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THE INJECTIVE FACTORS
OF TYPE IIIA, 0 < λ < 1
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Dedicated to the memory of Henry A. Dye

We give a new proof for Connes' result that an injective factor of
type IIIA, 0 < λ < 1 on a separable Hubert space is isomorphic to
the Powers factor Rλ. Our approach is based on lengthy, but rela-
tively simple operations with completely positive maps together with
a technical result that gives a necessary condition for that two ^-tuples
(ξι,..., ξn) and (A/I , . . . , ηn) of unit vectors in a Hubert H/*-bimodule
are almost unitary equivalent. As a step in the proof we obtain the
following strong version of Dixmier's approximation theorem for 111̂ -
factors: Let N be a factor of type III^, 0 < λ < 1, and let φ be a normal
faithful state on N for which σζ = id (to = —2π/ logλ); then for every
x e N the norm closure of conv{uxu*\u e U(Mφ)} contains a scalar
operator.

1. Introduction and preliminaries. In [6, §7] Connes proved that, for
each λ e ]0,1[, there is up to isomorphism only one injective factor
of type III^ (with separable predual), namely the Powers factor,

oo

Rλ = (g)(M2,φλ).

Here M2 is the algebra of complex 2 x 2-matrices and φλ is the state
on Mi given by

9λ(X

γ

n

\X2\

(The notion Rχ was introduced by Araki and Woods in [1]. In Powers'
original work [19], Rλ denoted Ma, where a = λ/(l+ λ).)

Connes' approach for proving uniqueness of the injective factor of
type IΠ ί (λ e ]0,1[ fixed) is the following: By [4, §4] every factor N
of type III^ has an essentially unique crossed product decomposition

N = PxθZ

where P is a 11^-factor and θ is an isomorphism of P for which τoθ =
λτ, where τ is a normal faithful semifinite trace on P. Moreover, N is
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injective if and only if P is injective. Hence, to prove the uniqueness
(up to isomorphism) of N, one needs to show that

(i) There is only one injective factor P of type IIQO.

(ii) Any two automorphisms θ\, θ2 of the injective factor P in (i)
for which

x o θ\ — τ o θ2— λτ

are outer conjugate. Note that by [8, Chapter 3] outer conjugacy of
two automorphisms, for which τoθ\ = τoθ2 = λτ implies conjugacy,
i.e. there exists a e Aut(P) such that θ2 = α#i αΓ1.

The proof of (i) was established by Connes previously in the same
paper [6, §5] by proving that "injective <=> hyperfinite" for factors on
a separable Hubert space, and (ii) was proved one year earlier (1974)
also by Connes [5] by developing a powerful machinery for classifica-
tion of automorphisms of factors up to outer conjugacy. In [11] we
gave a simplified proof of Connes' result "injective <=> hyperfinite",
and recently Popa [18] has given a third approach to this important
biimplication in the type II case.

The purpose of this paper is to give an alternative proof of the
uniqueness of the injective factors of type IΠ^, 0 < λ < 1, which still
relies on the uniqueness of the injective factors of type IIi and 11^,
but which substitutes Connes' analysis of outer conjugacy classes of
automorphisms with some lengthy, but relatively simple, manipula-
tions involving completely positive maps. The proof follows closely
the ideas of our proof of "Injective <=> hyperfinite" for Hi-factors given
in [11, §§3, 4 and 5]. The tracial state in the IIi -factor case is substi-
tuted by a normal faithful state ^ o n a IΠ^-factor for which σfQ = id,

(ίo = -2τr/logΛ).
In §5, we show that in case of an injective factor N of type III^

with separable predual, the identity map on N has an approximate
factorization through full matrix algebras (in the sense of Choi and
Effros [3, pp. 75-76]) of a very special form:

For m G N, let ψm denote the tensor product state

m m

λ on M2m =

Then for every finite setx\,...,xn of operators in TV and every ε > 0,
there exist completely positive maps,

S: N -> M2m, T: M2m -> N
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such that

5 ( 1 ) = 1 ,

Ψm°S = φ, φoT=ψm,

σfm oS = Soσf, σf oT = Toσ?m, t e R,

and
T o S(xk) —> xk cr-strongly for k = 1,..., n.

In §§2, 3 and 4 we prove a number of technical results, which enable
us to derive from this factorization result that given x\,...,xn G N
and e > 0 there exists a finite dimensional subfactor F on N and
Ji , ., yn Ξ J7* such that

(F, ^1^) = (Λf2m, ζ^m) for some m e N

and

fe-^IU < ε ' A: = 1 — ,ΛI,
where \\a\\φ = φ{a*a)χl2 (cf. Lemma 6.4). From this one obtains quite
easily that the factor N is isomorphic to the Powers factor R^ and that
the isomorphism can be chosen such that φ corresponds to the infinite
product state

on Rλ. It should be noted that once the uniqueness of the injective
factor of type IΠ^ (λ G ]0,1[ fixed) is established, one can derive
Connes' outer conjugacy result (ii) above by using [4, Theorem 4.4.1

(c)].
In a subsequent paper [13] we will apply similar techniques to give

a new approach to Connes' result [7] that injective factors with trivial
bicentralizers are isomorphic to the Araki-Woods factor R^. This
result was the key to settle the uniqueness problem for injective factors
of type III! (cf. [12]).

We give below some preliminaries on factors of type IΠ^, 0 < λ < 1,
which can be extracted from Connes' paper on classification of type
Ill-factors [4]:

Let M be a factor of type ΠI^. By [4, §4], M has a normal faithful
semifinite weight ω, such that σ™ = id (to — —2π/ log/I), and such that
the centralizer Mω is a factor of type IIoo Moreover, the restriction
of w to Mω is a semifinite trace. Let e be a finite projection in Mω for
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which co(e) = 1. Then ωe = co\eMe is a normal faithful state on eMe
and σ™e = id. If M is σ-finite, then the projection e is equivalent to
1, and hence eMe = M. Therefore:

Every σ-finite factor N of type ϊllχ admits a normal faithful state φ,
such that σl = id (ί0 = -2π/logΛ).

Let (N, φ) be as in Proposition 1.1 and let Tr be the trace on B{H),
where H is an infinite dimensional separable Hubert space. Then
φ <g>Tr is a "trace generalisee" in the sense of [4, §4]. Hence, it follows
from [4, Theorem 4.2.6] that:

Let N be a factor of type \llλ, and let φ be a normal faithful state on
N for which σfQ = id (ίo = -2π/\ogλ). Then

(b) The centralizer Mφ of φ is a factor of type II i.
(c) M'φ(λN = CI.
Note that (b) implies that φ is inner homogeneous in the sense of

Takesaki [22]. If φ is a normal state, such that σζ = id, then

1 ft

h Jo
defines a normal faithful ^-invariant conditional expectation of N
onto Mφ. Hence, if N is injective, so is Mφ. By the equivalence of
"injectivity" and "hyperfiniteness" for IIγ -factors, one gets:

Let N be an injective factor of type \l\χ acting on a separable Hubert
space, and let φ be a normal faithful state for which σζ = id (ίo =
—2π/logλ). Then Mφ is isomorphic to the hyperfinite factor of type

2. Almost unitary equivalence in Hubert iV-bimodules. In this sec-
tion we will prove a technical result which generalizes [11, Theorem
4.2] to Hubert W*-bimodules.

