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THE LATTICE OF PSEUDOVARIETIES
OF INVERSE SEMIGROUPS

T. E. HALL AND K. G. JOHNSTON

As introduced by Eilenberg and Schiitzenberger, a pseudovariety is
a class of finite algebras closed under the formation of homomorphic
images, subalgebras and direct products of finitely many algebras.
Many previous results about the lattice of varieties of inverse semi-
groups are found to have analogues for the lattice of pseudovarieties of
(finite) inverse semigroups. In particular, certain intervals are modu-
lar, including the interval consisting of the pseudovarieties of groups.

1. Introduction and summary. A pseudovariety, introduced by Eilen-
berg and Schiitzenberger [8], is a class of finite algebras closed under
forming homomorphic images, subalgebras, and finite direct products
(each class of algebras considered will be assumed to consist of alge-
bras all of the same type). As usual, we consider inverse semigroups
to have two operations, that of multiplication, and that of inversion,
so that just as the class .# of all inverse semigroups is a variety, the
class of all finite inverse semigroups % is a pseudovariety.

Finite semigroups have long been a part of language and automata
theory (Eilenberg [7], Lallement [13]), since each recognizable lan-
guage has a finite syntactic semigroup and each automaton has a finite
action semigroup. Not only do pseudovarieties give a natural way of
classifying finite algebras generally, but also pseudovarieties of semi-
groups are in a natural one-to-one correspondence with varieties of
recognizable (or rational) languages [7, Vol. B, Theorem 3.4s].

Finite inverse semigroups and injective (or reversible) automata are
now also studied in automata theory, for example in [10, 12, 14, 15,
16, 19, 21]. The pseudovariety of semigroups generated by % was
shown by Ash [3] to be the pseudovariety of (finite) semigroups with
all idempotents commuting, which we denote by %, r. The variety
of languages corresponding to .%. r has been described by Margo-
lis and Pin ([15, Theorem 5.2] and [16]). Of course each subpseu-
dovariety of .%. r also corresponds to a variety of languages, and this
correspondence has in part been studied by Ash, Hall and Pin [4].
Consider a map a: Ly, (S r) = Zpo(SF), given by Pa = P N A
(here %, (F. F) denotes the lattice of (semigroup) pseudovarieties

73



74 T. E. HALL AND K. G. JOHNSTON

contained in # r, and .%,, (%) denotes the lattice of (inverse semi-
group) pseudovarieties contained in .%). This « is easily shown to
be a complete lattice homomorphism from the following well known
results: (i) Reg(S), the set of regular elements of a semigroup S, is an
inverse subsemigroup of S if the idempotents of S commute; and (ii)
for any morphism ¢:S — T of a finite semigroup .S onto a semigroup
T, each regular element of T is an image of a regular element of .S
[22, Proposition 3.2(d)], that is, Reg(S)¢ = Reg(T) (since trivially
Reg(S)p C Reg(T)). Each a0 a~! class is thus a complete sublattice,
and hence an interval, of %,,(% r); in fact we can easily see that
for each # € %, (H) we have Paoa™! = [(P)py, (P)max], Where
(P)spv (O (P)min) say, is the semigroup pseudovariety generated by
P, and

(P)max = {S € F r:Reg(S) € #}.

Since Zpy (Fie.r)/(aoa™t) = Zy(F), our study of %, () is a step
in the study of %,y (% r) and the corresponding lattice of varieties
of languages.

After preliminaries in §2, we consider in §3 the lattice of pseudova-
rieties of groups, %, (ZF), obtaining a monomorphism into the lattice
of %, () of generalized varieties of groups, and we deduce %, (¥F)
is modular.

In §4, joins with the pseudovariety £ of groups are considered, and
the map ¢: 25, () — [ZF, L (SF)], given by P¢ = PV & for each
P € Zp(HF), 1s shown to be a complete lattice morphism, and in §5
the intervals #¢ o ¢! are characterized and shown to be modular.

In §6, meets with £ are considered, and the map y: %, (%) —
ZLp(%F), given by Py = P N Zr for each # € Z,,(F), is shown to
be a complete lattice morphism.

In §7, the lowest three intervals of §5 are shown to form a sublat-
tice isomorphic to the direct product of .%,,(27) and a three-element
chain, and so in particular forms a modular lattice.

We omit those proofs which are similar to proofs of the correspond-
ing results for varieties of inverse semigroups (as in the text [18] by
Petrich), indicating what modifications suffice to yield our results.

2. Preliminaries.

Result 2.1 ([9, Theorem 5] and [11, Theorem V.3.2]). The maxi-
mum congruence contained in Green’s relation /# on any regular semi-
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group S, u = u(S) say, is given by

u={(a,b) € #: for some [for each pair of] #-related inverses
a' of a and b’ of b, a'ea = b'eb for each idempotent e < aa'}.

If S is an inverse semigroup, then
u=1{(ab)eS xS:a'ea=b"'eb for each idempotent e € S}.

For congruences p, o on algebras S, T respectively, define a congru-
ence pxo on the direct product Sx T by, for all (s;, ), (s, 1,) € SxT,
(s1,11) (p x @) (52, 1) if and only if s ps; and ¢,0t;.

The following result can now be routinely proved from Result 2.1.

