P}}^{\chi}=$ id. Since R_{λ} is an injective factor of type III_{λ}, the centralizer $P=M_{\chi}$ is isomorphic to the hyperfinite factor of type II_{1}. Let α be a ${ }^{*}$-isomorphism of R onto P, and put $e_{i}^{\prime}=\alpha\left(e_{i}\right), i=1, \ldots, r$. Clearly $\xi \circ \alpha=\tau$ by uniqueness of the trace. Hence

$$
\chi\left(e_{i}^{\prime}\right)=\tau\left(e_{i}\right)=\chi\left(f_{i}\right), \quad i=1, \ldots, r,
$$

so $e_{i}^{\prime} \sim f_{i}$ (equivalence in P). Choose partial isometries $v_{i} \in P$ for which

$$
e_{i}^{\prime}=v_{i}^{*} v_{i}, \quad f_{i}=v_{i} v_{i}^{*}
$$

and put $u=\sum_{i=1}^{r} v_{i}$. Then $u \in U(P)$ and

$$
u e_{i}^{\prime} u^{*}=f_{i}, \quad i=1, \ldots, r
$$

Hence $\beta=\operatorname{ad}(u) \circ \alpha$ is an isomorphism of R onto P for which $\beta\left(e_{i}\right)=$ f_{i} and therefore also $\beta(h)=k$. Thus

$$
w_{\lambda} \circ \beta=\chi(k \beta(\cdot))=\tau(h \cdot)=\psi
$$

which proves that

$$
(R, \psi) \cong\left(P,\left.\omega_{\lambda}\right|_{P}\right) .
$$

Finally $k \in M_{w_{\lambda}}$ implies that χ is $\sigma^{\omega_{\lambda}}$-invariant, and thus P is (globally) $\sigma^{\omega_{\lambda} \text {-invariant. }}$

Proof of Theorem 5.1. Let (N, φ) be as in Theorem 5.1, let x, \ldots, x_{n} $\in N$ and let $\varepsilon>0$. Choose

$$
S: N \rightarrow R, \quad T: R \rightarrow N
$$

and $\psi \in R_{*}^{+}$, such that the conditions in Lemma 5.3 are satisfied. By Lemma 5.4 we may realize R as a $\sigma^{\omega_{\lambda}}$-invariant subfactor of N, such that $\psi=\left.\omega_{\lambda}\right|_{R}$. Let ε be the (unique) ω_{λ}-invariant conditional expectation of R_{λ} onto R (cf. [21]). Let S^{\prime} be the map S considered as map from N to R_{λ} and put $T^{\prime}=T \circ \varepsilon\left(\right.$ from R_{λ} to $\left.N\right)$. Then

$$
\begin{array}{cl}
S^{\prime}(1)=1, & T^{\prime}(1)=1, \\
\omega_{\lambda} \circ S^{\prime}=\varphi, & \varphi \circ T^{\prime}=\omega_{\lambda}, \\
\sigma_{t}^{\omega_{\lambda}} \circ S^{\prime}=S^{\prime} \circ \sigma_{t}^{\varphi}, & \sigma_{t}^{\varphi} \circ T^{\prime}=T^{\prime} \circ \sigma_{t}^{\omega_{\lambda}}
\end{array}
$$

for $t \in \mathbf{R}$. Moreover

$$
\left\|T^{\prime} \circ S^{\prime}\left(x_{k}\right)-x_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n .
$$

For $m \in \mathbf{N}$, let F_{m} be the subfactor of R_{λ} given by the tensor product of the first m copies of M_{2} in $R_{\lambda}=\bigotimes_{n=1}^{\infty}\left(M_{2}, \varphi_{\lambda}\right)$. Then the infinite tensor product state ω_{λ} satisfies

$$
\omega_{\lambda}=\left.\left.\omega_{\lambda}\right|_{F_{m}} \otimes \omega_{\lambda}\right|_{F_{m}^{c}} .
$$

Let ε_{m} be the ω_{λ}-invariant conditional expectation of R_{λ} onto F_{m}. Then

$$
\left\|\varepsilon_{m}(x)-x\right\|_{\omega_{\lambda}} \rightarrow 0 \quad \text { for all } x \in R_{\lambda} .
$$

Put now

$$
S_{m}=\varepsilon_{m} \circ S^{\prime}, \quad T_{m}=\left.T^{\prime}\right|_{F_{m}}
$$

and let ψ_{m} be the restriction of ω_{λ} to F_{m}. Then

$$
S_{m}: N \rightarrow F_{m}, \quad T_{m}: F_{m} \rightarrow N
$$

are completely positive.