Throughout this section N is a von Neumann algebra, and H is a
normal Hubert iV-bimodule, i.e. H is a Hubert space on which there
are defined left and right actions by elements from N:

(X,ζ) -+ Xξλ x r κ rr

such that the above maps N x H -+ H are bilinear and

x , y e N , ξeH

Moreover x —• Lx, where Lxξ = xζ, ξ e H, is a normal unital *-
homomorphism, and x —• Rx, where Rxξ = ξx, ξ e H, is a normal
unital *-antihomomorphism (see, e.g., [16, §2]).
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DEFINITION 2.1. Let N be a von Neumann algebra, let (N, H) be a
normal Hubert N-bimodule, and let δ e R+. Two n-tuples (ξ\,...,ξn)
and (η\,...,ηn)of unit vectors in H are called <5-related if there exists
a family (α,)/e/ of operators in N, such that

and

ΣWaiζk ~ nkβiW2 <δ, k=\,...,n.

iei

REMARK 2.2. Note that if ΣieI a*at = Σiei aiaί = ^ t h e n f o r a 1 1

iei iei

because the left side is equal to

iei

and the right side is equal to

iei

and it is clear that

Re(α/ί, ηaϊ) = Re(a£al η) = Rε(ξa*,a*η).

Hence, J-relatedness is symmetric with respect to permutation of the
two ^-tuples.

THEOREM 2.3. For every n e N and every ε > 0, there exists a
δ — δ(n, ε) > 0, such that for all von Neumann algebras N and all δ-
related n-tuples (ζ\-- ζn), (rl\'"rln) of unit vectors in a normal Hilbert
N-bimodule there exists a unitary ue N such that

The proof of Theorem 2.3 is divided into a series of lemmas:

LEMMA 2.4. Let N be a von Neumann algebra, and ξ, η be two vec-
tors in a normal Hilbert N-bimodule H. For r>0, put

0 < t < r,
Sr{t)= , , ^ x ι # / t > r
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If a G N, and b = gr(aa*)a, then

\\bξ - ηb\\2 + \\b*η - ξb*\\2 < \\aξ - ηa\\2 + \\a*η - ξa*\\2.

Proof. Let M2(H) be the set of 2 x 2-matrices ξ = (£//)/j=i,2 with
elements in H and with norm

llίll2 = Σ Kυf

M2{H) is a normal Λ/2(//)-bimodule, where left and right action is
defined by formal matrix multiplication. Put

and h = (^ a^j e M2(N).

Then h = h* and for n = 0,1,2,...

h2n+ι_( 0 a*(aa*r\
~\{aa*)na 0 ) '

P u t

φr(t) = tgr(t2) = I t,

By approximating g(t) uniformly with polynomials on sp(αα*) we get

° a*gr(aa*)\ /0 b*
U(«*)« o j = (δ o

Since

we have

Similarly

||fl»Γ(Λ)C - C?r(A)||2 = \\bξ - ηb\\2 + \\b*η - ξbψ.

Thus, we only have to prove that

Let Lf, (resp. /?/,) be the operator on M2{H) defined by left (resp.
right) multiplication with h on Mi(H). Since L/, and Rf, com-
mute, there exists a representation π of the abelian C* -algebra
C(sp(A) x sp(A)) into B(M2(H)), such that

π(f ® g) = L m R m , f,geC(sp(h)).
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Since (φ(s) - φ(t))2 < (s -t)1, s,t e R and since π is order preserving,

Hence
\\φr(h)ζ-ζφrW\\2<\\hζ-ζh\\2.

This completes the proof of Lemma 2.4.

LEMMA 2.5. Let N be a von Neumann algebra and let ζ, η be two
δ-related unit vectors in N. Then for every r E N there exist r operators
b\,...,breN, such that \\bi\\ < 1, / = 1,...,r and

12
< — ,

r w-i U
12

< — ,

\\btξ - ηbiW2 < Sδ, j ; \\b*η - ξb*\\2 < U
i=\

Proof. By Definition 2.1 there exists a family (fl/)/e/ of operators in
N, such that

and

1 6 /

/ € /

Moreover, by Remark 2.2 also

Therefore we can choose a finite subset a,\,

1 έ
2r'

,ap of (ai)iei, such that

2r'

Clearly

and

i=\
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Let Ω = {(s\,...,sp)\Si € C,\Si\ = 1} be the p-dimensional torus
and let dω be the normalized Haar measure on Ω. For ω e Ω we let
S\(ω),..., sp(ω) denote the coordinate functions. Put

P

A(ω) = Σsμ(ω)av, ω e Ω.

As in the proof of [11, Lemma 4.3] one gets

p

ί A(ω)*A(ω) dω = Σ aΐai ^ ι >
J ς i ι = l

Γ P

/ A(ω)A(ω)*dω = Σaia* ^ ι>
J Ω i

and

f (A(ω)*A(ω))2 dω<2, f (A{ω)A(ω)*)2 dω < 2.
JΩ JΩ

Let gr be as in Lemma 2.4, and put

B{ω) = gr(A(ω)A{ω)*)A{ω), ωeΩ.

Since tgr{t)2 < r, we have B(ω)B(ω)* <rl; thus

\\B(ω)\\<r^2, ωeΩ.

Put

2 / t, 0<t<r,

Then

B(ω)B(ω)* = fr(A(ω)A(ω)*).

Moreover, since

B(ω) = A(ω)gr(A(ω)*A(ω))

we have also

B(ω)*B(ω) = fr(A(ω)*A(ω)).

Therefore,

(B(ω)*B(ω))a < (A(ω)*A(ω))a, a > 0,

and

{B(ω)B(ω)*)a < {A{ω)A{ω)*)a, a > 0
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which implies that

/ B(ω)*B(ω)dω<\, f B{ω)B{ω)*dω<\,
JΩ JΩ

f {B{ω)*B(ω))2 dω<2, f (B(ω)B(ω)η2 dω < 2.
JΩ JΩ

It is easy to check that

Mή>t-t2/4r, ί > 0 .

Therefore

(B(ω)*B(ω)ζ,ξ)dω > f (A(ωyA(ω)ξ,ξ) - h
JΩ 4r

273

Ω

i=l

and similarly

{B{ω)B{ω)*η,η)dω> 1 - - .
r

Put Ωr = Ω x x Ω (r factors). Then arguing as in the proof of [11,
Lemma 4.3] one gets

2

dcύ\ "dωrL 1=1

= r

Therefore

Φί dω\ • • • dωr

< ί±l + 1-2 f (B(ω)*B(ω)ξ,ξ)dω<~,

and similarly

dωx dωr<\.
r

Using that (s\,...,sp) are orthogonal vectors in L2(Ω, dω) one gets

/ \\A(ω)ξ - ηA(ω)\\2dω = £ ||αrf - ηa^2 < δ
JΩ : ,i=\
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2 dω =
i=\

ί \\A(ωyη - ξA(ωy\\

Hence by Lemma 2.4

/ \\B(ω)ξ-ηB(ω)\\2dω<2δ,

ί \\B(ω)*η-ξB(ωy\\2dω<2δ.
JΩ

Therefore

r r

\\B(ωi)ξ - ηB(ωi)\\2 dω{ . dωr < 2δ,

i=ι

f - Σ WB^iYn ~ ξBiωiyfdωi "dωr< 2δ

Put now

Ex = \(ωι,...9ωr)eΩr\

E2=
i=\

i=\

By the inequalities proved above,

dω\ "dωr < -, i = 1,2, 3,4.

Therefore Ω r \ (E\ u £2 U £3 U £4) is non-empty.
Choose now ( ω i , . . . , ω r) e Ωr \ (E\ UE2L\E3U E4), and put bt =

r~χl2B(ωi). Then ||Z>/|| < 1, / = 1,..., r, and the four inequalities in
the lemma are satisfied.

LEMMA 2.6. Let A be a unital C* -algebra and let U(A) be its unitary
group. Let ξ, η be two unit vectors in a (unital) Hilbert A-bimodule
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H. Assume that for every γ > 0, there exists a finite set of operators
b\>... ,br G A, such that

<i=\

<γ

and

Then

iξ = Φi, bfη = ξb*, i = 1,..., r.

inf \\uξ - fpι|| = 0.
ueϋ(A)

Proof. The left and right actions can by standard techniques be
extended (uniquely) to normal left and right actions of A** on H. In
this way H becomes a normal Hubert ^**-bimodule. As in the proof
of Lemma 2.4 we can consider the 2 x 2-matrices with elements in
H as a normal Hubert Af2(^**)-Hilbert bimodule. Let ζ be the unit
vector in M2(H) given by

and put
P = {xe M2(A**)\xζ = ζx and x*ζ = ζx*}.

Then P is clearly a von Neumann subalgebra of A**. Let τ be the
vector functional on P given by ζ. For x, y e P,

(xyζ, ζ) = (xζy, ζ) = (xζ, ζy*) = (xζ, y*ζ) = (yxζ, ζ),

so τ is a tracial state on P. Therefore the support projection e of τ is
a central projection in P, and eP is a finite von Neumann algebra. It
is clear that the two projections

o o
and 1

o \
in M2(A**) are contained P. We will prove that e( 1 ®β\ \) and e(
are equivalent projections in P. Since τ is a faithful trace on eP it is
sufficient to prove that for every central projection / in P, f < e, one
has

Let γ > 0. By the assumptions there exist b\,... ,br e N such that

<γ
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iξ = ηbif b*η = ξb*, i = 1,..., r.

eM2(Λ**), / = 1 r.

One checks easily that c ;ζ = Cc, and c*ζ = £c*, i.e. c, e P for i
1,..., r. Moreover

i = l

Therefore

and

fe
f r

1=1 \ι=l

< ^

Hence for every central projection / e P, f < e we get

τ /

However τ(f(ΣU\ cϊci)) = τ(/(Σ/=i
on P. Hence

*))» because τ ( / ) is a trace

Since y > 0 was arbitrary, we get

which proves that e{\ ® e\\) ~ e(l ® ̂ 22) i n ^
Let w; G P be a partial isometry in P for which

w*w = e(

Since tί;*t(; < 1 ® en and

ww* = e(l

* < 1 ® ̂ 22, tϋ is of the form

= ̂  0 J
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for some v G A**. Clearly υ is a partial isometry, and since wζ = ζw,
we have υξ = ηv. Moreover

((l-υ*υ)ξ,ξ) = 2((1 β>eπ - w*w)ζ,ζ) = 2τ((l - e){\ ® eu)) = 0.

Therefore

Thus, by Kaplansky's density theorem,

By the Russo-Dye-theorem [20] the unitball of A is the norm closed
convex hull of U(A). Hence also

By the parallellogram identity

\\uξ-ηu\\2

for all u e U(A). Therefore

inf ||u{ - f/ιi|| = 0.
U€U(A)"

Proof of Theorem 2.3. Let us first treat the case n = 1: Assume that
Theorem 2.3 is false for n = 1. Then there exists an εo > 0, such that
for any γ > 0 there exists a von Neumann algebra N, a normal Hubert
JV-bimodule H and two y-related unit vectors ξ, η, such that

\\uξ - ηu\\ > e0.
ueU(N)

Hence we can choose a sequence (Nm)me^ of von Neumann algebras,
a sequence (Hm)meχ of normal Hubert Nm bimodules and two se-
quences (ξm)meN of unit vectors such that for each meN,ζm and ηm

are (l/m)-related unit vectors in Hm, and such that for all m e N

inf \\uξm - ηmu\\ > e0.
ueU(Nm)

Choose now a free ultrafilter ω on N, and let Hω be the ultraproduct of
the Hubert spaces {Hm)me^ along ω (cf. [15]), i.e. Hω is the quotient
Banach space

Hω = β?IΊω

where

* = {{ξ'm)m&\ξm € Hm, SUP \\ξ'm\\ < oo}
I mGN J
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|

meN

and Iω is the closed subspace,

{J }
The quotient Hω — %ΊIω is a Banach space with norm

where (xm)meN is any representing sequence for x. Moreover Hω is a
Hubert space with inner product

Put A = 0 ^ = 1 Nm in the von Neumann algebra sense. Then Hω is
a Hubert yl-bimodule with the following definition of left and right
action:

If x G A, x = {xm)meN a n d ζ' Ξ Hω has representing sequence
(ζ'm)meN, then xζr has representing sequence (xw^)w€N and £'x has
representing sequence (ζf

mxm)meN' The bimodule will in general not
be normal, so therefore we will only consider A as a C*-algebra.

Let γ > 0, and choose r G N, such that 12/r < y. By Lemma

2.5 we can for each m G N find r operators b\m\... ,brm\ such that

||Λfm)|| < 1, / = l , . . . , r , and

z=l

Let ζ, η G i/ω be the two unit vectors in Hω with representing se-
quences (ζm)meN a n d (̂ m)mGN? ami let b\,... ,br be the elements in
4̂ defined by the sequences (b^)ne^, i = \,...,r. Then ||Z?Z|| < 1,
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/ = l , . . . , r , and

^ 12
<τ<y>

12

biξ = ηbi, b*η = ξb*, ι ' = l , . .

Hence by Lemma 2.6, there exists a unitary W G ^ such that

The operator u is of the form u = (um)men, where ww e U(Nm). Since

lim ||wmίm - ί/mKmII = ||i< - ιjtt|| < ε0

m—>ω

we must have
\\umξm - ηmum\\ <ε0

for some m e N, contradicting that

inf ||w£m - ηmu\\ > So for all m G N.

This proves Theorem 2.3 for n = 1. Let now « > 2. The Hilbert space
Hn = H ®"®H (n terms) is a normal Hilbert 7V-bimodule, where
the left and right action is defined by

f o r x e N a n d { ξ l f . . . , ξ n ) e H n . L e t { ξ \ , . . . , ξ n ) a n d ( η i , . . . , η n ) b e
two J-related π-tuples of unit vectors in H. Then

ξ ( ξ ξ ) ( )

are two unit vectors in Hn. Moreover, ξ and η are <5-related, because
for any set (α/), €i of operators in JV

lαrf - maw2 = ̂  Σ Σ 1 1 ^ - ^fl/
il k\iel k=\iel

Since Theorem 2.3 is valid for n = 1, we can for every ε > 0 choose
a <J > 0, such that when ξ,η e Hn comes from two ̂ -related ^-tuples
as above, then there exists u e u(N), such that ||w<j; - ηu\\ < ε/y/n or
equivalently

lJ2\\uξk-ηku\\2<^.
ίl fl

1=1
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Hence

This completes the proof of Theorem 2.3.

3. A relative Dixmier property for factors of type III^. Let N be a
(σ-finite) factor of type I I I L, and let φ be a normal faithful state on
N for which σfQ = id (ίo = —2π/logλ). Then the centralizer Mφ of #>
has trivial relative commutant

M'φ n TV = c/,

(cf. §1). Since the unitary group U(Mφ) leaves the faithful state φ
invariant, it follows from [17, §2, Theorem 1] that for every x e M
the σ-weak closure of

conv{uxu*\u G U(Mφ)}

contains a scalar operator. We prove below that already the norm
closure of the convex set contains a scalar operator. It is not known
whether the same holds if ψ is an unbounded (normal semifinite faith-
ful) weight on M with σζ = id, i.e. ψ is a "trace generalisee" in the
sense of Connes [4, §4.3]. By a result of Halpern, Kaftal and Weiss
[14, Theorem 4.6 and §5] one has in this case that the norm closure of
conw{uxu*\u G U(MΨ)} contains a scalar operator for all x e M for
which t —• σf(x) is norm-continous.