$$
\begin{array}{cl}
S_{m}(1)=1, & T_{m}(1)=1 \\
\psi_{m} \circ S_{m}=\varphi, & \varphi \circ T_{m}=\psi_{m} \\
\sigma_{t}^{\psi^{m}} \circ S_{m}=S_{m} \circ \sigma_{t}^{\varphi}, & \sigma_{t}^{\varphi} \circ T=T \circ \sigma_{t}^{\psi_{m}}
\end{array}
$$

for $t \in \mathbf{R}$. By the Schwarz inequality for completely positive maps $S^{\prime}(x)^{*} S^{\prime}(x) \leq S^{\prime}\left(x^{*} x\right), x \in N$. Thus

$$
\left\|S^{\prime} x\right\|_{\omega_{\lambda}} \leq\|x\|_{\varphi}, \quad x \in N
$$

and similarly,

$$
\left\|T^{\prime} y\right\|_{\varphi} \leq\|y\|_{\omega_{\lambda}}, \quad y \in R_{\lambda}
$$

Hence

$$
\begin{aligned}
& \left\|T_{m} \circ S_{m}\left(x_{k}\right)-T^{\prime} \circ S^{\prime}\left(x_{k}\right)\right\|_{\varphi}=\left\|T^{\prime}\left(\varepsilon_{m} \circ S^{\prime}\left(x_{k}\right)-S^{\prime}\left(x_{k}\right)\right)\right\|_{\varphi} \\
& \quad \leq\left\|\varepsilon_{m} \circ S\left(x_{k}\right)-S\left(x_{k}\right)\right\|_{\omega_{\lambda}} \rightarrow 0 \text { for } m \rightarrow \infty
\end{aligned}
$$

Therefore we can choose $m \in \mathbf{N}$, such that

$$
\left\|S_{m} \circ T_{m}\left(x_{k}\right)-x_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n
$$

This completes the proof of Theorem 5.1, because

$$
\left(F_{m}, \psi_{m}\right)=\bigotimes_{k=1}^{m}\left(M_{2}, \varphi_{\lambda}\right)
$$

6. Injective factors of type $\mathrm{III}_{\lambda}, 0<\lambda<1$, are Powers factors. Throughout this section R_{λ} denotes the Powers factor of type III_{λ}, i.e.:

$$
R_{\lambda}=\bigotimes_{n=1}^{\infty}\left(M_{2}, \varphi_{\lambda}\right)
$$

where φ_{λ} is the state on the 2×2 complex matrices given by

$$
\varphi_{\lambda}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=\frac{1}{1+\lambda}\left(\lambda x_{11}+x_{22}\right)
$$

We let ω_{λ} denote the infinite tensor product state $\omega_{\lambda}=\bigotimes_{n=1}^{\infty} \varphi_{\lambda}$ on R_{λ}. Note that $\sigma_{t_{0}}^{\omega_{\lambda}}=\mathrm{id}$ for $t_{0}=-2 \pi / \log \lambda$.

THEOREM 6.1. Let N be an injective factor of type III_{λ} with separable predual, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=$ id. Then N is isomorphic to the Powers factor R_{λ}. Moreover, the isomorphism α of N onto R_{λ} can be chosen such that $\varphi=\omega_{\lambda} \circ \alpha$.

We prove first three lemmas:
Lemma 6.2. Let (N, φ) be as in Theorem 6.1. For every finite set $u_{1}, \ldots, u_{n} \in U(N)$ and every $\delta>0$ there exists $m \in \mathbf{N}$, a completely positive map T from $M_{2^{m}}=\bigotimes_{i=1}^{m} M_{2}$ to M and unitary operators v_{1}, \ldots, v_{n} in $M_{2^{m}}$, such that $\psi=\varphi \circ T$ is equal to $\bigotimes_{i=1}^{m} \varphi_{\lambda}$

$$
\sigma_{t}^{\varphi} \circ T=T \circ \sigma_{t}^{\psi}, \quad t \in \mathbf{R}
$$

and

$$
\left\|T\left(v_{k}\right)-u_{k}\right\|_{\varphi}<\delta, \quad k=1, \ldots, n
$$