THEOREM 3.1. Let N be a factor of type IΠ^, and let φ be a normal
faithful state on N for which σfo = id (to = -2π/ logΛ). Then for every
xeN

φ(x)l ecorw{uxu*\ue U(Mφ)}

(norm closure).

Following [22] we put

Nn = {x G N\σf(x) = λinx, t G R}

and we let εn be the projection of norm 1 of N onto Nn given by

o

Note that No = Nφ and that:

eo(l) = 1, φoεn = \ for n Φ 0,

φ o so = φ, φ o en = 0 for n Φ 0.
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Every x G N has a formal expansion

n=-oo

The sum is in general not σ-strongly convergent. By standard Fourier
analysis one gets that for x,y G N,

x = y <=> εn(x) = εΛ(y) for all n G Z.

We prove first

LEMMA 3.2. Ifx e Nn, nφ 0,

0 G con

(norm closure).

Proof. If x e N then x* G iV_π, so it is sufficient to consider the
case x G Nn, n > 0: let * = u\x\ be the polar decomposition of x.
Since x*x e No = Nψ, and since

+ ε)" 1 / 2 (σ-strongly),

it follows that ue Nn. Hence by [22, Lemma 1.6],

0>(ww*) =λnφ(u*u) <λn.

Choose an integer m G N9 such that

l/m< 1 - r ,

Since iV̂  is a Hi -factor with trace φ, we can choose projection q <
1 - ww*, such that

φ(q) = l/m.

Note that
qx = q(l - uu*)u\x\ = 0.

By comparison theory there exists m orthogonal projections qι,...,qm

in Nφ with sum 1, such that q = qm and

φ(qi) = l /m, / = l , . . . , m .

Moreover we can choose a unitary u G Mφ, such that

* / = l , . . . , m - 1,
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Put Xj = uJx(uJ)*, j = 1,..., ra. Since qmx — qx = 0, we have

foτj= l,...,m. Moreover \\xj\\ = \\x\\.
Let ζ e H (the Hubert space on which N acts), then

7=1 i=\

m

Since x*q}• = 0, j = 1,..., m, it follows that

7=1

1/2 1/2

which shows that

m

y^x
7 = 1

=

m

V ^ V*

7=1

<mιl2{m-\γl2\\x\\.

Put

Then

7 = 1 7=1

1 \ 1 / 2

I W I < ( i - - )
Since Uj e Mφ, y e Nn9 so we can iterate the argument and get that

for every / e N, there exist

(w)|w G U(Mφ)}

such that

1
m

Since (1 - 1/ra)^2 —• 0 for / —> oc, Lemma 3.2 is proved.
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LEMMA 3.3. Let n> 0 be an integer for which

4λn < 1 - λ.

Ifx e N and ek{x) = 0for \k\ < n, then

0 G conv{uxu*\u G Mφ}

(norm closure).

Proof. Let rk (resp. sk) be the support projection (resp. range pro-
jection) of fifc(x), k G Z. By the proof of Lemma 3.2

and since ε_^(x)* = e(x*), we have also

φ(s.k)<λk, k>0.

Moreover, rk, sk e M^ for all k eZ. Put

W
\A:=/i / \A:=/i

Since 9? is a trace on Mψ9

2/l 1
) + φ{sk)) < γ^j < 2'

k=n

Hence we can choose a projection p G Mφ, p < 1 - q, such that

φ{p) = 1/2.

Clearly

pεk(x) = 0, k>n,

εk(x)p = 0, k < -n.

Since εk(x) = 0 for |/:| < n, we get

pεk{x)p = 0 for all fceZ.

Moreover, since /? G Λ/̂  = TVQ,

εk(pxp) = pεk(x)p for all k eZ,

which implies that /?.*/? = 0.

Since φ(p) = φ(l-p) = \, there exists a selfadjoint unitary u G
such that

upu* = I - p.
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Put
y = j(x + UXU*).

Then

and since (1 - p)u = up, we get also

11(1 - p)y{\ - P)\\ = ill(i - P ) * ( I - P)\\ < ill*| |.

Put next v = 2p — I, and put

z = \{y + vyυ*) = pyp + (1 - /?)j;(l - p).

Then
||z|| = max{ | | W p| | , ||(1 - p)y{\ - p)||} < \\\x\\

and
z G conv{wxw*|w € t/(A/^)}.

It is clear that
εk(z) = 0 for \k\ < n,

so by iterating the argument as in Lemma 3.2, we get

0 G cδm{uxu*\u G U(Mφ)}.

Proof of Theorem 3.1. Let x G N, and let « be as in Lemma 3.3.
Then

x = eo(x)+ Σ ek(x) + *'
0<\k\<n

where
εk(χ') = 0 for |fc| < n.

Let ε > 0 and put σ = ε/2n. Since SQ(X) G NQ = Λ/̂ ? and since
* ^ follows by the Dixmier approximation theorem

for II!-factors (cf. [9, Chapter III, §5]) that there exists

α 0 G conv{ad(w)|w e Mφ}

such that
\\ao(eo(x)) - φ(x)l\\ < σ.

Using that every

a G conv{ad(w)|w G M^}

commutes with every ek, k G Z, we can by Lemma 3.2 find
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such that

αo(eπ_i(j:))|| < σ,

iίx))!! < σ,

Since for |fc| < n,

7> ' ' ' Oί0(εk(χf)) = 0

we can by Lemma 3.3 find

<*2n-i ^ conv{ad(w)|w G Mφ}

such that

Put β = α2«_iα2A2-2 α 0 . Then

l l ^ ( β o W ) - ^

\\β{εk{x))\\ < σ forO<

Hence

\\β(x)-φ{x)l\\<2nσ = ε.

This completes the proof of Theorem 3.1.

It is clear that by repeated use of Theorem 3. lone gets the following
"Relative Dixmier averaging process" (cf. [9, Chapter III, §3, proof
of Lemma 5]):

COROLLARY 3.4. Let N and φ be as in Theorem 3.1. Then for every
finite set X\,..., xn of operators in N and every ε > 0 there exists a con-
vex combination a of inner automorphisms implemented by unitaries
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from Mφ, such that

\\<*(xk) - φ(xk)l\\ < e

for k = l,...,n.

4. A result on σφ-invariant completely positive maps. Let N be a
von Neumann algebra with a faithful normal state φ, and let F c N
be a von Neumann subalgebra for which

σf(F) = F, teR.

We say that a linear map T: F —• N is σφ-invariant if

T(σ?(x)) = σ?(T(x)). xeF
Note that if F is a finite dimensional subfactor of N9 then N = F <g>
Fc, where Fc is the relative commutant of F in N. In this case the
condition

(i)

σf{F) = F, /6R,

is equivalent to

(ϋ)
φ = φ\F®φ\F<-

Indeed, the implication (ii) => (i) is obvious, and ifF satisfies (i), then
by [21] there is a (unique) normal faithful conditional expectation
ε: N —> F f or which

φ oe = φ.

For x e F and y G F c ,
^(x 7 ) = ̂  o β(χy) = φ(xe(y)).

But ε(y) must commute with every element in F, and so e(y) — λl
for some λ e C. Moreover

Hence

ί?(xy) = φ{x)φ{y)

which shows that (i) =*> (ii).
The main result of this section is the following generalization of

[11, Proposition 5.2] to factors of type III^:

THEOREM 4.1. Let N be a factor of type IΠ^, let φ be a normal
faithful state on Nf such that σζ = id (ί0 = -2π/logA). Let F be a
finite dimensional subfactor ofN for which
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and let T: F -> N bea σφ-invariant completely positive map, satisfying

T{\) = 1 and φ oT = φ\F.

Then for every δ > 0 there exists a sequence (^/)^1 of operators in the
centralizer Mφ ofφ, such that

i=\ ι=l

and

<<J||*|| forallxeE

LEMMA 4.2. Let N be a UIλ-factor and φ a normal faithful state on
N for which σζ = id (ΪQ = —2π/logλ). Ife, f are two projections in
the centralizer Mφ, such that

φ(f)=λnφ(e)

for some n G Z, then there is a partial isometry u G Nn, i.e.

σf{u) = λintu, teR,

such that e = u*u, f = uu*.

Proof. Let ω be the functional on M2 given by

( in Q\

0 1 )*
Let (ers)j=\t2 be the matrix units in M2. Then σ™ = id. Let χ = φ®ω.
Since σfQ = id and since N ® M2 = N is of type III^, the centralizer
Mχ is a Hi-factor. Put

Then
e,feMχ, and χ(£) =λΠτ(^) =

Since χ is a scalar multiple of the unique tracial state on Mχ, we
have e — / in Λf̂ . Hence, there exists υ G Mχ, such that

e 0\ /0 0\

Since ι;*ι; < l ® ^ i and w* < 1 0 2̂2? v is of the form v = u
for some ue M. Clearly

u*u — e and ww* = /
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Moreover, since v G Mχ,

u®e2\, t G R.

But σf{elx) = hite1\h"it = λ-'mXe2X. Hence

σf{u) = λmxu, teR.

LEMMA 4.3. Let N be a factor of type \\\χ, let φ be a normal faithful
state on N such that σζ = id. For each n G Z there exists a finite set
V\,..., vp partial isometries in

Nn = {xe N\σf{x) = λintx, t e R}

such that

Proof. The case n = 0 is trivial (take /? = 1 and t^ = 1). Assume
next n > 0. Since M^ is a IIi -factor with trace φ, we can choose a
projection / G M^, such that φ(f) = λn. By Lemma 4.2 there exists
an isometry v e Nn, for which ;̂*τ; = 1 and υυ* = / , so /? = 1 and
^i = i; can be used. Let now n < 0. Then A" > 1. Let q (resp. r) be
the integer part (resp. fractional part) of λn:

λn = q + r, <?GN, 0 < r < 1.

Choose q orthogonal projections e\,...,eq in Mφ with φ(ej) = A"17,
and put

Then φ(eq+\) = A~"r. Let / G Λf̂  be a projection for which 0>(e) = r.
By Lemma 4.2 there exist partial isometries v\,..., vq+\ G iVrt5 such
that

and
1, = 1,..., q,

Clearly

7=1
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LEMMA 4.4. Let N be a factor of type III^, let φ be a normal faithful
state on N, for which σfQ = id. Let F C N be a finite dimensional
subfactor, such that

and let T: F —> N be a σφ-invariant completely positive map. Then
there exists a finite set a\,... ,aι e Mφ, such that

i

T(x) = Σ tfxaj, x e Mφ.

Proof. Let h be the Radon-Nikodym derivative of φ = φ\p with
respect to the trace Tr on F. We can choose a system (ers)r,s=\,...,m °f
matrix units for i 7, such that

m

h = y λrerr, λ i , . . . ,λ m €R+.

Since σζ = id, it follows that

λr/λse{λn\neZ}.

Let nr G Z be the integer for which

Note that for r, s G {1,..., m},

Since Γ is completely positive, the operator
m

r,s=\

in N ® i 7 is positive (cf. [3, Lemma 2.1]). Let Z? = aχl2. Then 6 is of
the form

m
b = X) brs®ers, brs eN

r,s=l

and

bkrbks> r,s=\,...,m.
k=\

Put

r=\
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Then a simple calculation (cf. [11, proof of Proposition 2.1]) shows
that

Σk = T{ers).
k,l

Hence,

k,l=\

Let ω be the positive functional on F given by

ω(y) = Tr(h-ιy), y e F

Then
fjCOfp \ — l-it(nr-ns)pσt \ers) — Λ ws

Since T is σφ -invariant,

σf {Tiers)) - T{σf{ers))=λιt^-^ers.

Hence

σ?®ω(T(ers) ® ers) - T(ers) ® ̂ ,

and therefore α G Af^^. Thus also b = a1/2 e Mφ®ω, which implies
that

σf φrs) = λ i t { n ' ~ - n s ) , r,s=l,...,m.

Therefore

Hence we have shown that there exist d = m2 operators c\,..., cd in
N, such that

and integers ri\,..., nd, such that

σψ(Cj) = χinjtCj9 t e R J = l , . . . , d .

Since N = F ® Fc = Mm®Fc, Fc is also a factor of type III^.
Moreover, σpFί is just the restriction of σf to Fc. Particularly a^fC —
idfc Therefore we can apply Lemma 4.3 to the pair (Fc, φ\fC) and
obtain:

For j = 1,..., d there exists a finite set Vj t\,..., ^j,p{j) of operators
in Fc for which
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and
PU)

Σ
1=1

Put
aβ = vncj> j =

Then σf(ajι) = aβ for all j and /. Moreover, since Vβ e Fc, we get
for xeF:

d d fp(j)

7=1 V=l

7=1

This proves Lemma 4.4.

LEMMA 4.5. Let N, φ and F be as in Lemma 4.4 and let ε be the
(unique) φ-invariant conditional expectation of N onto F. Then for
every ae N

ε(a) e cόm{uau*\u e U(FC n Mφ)}

(norm closure).

Proof. Using that φ = φ\p ® φ\rc it is easily seen that

ε(xy) = xφ(y), xeF,yeFc.

Let (eij)ij=\ιmmmtm be a system of matrix units for F. Then
m

a =

where ay G Fc. Hence
m

Let <5 > 0. By Corollary 3.4 there exists a convex combination a of
inner automorphisms of Fc given by unitaries in FcΓ\Mφ\Fc = FcΓ)Mφ

such that

for /, j = 1,..., m. Let β = id/- ®α. Then

β € conv{ad;v(M)|w G
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and
m

β{a) =

Hence
m

\\β{a)-ε{a)\\<

This proves Lemma 4.5.

Proof of Theorem 4.1. At this stage we can almost copy the proof
of [11, Proposition 5.2]:

By Lemma 4.4 there exists a finite set b\,..., bd of operators in Mφ,
such that

d

i=\

Particularly

Let e: N —• F be as in Lemma 4.5. Since φ o T — φ\p, we get for
x eF:

( ( d \\ ί ί d \\

φ xε

= φo T(x) = φ(χ).

Since ε(Y^=ι bib*) e F, and since φ is faithful, this equality implies
that

By Lemma 4.5 there exists a convex combination α of inner auto-
morphisms
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where Uj e U(FC nMφ)9 such that

< δ/2.

Put bij = λ)l2ujbu i = 1 >... > d, j = 1,..., r.
Then as in [11, p. 194]

293

Σw
ij

= 1,
ij

- 1 <δ/2

and

xeF.

Let us reindex the &/,-operators to

b\,... ,bp, where p = dr.