Proof. Let $\varepsilon>0$ be such that $\varepsilon+(2 \varepsilon)^{1 / 2}<\delta$. Choose $m \in \mathbf{N}$, and

$$
S: N \rightarrow M_{2^{m}}, \quad T: M_{2^{m}} \rightarrow N
$$

satisfying the conditions in Theorem 5.1 with respect to $\left(u_{1}, \ldots, u_{n}, \varepsilon\right)$, and put

$$
y_{k}=S\left(u_{k}\right), \quad k=1, \ldots, n
$$

Then $\left\|y_{k}\right\| \leq 1$ and

$$
\left\|T\left(y_{k}\right)-u_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n
$$

Using the Schwarz inequality for completely positive maps, we have

$$
\left\|T\left(y_{k}\right)\right\|_{\varphi} \leq\left\|y_{k}\right\|_{\psi}
$$

(cf. proof of Theorem 5.1). Therefore

$$
\left\|y_{k}\right\|_{\psi} \geq\left\|u_{k}\right\|_{\varphi}-\varepsilon=1-\varepsilon
$$

We can find unitary operators $v_{1}, \ldots, v_{n} \in M_{2^{m}}$, such that

$$
y_{k}=v_{k} h_{k}, \quad k=1, \ldots, n
$$

where $h_{k}=\left(y_{k}^{*} y_{k}\right)^{1 / 2}$. Note that $\left\|h_{k}\right\|_{\psi}=\left\|y_{k}\right\|_{\psi}$. Since $0 \leq h_{k} \leq 1$,

$$
h_{k}^{2}+\left(1-h_{k}\right)^{2} \leq 1
$$

Hence

$$
\begin{aligned}
\left\|v_{k}-y_{k}\right\|_{\psi}^{2} & =\left\|1-h_{k}\right\|_{\psi}^{2} \leq 1-\left\|h_{k}\right\|_{\psi}^{2} \\
& <1-(1-\varepsilon)^{2}<2 \varepsilon
\end{aligned}
$$

Using again the Schwarz inequality for T, it follows that

$$
\begin{aligned}
\left\|T\left(v_{k}\right)-u_{k}\right\|_{\varphi} & \leq\left\|T\left(v_{k}-y_{k}\right)\right\|_{\varphi}+\left\|T\left(y_{k}\right)-u_{k}\right\|_{\varphi} \\
& <(2 \varepsilon)^{1 / 2}+\varepsilon<\delta
\end{aligned}
$$

for $k=1, \ldots, n$. This proves Lemma 6.2.
If N_{1}, N_{2} are von Neumann algebras with states φ_{1}, φ_{2} on N_{1} and N_{2}, respectively, we write

$$
\left(N_{1}, \varphi_{1}\right) \cong\left(N_{2}, \varphi_{2}\right)
$$

if there is an isomorphism α of N_{1} onto N_{2} for which $\varphi_{1}=\alpha \circ \varphi_{2}$.
Lemma 6.3. Let N be an injective factor of type $\mathrm{III}_{\lambda}, 0<\lambda<1$, with separable predual, and let φ be a normal faithful state on N for which $\sigma_{t_{0}}^{\varphi}=\operatorname{id}\left(t_{0}=-2 \pi / \log \lambda\right)$. Let $u_{1}, \ldots, u_{n} \in U(N)$ and let $\delta>0$. Then there exists a finite dimensional subfactor $F \subseteq N$, unitary operators $v_{1}, \ldots, v_{n} \in U(F)$ and a sequence $\left(a_{i}\right)_{i=1}^{\infty}$ of operators in M_{φ} such that
(i) $\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F c}$,
(ii) $\left(F,\left.\varphi\right|_{F}\right) \cong \bigotimes_{j=1}^{m}\left(M_{2}, \varphi_{\lambda}\right)$ for some $m \in \mathbf{N}$,
(iii) $\sum_{i=1}^{\infty} a_{i}^{*} a_{l}=\sum_{i=1}^{\infty} a_{i} a_{i}^{*}=1$,
(iv) $\sum_{i=1}^{\infty}\left\|v_{k} a_{i}-a_{i} u_{k}\right\|_{\varphi}^{2}<\delta$ for $k=1, \ldots, n$.

Proof. By combining Lemma 6.2 and Proposition 4.6 we get that there exists a finite dimensional subfactor F of N, such that (i) and (ii) hold, and a completely positive map $T: F \rightarrow N$ for which

$$
T(1)=1, \quad \varphi \circ T=\left.\varphi\right|_{F},
$$

and there exist $v_{1}, \ldots, v_{n} \in U(F)$, such that

$$
\left\|T\left(v_{k}\right)-u_{k}\right\|_{\varphi}<\delta / 4
$$

By Theorem 4.1 there exist $\left(a_{i}\right)_{i=1}^{\infty}$ in M_{φ}, such that

$$
\sum_{i=1}^{\infty} a_{i}^{*} a_{i}=\sum_{i=1}^{\infty} a_{i} a_{i}^{*}=1
$$

and

$$
\left\|T(x)-\sum_{i=1}^{\infty} a_{i}^{*} x a_{i}\right\| \leq \frac{\delta}{4}\|x\|, \quad x \in F .
$$

Since $\|x\|_{\varphi} \leq\|x\|$ for all $x \in M$ we get in particular

$$
\left\|T\left(v_{k}\right)-\sum_{i=1}^{\infty} a_{i}^{*} v_{k} a_{i}\right\|_{\varphi} \leq \delta / 4 .
$$

Hence

$$
\left\|u_{k}-\sum_{i=1}^{\infty} a_{i}^{*} v_{k} a_{i}\right\|_{\varphi}<\delta / 2
$$

Moreover,

$$
\sum_{i=1}^{\infty}\left\|a_{i} u_{k}\right\|_{\varphi}^{2}=\sum_{i=1}^{\infty} \varphi\left(u_{k}^{*} a_{i}^{*} a_{i} u_{k}\right)=\varphi\left(u_{k}^{*} u_{k}\right)=1
$$

and since $a_{i} \in M_{\varphi}$ we have also

$$
\sum_{i=1}^{\infty}\left\|v_{k} a_{i}\right\|_{\varphi}^{2}=\sum_{i=1}^{\infty} \varphi\left(a_{i}^{*} v_{k}^{*} v_{k} a_{i}\right)=\sum_{i=1}^{\infty} \varphi\left(a_{i} a_{i}^{*} v_{k}^{*} v_{k}\right)=\varphi\left(v_{k}^{*} v_{k}\right)=1
$$

Therefore

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left\|a_{i} u_{k}-v_{k} a_{i}\right\|_{\varphi}^{2} & =2-2 \sum_{i=1}^{\infty} \operatorname{Re} \varphi\left(u_{k}^{*} a_{i}^{*} v_{k} a_{i}\right) \\
& =2 \operatorname{Re} \varphi\left(u_{k}^{*}\left(u_{k}-\sum_{i=1}^{\infty} a_{i}^{*} v_{k} a_{i}\right)\right) \\
& \leq 2\left\|u_{k}\right\|_{\varphi}\left\|u_{k}-\sum_{i=1}^{\infty} a_{i}^{*} v_{k} a_{i}\right\|_{\varphi}<\delta
\end{aligned}
$$

Lemma 6.4. Let (N, φ) be as in Lemma 6.3, let $x_{1}, \ldots, x_{n} \in N$, and let $\varepsilon>0$. Then there exists a finite dimensional subfactor F of N and operators $y_{1}, \ldots, y_{n} \in F$, such that

$$
\begin{gathered}
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F^{c}}, \\
(F, \varphi) \cong \bigotimes_{j=1}^{m}\left(M_{2}, \varphi_{\lambda}\right) \quad \text { for some } m \in \mathbf{N},
\end{gathered}
$$

and

$$
\left\|y_{k}-x_{k}\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n .
$$

Proof. We can assume that N acts standardly on a Hilbert space H, so that φ is the vector state given by a cyclic and separating vector ξ_{φ}. Let $S=J \Delta^{1 / 2}$ be the modular conjugation associated with $\left(N, \xi_{\varphi}\right)$ in Tomita-Takesaki Theory. Then $J N J=N^{\prime}$, and H becomes a normal N-bimodule, where right action on H is defined by

$$
\xi a=J a^{*} J \xi, \quad a \in N, \quad \xi \in H .
$$

Since N is spanned by its unitary operators, it is sufficient to consider x_{1}, \ldots, x_{n} unitary. So let $u_{1}, \ldots, u_{n} \in U(N)$, and let $\varepsilon>0$. Choose $\delta=\delta(n, \varepsilon)$, such that the conditions of Theorem 2.3 are fulfilled. By Lemma 6.3 we can choose a finite dimensional subfactor $F \subseteq N, v_{1}, \ldots, v_{n} \in U(F)$ and $\left(a_{i}\right)_{i=1}^{\infty}$ in M_{φ}, such that