Put next
ai = (l

Then

and J^fl fl/ < (1 - ί / 2 ) ( l +(5/2) < 1.
1=1

which is a Ilpfactor we can by [11, Lemma 5.1] find
in M^, such that

OO CX)

Since α, G
operators (

Since ΣZP+ι a*a' = δl2> w e 8 e t a s i n I 1 1 . P 1 9 5 1 t h a t

1=1

For the applications of Theorem 4.1 in §6 we shall need the following:

PROPOSITION 4.6. Let N be a factor of type UIλ, 0 < λ < 1, and let
φ be a normal faithful state on N for which σfo — id. Let m e N and
let ψ = Tr(Λ ) be a normal faithful state on Mm for which σfo = id.
Then there exists an isomorphism a of Mm onto a subfactor F of N,
such that

φ = φ\p ® φ\fC and ^ = ^ o α .
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Proof. We can assume that h is a diagonal matrix
m

JeJJ' λχ,...,λm€R+.

The condition σζ = id implies that λ, /λ7- € {λn\n e Z}. Clearly

and since Mφ is a IIi -factor we can choose orthogonal projections
/i» , fm € M^ with sum 1, such that

4/' j=l,...,m.

Moreover, by Lemma 4.2 there exist partial isometries υ\,...,vn G l ,
such that

vivj = f\y Vjvl = fj &ftd of{vj) = λιrt)tVjf / G R ,

where Πj e Z is given by λΆj = λj/λ\. Put now

Then {frsV, s = 1,..., n} form a system of matrix units, and
m m

r = l r = l

Moreover,
σf{frS) = λi^-^tfrSf ίGR,

so σf leaves the factor

F = span{/r5|r, 5 = 1,..., m)

globally invariant. Hence by the remarks in the beginning of §4

φ = φ\F®φ\F^

Since σf(vj) = λirijtVj, we have by [22, Lemma 1.6] that for r Φ s

ψifrs) = <p{vrv*) = λnrφ(v;vr).

Thus φ(frS) = 0, because vr and vs have orthogonal range projections.
lfr = s

ψ(frs) = ψ(fr) =λr

This shows that if a: Mm -^ F is the isomorphism given by a(ers) =
frs, then

φ oa = Tr(A ) = ψ.
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5. Completely positive factorizations through matrix algebras. In [3,
pp. 75-76] Choi and Effris proved that a von Neumann algebra N
is semidiscrete (= injective by [24]) if, and only if, the identity map
on N has an approximate factorization through full matrix algebras
in the sense that there exists a net (ma) of integers, and two nets of
σ-weakly completely positive maps

Sa:N->Mm, Ta:Mm^N,

such that Sa(l) = 1, Ta{\) = 1 and Ta o Sa converges pointwise σ-
weakly to the identity map on N. In this section we shall show that in
case of an injective factor N of type IΠ^, the approximate factorization
can be chosen in a special form, which takes the modular automor-
phism group of a fixed state on N into account. For any faithful state
φ on a von Neumann algebra N, we put

\\a\\9 = φ(a*a)1'2, a e N.

T H E O R E M 5.1. Let N be an injective factor of type IΠ^, 0 < λ < 1
with separable predual and let φ be a normal faithful state on N for
which σζ = id (ίo = —2π/logλ). Let φλ be the state on the 2 x 2 -
matrices M2 given by

(9x(X"

and put ψm = φλ®- ® ψχ (m times). Then for every finite set X\,..., xn

of operators in N and every e > 0, there exists m e N and completely
positive maps,

S: N->M2m, T\M2m->N,

such that

ψmoS = φ, φoT =ψm,

afmoS = Soaf, σfoT = To σfm

forteR, and

\\ToS(xk)-xk\\φ<e, k= l,...,n.

Let (N, φ) be as in Theorem 5.1. As in the preceding sections

Nn = {xe N\σf{x) = λinix, t e R}

and εn: N —• Nn is given by

en(x) = - Γ λ-'mσf{x)dt.
to Jo
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LEMMA 5.2. Let (N, φ) be as in Theorem 5.1.
For p e N , put

) x e R

Then γp is a completely positive map on N,

7,(1) = 1 , φoγp = φ

and
\imΰ\\γp(x)-x\\φ = O Vx € M.

Proof. It is easily seen that eo(l) = 1, φ o ε0 = ί? and for n φ 0,
eΛ(l) = 0, ̂  oεM = 0. Hence

y p ( l ) = l and φoγp = φ.

Put

ί ) '"" N, u G R.
\n\<p

Then ^ p is the Fejer kernel from the theory of Fourier series (cf. [10,
P 79]):

, , 1 sin2\pui<2)

P sin (M/2)

Note that gp(u) > 0 for all u e R, g is periodic with period 2π, and

Since λ =

Hence

2 ^ 11 11 =
\n\<p~ί

= T ί° gP(2πt/to)σf{x) dt, x e N.
' 0 JO

The complete positivity of γp follows now from the positivity of
the function gp. For x e N

\\7p(x)-x\\f = \\τ Γgp(2πί/to)(σf (x) -x)dt

< y P gp(2πψo)\\σ>(x) - x\\φ dt
h Joo
0 for p —• oo
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because (gp)PeN form an approximate unit in the sense that

2π

for every continuous function / on R with period 2π.

LEMMA 5.3. Let (N, φ) be as in Theorem 5.1, and let (R, τ) be the
hyper finite ll\-factor with tracial state τ. For every finite setx\,...,xne
N and every ε > 0, there exist completely positive maps

S:N->R and T.R^N

and a normal faithful state ψ on R, such that h = dψ/dτ has finite
spectrum and

λ{/λ2e{λn\neZ} for all λlfλ2esp{h).

Moreover

5(1) = 1, T(l) = 1,

ψ oS = φ, φ oT = ψ,

σfoS^Soσf, σfoT = Toσf,

for t e R, and

\\ToS{xk)-xk\\φ <ε, k=l,...,n.

Proof. By Lemma 5.2, we can choose p e N , such that

Let Mp be the algebra ofpxp complex matrices with matrix units
(ers)r,s=\f...,p and let ω be the state on Mp given by

p

ω = Tr(ho'), where h^ — c - y ^ λrerr

and c is the normalization constant c = (Σf= 1 λr)~~x.
Note that for r, s = 1 ,. . .,/?:

σί \ers) — ^o ers^Q — Λ v βrs.

Particularly σ% = id. Put χ = φ®w onN®MP. Then also σξ = id.
Since N ® Afp = TV is a factor of type ΠI^, the centralizer Mχ is a

IIi -factor. Moreover, since N®MP is injective with separable predual,
Mχ is injective with separable predual. Hence Mχ = R.
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For x G N, and r, s G {1,..., n}:

Therefore

ί
Mχ = < Σ Xrs®erseN ® Mp\xrs e Ns-r

where (Nn)neZ are the subspaces of N defined in the beginning of §3.
Moreover, since σfo = id, the #-invariant conditional expectation of
N ® Mp onto R is given by

= - Γ σf{x)dt.
to Jo

Hence for xrs G N,

]
r,s=\ J r,s=\

Define now linear maps S: N —> Mχ and T: M z -»iV by

r,s=\

P(
J P r,s=\

Clearly 5(1) = 1 and Γ(l) = 1. We show next that S and T are
completely positive:

Let eo £ Af/H be the orthogonal projection on the 1-dimensional
subspace of Cn spanned by the vector (1,1,...,1). Then

1 p

eo = - Σ e -
μ r,s=l

Hence
S(x) = peχ(x ® e0), x e N,

which shows that S is completely positive. Let α>o be the pure state
on Mm given by

ωo(z) = Tr(e0^), z e l w .

Then ω o ( ^ ) = l/p for r,s = I,...,p. Therefore

T(y) = {idN®ω0)(y)

for all y G M z C]V® Afp. This shows that Γ is completely positive.
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The number of pairs (r, s) e {1,..., p}2 for which s-r = k is p-\k\
when \k\ < /?, and 0 when \k\ > p. Hence for x e N,

T o S{x) = I £ εs-r(x) = Σ ί1 " v ) βk{x) =

r,s=l \k\<p ̂  ^

where γp: N ̂  N is the map defined in Lemma 5.2. Hence

|| T oS(xk) - xk\\φ < ε for k= l,...,n.

Put ψ = φ o T. Then ψ o S = φ oγp — φ. For >v5 G Λ^-r?

1
-

/ , s = l

because 9J vanishes on Nk when fc ̂  0. Hence

{{φ®){y)> y EMXCN®MP.

Let τ be the tracial state on Mx, i.e. τ is the restriction of χ to
Then

τ(y) = {φ® ω){y) = (φ ® Tr)((l ® /zo)(y))

Since Λo € Λ/̂  it follows that

By definition
sp(A0) = {cλ,cλ2,...,cλp)

for some c> 0. Hence /z = dψ/dτ has finite spectrum, and

for all Ai,^2 G sp(A).
It is clear that cr̂ ®71" = σφ ® id leaves Afz globally invariant. Since

^ is the restriction of (l/p)(φ ® Tr) to M^ it follows that

y e Mx.

Hence, by the definition of S and T

σf oσ{x) = Soσ?(x), x e M,

σfoT{y) = Toσ?{y), y e Mχ.

Since Mχ = R we have proved Lemma 5.3.
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LEMMA 5.4. Let Rχ be the Powers factor with infinite tensor product
state ωλ. Ifψ is a normal faithful state on the hyperfinite ll\-factor R
of the form

ψ = τ(h ) ,

where τ is the tracial state on R, and h is a positive self adjoint operator
with finite spectrum for which

λ{/λ2e{λn\neZ} for all λ{/λ2esp(h),

then there exists a σωλ-invariant subfactor P ofRλ, such that

(R,ψ) = (P,ωλ\P).

Proof. By the assumptions on h,

where ex , . . . , er are orthogonal projections in R with sum 1, and λi
is of the form λn, n e Z for /, j = 1,..., n. Put α, = λ/τ(e/). Then

/=1 i=\

Since Rχ is of type ΠI^? the centralizer of ωλ is a II i -factor, so we can
choose orthogonal projections f \ , . . . , fr in MWλ, such that Σ J = 1 // = 1,
and

Put = E/=i hfu and put χ(x) = ωλ(k~ιx), x e Rλ.
Then χ is a positive normal faithful functional on Rλ. In fact / is

a state, because

X(fi) = λ~XUi = τ(έ?, ), i = 1, . . . , r,

which implies that / (I ) = 1. Moreover,

By the assumption on λi/λj, kιto is a scalar operator (ί0 =
—2π/logλ), and therefore σ^ = id. Since i?^ is an injective factor
of type IΠ^, the centralizer P = Mx is isomorphic to the hyperfinite
factor of type II i. Let a be a *-isomorphism of R onto P9 and put
e't = α(e, ), / = 1,..., r. Clearly ξ o α = τby uniqueness of the trace.
Hence

(') () (f) ι = l r,
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so e\ ~ fi (equivalence in P). Choose partial isometries vt G P for
which

and put u = Σr

i=ι υh Then u e U(P) and

ue'iU* = fif i = l,. . .,r.

Hence β = ad(w)oα is an isomorphism of R onto P for which /?(£/) =
fi and therefore also β(h) = k. Thus

which proves that

(R,ψ)*(P,ωλ\p).

Finally k e MWλ implies that χ is σωλ -invariant, and thus P is (glob-

ally) σωΛ-invariant.

Proof of Theorem 5.1. Let (N, φ) be as in Theorem 5.1, let x,. . . , xn

G N and let ε > 0. Choose

S:N-+R, T:R^N

and ψ e R+, such that the conditions in Lemma 5.3 are satisfied.
By Lemma 5.4 we may realize R as a σωλ-invariant subfactor of N,
such that ψ = ω^|^. Let e be the (unique) ωχ-invariant conditional
expectation of Rλ onto R (cf. [21]). Let S' be the map S considered
as map from N to 7?̂  and put V = T o e (from Rχ to N). Then

coλ o S' = φ, φ o V — ωλ,

σfλ oS' = SΌσf, σf o V = Toσfλ

for t G R. Moreover

\\TΌS'{xk)-xk\\φ <e, k=l,...,n.

For m G N, let Fm be the subfactor of Rλ given by the tensor product
of the first m copies of Mi in Rχ = ®^1I(M2,-^A) Then the infinite
tensor product state ωλ satisfies

Let εm be the ωχ -invariant conditional expectation of Rχ onto Fm,
Then

I M * ) - * l k - > 0 for all x G Rχ.
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Put now
Sm = εmo S', Tm = T'\fm

and let ψm be the restriction of ωλ to Fm. Then

Sm:N^Fm, Tm:Fm^N

are completely positive.

Sm(l) = l, Γ m ( l ) = l ,

Ψm°Sm = φ, φoTm = ψm,

σfoSm = Smoσl a?oT = Toaf>»

for t e R. By the Schwarz inequality for completely positive maps
S'(x)*Sf(x) < S'(x*x), xeN. Thus

\\Sfx\\ωλ < \\x\\φ, xeN

and similarly,

\\τfy\\φ<\\y\\ωλ, yeRλ.

Hence

\\Tm oSm(*k) - TΌS'(xk)\\φ = \\T'(εmoS'(xk) - Sf(xk))\\φ

< \\εm o S(xk) - S{xk)\\ωλ -• 0 for m -> oc.

Therefore we can choose m e N, such that

This completes the proof of Theorem 5.1, because

m

k=\

6. Injective factors of type III^, 0 < λ < 1, are Powers factors.
Throughout this section Rλ denotes the Powers factor of type IΠ^,
i.e.:

where ψχ is the state on the 2 x 2 complex matrices given by

\X2\ X22J l + λ

We let ωλ denote the infinite tensor product state ωλ = ®^Lj ψχ on
Rλ. Note that σ%λ = id for t0 = -2π/logyL
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THEOREM 6.1. Let N be an injective factor of type lllλ with separable
predual, and let φ be a normal faithful state on N for which σfQ =
id. Then N is isomorphίc to the Powers factor Rλ. Moreover, the
isomorphism aofN onto Rλ can be chosen such that φ = ωλ o a.

We prove first three lemmas:

LEMMA 6.2. Let (N,φ) be as in Theorem 6.1. For every finite set
U\,...,un G U{N) and every δ > 0 there exists m e N, a completely
positive map T from M2m = 0 ^ M2 to M and unitary operators
V\,..., υn in M2m, such that ψ = φ o T is equal to 0 ^ ψχ

σf oT = Toσf, teR

and
\\nυk)-uk\\φ<δ, k=l,...,n.

Proof Let ε > 0 be such that ε + (2ε)χl2 < δ. Choose meN, and

S:N ->M2m, T:M2m-+N

satisfying the conditions in Theorem 5.1 with respect to (u\,..., un, ε),
and put

Then II^H < 1 and

\\T(yk)-uk\\φ<e, k=l,...,n.

Using the Schwarz inequality for completely positive maps, we have

\\T(yk)\\φ<\\yk\\Ψ

(cf. proof of Theorem 5.1). Therefore

We can find unitary operators v\,..., vn e M2m, such that

where hk = O £ Λ ) 1 / 2 N ° t e that \\hk\\ψ = \\yk\\ψ. Since 0 < hk < 1,

hl + {\-hk)
2<\.