$$
\begin{gathered}
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F c}, \\
\left(F,\left.\varphi\right|_{F}\right) \cong \bigotimes_{j=1}^{m}\left(M_{2}, \varphi_{\lambda}\right) \quad \text { for some } m \in \mathbf{N}, \\
\sum_{i=1}^{\infty} a_{i}^{*} a_{i}=\sum_{i=1}^{\infty} a_{i} a_{i}^{*}=1, \quad \sum_{i=1}^{\infty}\left\|v_{k} a_{i}-a_{i} u_{k}\right\|_{\varphi}^{2}<\delta .
\end{gathered}
$$

Put

$$
\xi_{k}=u_{m} \xi_{\varphi} \quad \text { and } \quad \eta_{k}=v_{k} \xi_{\varphi} \text { for } u=1, \ldots, n
$$

Note that $\left\|\xi_{k}\right\|=\left\|\eta_{k}\right\|=1$. Since $a_{i} \in M_{\varphi}$,

$$
a_{i} \xi_{\varphi}=J a_{i}^{*} J \xi_{\varphi}=\xi_{\varphi} a_{i}
$$

Therefore

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left\|a_{i} \xi_{k}-\eta_{k} a_{i}\right\|^{2} & =\sum_{i=1}^{\infty}\left\|a_{i} u_{k} \xi_{\varphi}-v_{k} a_{i} \xi_{\varphi}\right\|^{2} \\
& =\sum_{i=1}^{\infty}\left\|a_{i} u_{k}-v_{k} a_{i}\right\|_{\varphi}^{2}<\delta .
\end{aligned}
$$

Hence, if we consider H as an M_{φ}-bimodule, we get from Theorem 2.3 that there exists a unitary operator $w \in U\left(M_{\varphi}\right)$, such that

$$
\left\|\xi_{k}-w^{*} \eta_{k} w\right\|<\varepsilon, \quad k=1, \ldots, n
$$

Equivalently

$$
\left\|u_{k}-w^{*} v_{k} w\right\|_{\varphi}<\varepsilon, \quad k=1, \ldots, n
$$

Put $F_{1}=w^{*} F w$. Then F_{1} is a finite dimensional subfactor of N, and $w^{*} v_{k} w \in U\left(F_{1}\right)$ for $k=1, \ldots, n$. Moreover, since $w \in U\left(M_{\varphi}\right)$, φ is also a tensor product state for F_{1},

$$
\varphi=\left.\left.\varphi\right|_{F_{1}} \otimes \varphi\right|_{F_{\mathrm{i}}^{c}}
$$

and

$$
\left(F_{1},\left.\varphi\right|_{F_{1}}\right) \cong\left(F,\left.\varphi\right|_{F}\right) \cong \bigotimes_{j=1}^{m}\left(M_{2}, \varphi_{\lambda}\right) .
$$

Proof of Theorem 6.1. Theorem 6.1 follows from Lemma 6.4 by a procedure, which is standard in the type II_{1}-case (see, e.g., $[9$, Chapter III, §7.4]):

Let d_{φ} denote the metric on N given by

$$
d_{\varphi}(x, y)=\|x-y\|_{\varphi}, \quad x, y \in N
$$

Note that d_{φ} induces the σ-strong topology on bonded subsets of N. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence that generates a σ-strongly dense ${ }^{*}$ subalgebra of N. We will construct a sequence of commuting finite dimensional subfactors $\left(F_{m}\right)_{m=1}^{\infty}$ of N, such that
(a)

$$
d_{\varphi}\left(x_{l}, \bigotimes_{k=1}^{m} F_{k}\right)<\frac{1}{m}, \quad m \in \mathbf{N}, l=1, \ldots, m
$$

(b) For each $m \in \mathbf{N}$

$$
\varphi=\left.\left.\varphi\right|_{F_{m}} \otimes \varphi\right|_{F_{m}^{c}} .
$$

(c) For each $m \in \mathbf{N}$

$$
\left(F_{m},\left.\varphi\right|_{F_{m}}\right) \cong \bigotimes_{k=1}^{K_{m}}\left(M_{2}, \varphi_{\lambda}\right) \quad \text { for some } K_{m} \in \mathbf{N}
$$

It is clear from Lemma 6.4 that we can choose $F_{1} \subseteq N$, such that (a), (b) and (c) are fulfilled for $m=1$. Assume next that we have found commuting finite dimensional subfactors F_{1}, \ldots, F_{n}, such that (a), (b) and (c) are fulfilled for $m=1, \ldots, n$, and let us construct F_{n+1}. Put

$$
F=\left(F_{1} \cup \cdots \cup F_{n}\right)^{\prime \prime}=\bigotimes_{m=1}^{n} F_{m}
$$

By (b), each F_{m} is σ^{φ}-invariant. Hence F is σ^{φ}-invariant, which implies that

$$
\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F^{c}}
$$

(cf. $\S 4$). Let $\left(e_{i j}\right)_{i, j=1}^{d}$ be a set of matrix units for F. Then each x_{m} can be written in the form

$$
x_{m}=\sum_{i, j=1}^{d} e_{i j} x_{i j}^{(m)}
$$

where $x_{i j}^{(m)} \in F^{c}$. Put

$$
K=\sum_{i, j=1}^{m}\left\|e_{i j}\right\|_{\varphi}
$$

By applying Lemma 6.4 to ($F^{c},\left.\varphi\right|_{F^{c}}$), we get that there exists a finite dimensional subfactor F_{n+1} of F^{c} and operators $y_{i j}^{(m)} \in F_{n+1}(m \leq$ $n+1$), such that

$$
\left\|x_{i j}^{(m)}-y_{i j}^{(m)}\right\|_{\varphi}<\frac{1}{(n+1) K}
$$

for $i, j=1, \ldots, d$ and $m=1, \ldots, n+1$, and such that

$$
\left.\varphi\right|_{F^{c}}=\left.\left.\varphi\right|_{F_{n+1}} \otimes \varphi\right|_{\left(F^{c} \cap F_{n+1}\right)}
$$

and

$$
\left(F_{n+1}, \varphi\right) \cong \bigotimes_{k=1}^{p}\left(M_{2}, \varphi_{\lambda}\right)
$$

for some $p \in \mathbf{N}$. Since σ^{φ} and $\sigma^{\varphi \mid F^{c}}$ coincide on F^{c}, F^{n+1} is $\sigma^{\varphi}{ }_{-}$ invariant and, therefore,

$$
\varphi=\left.\left.\varphi\right|_{F_{n+1}} \otimes \varphi\right|_{\left(F_{n+1}\right)} .
$$

Put

$$
y_{m}=\sum_{i, j=1}^{m} e_{i j} y_{i j}^{(m)}, \quad m=1, \ldots, n+1 .
$$

Then

$$
y_{m} \in\left(F \cup F_{n+1}\right)^{\prime \prime}=\bigotimes_{k=1}^{n+1} F_{k}
$$

and

$$
\left\|x_{m}-y\right\|_{\varphi} \leq \sum_{i, j=1}^{m}\left\|e_{i j}\right\|_{\varphi}\left\|x_{i j}^{(m)}-y_{i j}^{(m)}\right\|_{\varphi}
$$

for $m=1, \ldots, n+1$. (Here we have used that $\varphi=\left.\left.\varphi\right|_{F} \otimes \varphi\right|_{F^{c} .}$.) This shows that (a), (b) and (c) are fulfilled for $m=n+1$, so by induction we get a sequence $\left(F_{m}\right)_{m=1}^{\infty}$ of commuting subfactors satisfying (a), (b) and (c).

Let ε_{m} denote the φ-invariant conditional expectation of N onto $\otimes_{l=1}^{m} F_{l}$. Since ε_{m} is an orthogonal projection with respect to the inner product

$$
(x, y)_{\varphi}=\varphi\left(y^{*} x\right)
$$

it follows from (b) that for $m \geq l$

$$
\left\|\varepsilon_{m}\left(x_{l}\right)-x_{l}\right\|_{\varphi} \leq d_{\varphi}\left(x_{l}, \bigotimes_{k=1}^{m} F_{m}\right) .
$$

Since d_{φ} induces the σ-strong operator topology on bonded sets, we get that

$$
\left(\bigcup_{l=1}^{\infty} F_{l}\right)^{\prime \prime}
$$

is strongly dense in $N . \operatorname{By}(\mathbf{b})$ the restriction of φ to $\bigotimes_{l=1}^{m} F_{l}$ coincides with

$$
\left.\bigotimes_{l=1}^{m} \varphi\right|_{F_{l}}
$$

for every $m \in \mathbf{N}$. This implies that

$$
(N, \varphi) \cong \bigotimes_{l=1}^{\infty}\left(F_{l},\left.\varphi\right|_{F_{l}}\right)
$$

so by (c) we get

$$
(N, \varphi) \cong \bigotimes_{m=1}^{\infty}\left(M_{2}, \varphi_{\lambda}\right)=\left(R_{\lambda}, \omega_{\lambda}\right) .
$$