Hence

< l - ( l - ε ) 2 <2ε.
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Using again the Schwarz inequality for Γ, it follows that

\\T(υk) - uk\\φ < \\T(vk - yk)\\φ + \\T(yk) - uk\\φ

for k — 1,..., n. This proves Lemma 6.2.
If N\, N2 are von Neumann algebras with states ψ\, φ2 on N\ and

N2, respectively, we write

if there is an isomorphism a of N\ onto Λ2 for which φx = a o φ2.

LEMMA 6.3. Let N be an injective factor of type ϊllλ, 0 < λ < I, with
separable predual, and let φ be a normal faithful state on N for which

σζ = id (t0 = -2π/ logA). Let u{,... ,un e U(N) and let δ > 0. Then
there exists a finite dimensional subfactor F c N, unitary operators
V\,..., υn G U(F) and a sequence (aι)(^=ι of operators in Mφ such that

(i) φ = φ\F®φ\F<>
(ii) (F, φ\F) = ®™=χ(M2, φλ) for some m e N,

(iv) i " fl/«ik IIJ < * /or A: = 1,..., /i.

Proof. By combining Lemma 6.2 and Proposition 4.6 we get that
there exists a finite dimensional subfactor F of iV, such that (i) and
(ii) hold, and a completely positive map T: F —• iV for which

and there exist v j , . . . , υn e U(F), such that

i=\

By Theorem 4.1 there exist (fl/)/ î in Mφ, such that

and

Since ||ΛΓ| for all x € Λf we get in particular

<δ/4.
i=\
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Hence

i=\

<δ/2.

Moreover,

0 0 OO

Σ \\aiUkWφ = Σ ψ(UkaϊaiUk) = ψ{KUk) =
i = l ι = l

and since α, e Mφ we have also

OO

Σ
OO

i) = Σ
OO

= Y^ φ(c
1=1 /=i /=

Therefore
OO OO

2_. \\aiuk ~~ vkai\\φ = 2 —
ι=l /=!

ι=l

L E M M A 6.4. Lβί (iV,^) teas /w Lemma 6.3, letX\,... }xn e N, and
let e > 0. 77zen ίλere ex/ste a finite dimensional subfactor FofN and
operators y\,... ,yn e F, such that

{F, φ) s 0(JI/2,
7 = 1

and

m G N,

Proof. We can assume that JV acts standardly on a Hubert space H,
so that ^ is the vector state given by a cyclic and separating vector ζφ.
Let S = /Δ 1/ 2 be the modular conjugation associated with (N,ξφ) in
Tomita-Takesaki Theory. Then JNJ — N\ and H becomes a normal
TV-bimodule, where right action on H is defined by

ξa = Ja*Jξ, aeN, ξeH.
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Since N is spanned by its unitary operators, it is sufficient to con-
sider X\,...,xn unitary. So let U\,...fun G U(N), and let ε > 0.
Choose δ = δ(n, ε), such that the conditions of Theorem 2.3 are ful-
filled. By Lemma 6.3 we can choose a finite dimensional subfactor
F c N, vι,..., vn e U{F) and (a{)%x in Mφ, such that

m

(F. Ψ\F) = ®(Af2, <Pλ) for some m E N,
7 = 1

00 OO OO

Σ α'*α/ = Σ Λ'α/= 1' Σ ii v*a ' ~ α ' M *\\l < δ

ί = l ί = l ( = 1

Put

£* = «ιn^ and »/fc = υkξ9 for M = 1,..., n.

Note that \\ξk\\ = \\ηk\\ = l. Since at e Mφ,

Cliξφ = Ja*Jξφ = ί^β,-.

Therefore

ι = l

Hence, if we consider H as an Λ/^-bimodule, we get from Theorem
2.3 that there exists a unitary operator w e U(Mφ), such that

Equivalently

< ε, fc =

Put Fi = w*Fw. Then Fi is a finite dimensional subf actor of N,
and w*vkw e C/^i) for /c = l,...,n. Moreover, since w e U(Mφ),
φ is also a tensor product state for F\,

φ = φ\Fι ®Ψ\F{

and

7=1
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Proof of Theorem 6.1. Theorem 6.1 follows from Lemma 6.4 by a
procedure, which is standard in the type Π r case (see, e.g., [9, Chapter
ΠI, §7.4]):

Let dφ denote the metric on TV given by

dφ(χ,y) = \\χ-y\\φ, χ,yeN.

Note that dφ induces the σ-strong topology on bonded subsets of
N. Let (xn)%L\ be a sequence that generates a σ-strongly dense *-
subalgebra of N. We will construct a sequence of commuting finite
dimensional subfactors (Fm)™=ι of N, such that

(a)

ί m \ 1
dφ\xι,®Fk\ <—, m e N , / = l,...,m.

V k=ι J m

(b) For each m e N
φ = φ\Fm®φ\Fcm.

(c) For each m e N

g(M2,φλ) for some Km e N.

It is clear from Lemma 6.4 that we can choose F\ c TV, such that
(a), (b) and (c) are fulfilled for m — 1. Assume next that we have
found commuting finite dimensional subfactors F\,..., Fn, such that
(a), (b) and (c) are fulfilled for m = l,...,n, and let us construct
F π + 1 . Put

m=l

By (b), each Fm is σ^-invariant. Hence F is σ^-invariant, which
implies that

φ = φ\F®φ\F<

(cf. §4). Let (^y)f7 =i be a set of matrix units for F. Then each xm

can be written in the form

r -
χm —

where xψ eFc. Put
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By applying Lemma 6.4 to (Fc, <P\F<), we get that there exists a finite
dimensional subfactor Fn+\ of Fc and operators y y

m) e Fn+\ (m <
n + 1), such that

for /, 7 = 1,..., d and m = 1,..., π + 1, and such that

and

for some p e N. Since σ̂ 7 and σ^lFc coincide on Fc, Fn+X is
invariant and, therefore,

Put

Then
Λ+l

A : = l

and

for m = 1,..., n + 1. (Here we have used that φ — Ψ\F ®Ψ\F^) This
shows that (a), (b) and (c) are fulfilled for m = w + 1, so by induction
we get a sequence (Fm)™={ of commuting subfactors satisfying (a),
(b) and (c).

Let εm denote the ^-invariant conditional expectation of N onto
®/=!-?/. Since εm is an orthogonal projection with respect to the
inner product

(x,y)φ = φ(y*χ),

it follows from (b) that for m > I

m >

m



INJECTIVE FACTORS OF TYPE IIIA, 0 < λ < 1 309

Since dφ induces the σ-strong operator topology on bonded sets, we
get that

is strongly dense in N. By (b) the restriction of φ to 0 / ^ i7/ coincides
with

1=1

for every m G N. This implies that
00

=
1=1

so by (c) we get

oo

m=\

This proves Theorem 6.4.

COROLLARY 6.5. Let φ\, ψ2 be two normal faithful states on the
Powers factor Rχ for which σfo

ι = σfQ

2 — id (to = —2πlogA). Then there
exists an automorphism a ofRλ, such that ψ2 — ψ\ o a.

Proof. By Theorem 6.1 there exists a\, a2 G Aυt(Rχ), such that

ψi = ω A o α z , / = 1,2.

Hence a = α 2 α ^ can be used.

REMARK 6.6. Corollary 6.5 is probably well known, and it can be
proved by other means. In fact it is not hard to see that Corollary 6.5
holds for any σ-finite factor N of type IIIA, 0 < λ < 1, for which the
fundamental homomorphism

mod(α): Aut(iV) -+ Aut(FM)

defined in [8, p. 549] is surjective.
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