This proves Theorem 6.4.
Corollary 6.5. Let φ_{1}, φ_{2} be two normal faithful states on the Powers factor R_{λ} for which $\sigma_{t_{0}}^{\varphi_{1}}=\sigma_{t_{0}}^{\varphi_{2}}=\mathrm{id}\left(t_{0}=-2 \pi \log \lambda\right)$. Then there exists an automorphism α of R_{λ}, such that $\varphi_{2}=\varphi_{1} \circ \alpha$.

Proof. By Theorem 6.1 there exists $\alpha_{1}, \alpha_{2} \in \operatorname{Aut}\left(R_{\lambda}\right)$, such that

$$
\varphi_{i}=\omega_{\lambda} \circ \alpha_{l}, \quad i=1,2 .
$$

Hence $\alpha=\alpha_{2} \alpha_{1}^{-1}$ can be used.
Remark 6.6. Corollary 6.5 is probably well known, and it can be proved by other means. In fact it is not hard to see that Corollary 6.5 holds for any σ-finite factor N of type $\mathrm{III}_{\lambda}, 0<\lambda<1$, for which the fundamental homomorphism

$$
\bmod (\alpha): \operatorname{Aut}(N) \rightarrow \operatorname{Aut}\left(F_{M}\right)
$$

defined in [8, p. 549] is surjective.

References

[1] H. Araki and J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Ser. A, 4 (1968), 51-130.
[2] M. D. Choi and E. G. Effros, Injectivity and operator spaces. J. Funct. Anal. 24 (1977), 156-209.
[3] , Nuclear C^{*}-algebras and the approximation property, Amer. J. Math., 100 (1978), 61-79.
[4] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Normale sup., 6 (1973), 133-252.
[5] Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Normale sup., 8 (1975), 383-419.
[6] , Classification of injective factors, Ann. Math., 104 (1976), 73-115.
[7] , Type II_{1}-factors, property L_{λ}^{\prime} and closure of inner automorphisms, J . Operator Theory, 14 (1985), 189-211.
[8] A. Connes and M. Takesaki, The flow of weights on a factor of type III, Tôhoku Math. J., 29 (1977), 473-575.
[9] J. Dixmier, Von Neumann Algebras, North-Holland Mathematical Library 27, North-Holland, Amsterdam 1981.
[10] R. E. Edwards, Fourier series, Vol. I, Graduate Texts in Mathematics 64, Springer-Verlag 1979.
[11] U. Haagerup, A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space. J. Funct. Anal., 62 (1985), 160-201.
[12] , Connes' bicentralizer problem and uniqueness of the injective factor of type III $_{1}$, Acta Math., 158 (1987), 95-148.
[13] , On the uniqueness of the injective factor of type III_{1}, in preparation.
[14] H. Halpern, V. Kaftal and G. Weiss, The relative Dixmier property in discrete crossed products, J. Funct. Anal., 69 (1986), 121-140.
[15] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math., 313 (1980), 72-104.
[16] R. V. Kadison and J. R. Ringrose, Cohomology of operator algebras I, Acta Math., 126 (1971), 227-243.
[17] J. Kovacs and J. Szúcs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. Szeged, 27 (1966), 233-246.
[18] S. Popa, A short proof of "injectivity implies hyperfiniteness" for finite von Neumann algebras, J. Operator Theory, 16 (1986), 261-272.
[19] R. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math., (1967), 138-171.
$[20]$ B. Russo and H. Dye, A note on unitary operators in C^{*}-algebras, Duke Math. J., 33 (1966), 413-416.
[21] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal., 9 (1972), 306-321.
[22] , The structure of von Neumann algebras with a homogeneous periodic state, Acta Math., 131 (1973), 79-121.
[23] , Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.
[24] S. Wassermann, Injective W^{*}-algebras, Math. Proc. Cambridge Phil. Soc., 82 (1977), 39-47.

Received March 18, 1988.

Institut for Matematik og Datalogi
Odense Universitet
DK-5230 Odense M, Denmark