Result 2.2. For any regular semigroups S and 7,
(1) u(S x T) = u(S) x u(T), and

(i) the map (S x T')/u — (S/u) x (T/ ) given by (s, 1)u — (su, 1)
is (well-defined and) an isomorphism.

Following Ash [2], by a generalized variety we mean a class of alge-
bras closed under the operations of forming all homomorphic images,
all subalgebras, all products of finitely many algebras, and all pow-
ers (and we denote these operations by H, S, Pr, Pow respectively).
It is easily checked [2, Theorem 1 and Comments] that the general-
ized variety (%) gy, generated by any class % of algebras, is given by
(Z)gqu = HSP; Pow(%).

We denote by %~ the class of all finite algebras. For any class .7 of
algebras, (%), and (%), denote the variety and the pseudovariety
(when .Z C %) respectively, generated by .7

Result 2.3 (implicit in [2]). For any finite set %7 of finite algebras,
(i) ()ev = (2 ),

Proof. (i) (Z)gy = HSP; Pow(%) = HSP(%) = (% ).
(i1) From [2, Theorem 2], (Z) py = (Z) gvNFir, s0 from (i), (Z) pp =
(%)v NFr.

Each pseudovariety is determined by an w-sequence of identities
[8], in the sense that for each pseudovariety % there is an w-sequence
[u; = vilien (where N = {1,2,3,...}) of identities such that a finite
algebra A4 is in % if and only if 4 ultimately satisfies [u; = v;];en
(in the sense that there exists » € N such that A satisfies u; = v;
for all i > n), and conversely, for each w-sequence of identities, the
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class of those finite algebras that ultimately satisfy the sequence is a
pseudovariety.

We denote by [u; = v;]°2y the pseudovariety so determined by
[ui = vilien.

An important pseudovariety of inverse semigroups, with no vari-
ety counterpart, is %, the class of finite combinatorial (or #-trivial)
inverse semigroups. Clearly, % is given, within %, by % =
[xi+l = x! f’e’UN

3. Pseudovarieties of groups. We show that there is a monomor-
phism from the lattice .%,, ($F) of pseudovarieties of groups into the
lattice %, (¥) of generalized varieties of groups, which (from Ash’s
results [2, Theorem 1 and Comments]) is isomorphic to the lattice
J%,(Z) of ideals of the lattice .%4, (%) of varieties of groups. By Craw-
ley and Dilworth [6, 9.1], the lattice of ideals of a lattice L satisfies the
same identities as the lattice L, so we will obtain that %}, (ZF) satisfies
each identity satisfied by .%, (), and so, in particular, is modular.

For any variety 77, it is natural to consider the map Gen from
the lattice .%,,(7") of pseudovarieties contained in 7 to the lattice
Zw(7") of generalized varieties contained in 27, which maps each
P € Zp(7) to Gen(P) = (P)qv, the generalized variety generated
by &#. From [2, Theorem 2] it follows that Gen(#) N %~ = £, so
the map Gen is one-to-one. For any &, @ € £,,(7), it is easily seen
that Gen(# V,, €)= Gen(#) Vg Gen(€) (where Vv, denotes join
in %, (7") and Vg, denotes join in %, (?")); that is, Gen: %, (7)) —
Ze(7) is a V-morphism. C. J. Ash found a necessary and sufficient
condition for Gen to be an N-morphism.

LemMMA 3.1 (C. J. Ash, private communication). For any variety 7',
the following are equivalent:
(i) for all A, B € 7" N F»r there exists C € 7" N Fr such that
(A)o N (B)y = (C)o;
(ii) for all #, @ € Ly (7"), Gen(L) N Gen(€) = Gen(L N Q).

Proof. (i)=(ii). Take any algebra X € Gen(£) N Gen(€). Then
there is a finite subset &/ of % such that X € (& ),, whence X € (4),,
where A is the direct product of the algebras in .. Likewise there
exists a finite algebra B € € such that X € (B),. From condition (i),
(4)y N (B)y, = (C), for some

from Result 2.3.
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Thus X € (C), C Gen(#N&), so Gen(#)NGen(€) C Gen(ZN&).
The reverse containment is trivial.

(i1)=>(i). Take any finite algebras 4, B € 7" and put & = (4),, and
@ = (B) py.

By condition (ii), Gen(#) N Gen(@) = Gen(# N&). As in [2],
Gen(Z#) = Gen(A4) = HSP;Pow(A) = HSP(A) = (A),; and likewise
Gen(@) = (B)y, so (4), N (B), = Gen(£ N Q).

Let F,, be the free algebra on countably many generators in the
variety (4)y N (B)y = Gen(# N&) = HSP; Pow(# N&). Then there
exists a finite subset % of # N& such that

where C is the direct product of all the algebras in .#. Now
CePNa@={(A)p N{B)pw € (4)o N(B)y = (Fu)v S (C)v,

s0 (A)y N (B), = (C), as required.

LEMMA 3.2. For any finite groups A, B, there exists a finite group C
such that (A), N (B)y = (C)y.

Proof. First recall from Neumann [17, Definition 51.31] that a finite
group A is called critical if it does not belong to the variety generated
by its proper factors. Recall [17, Definition 51.51] that a group variety
7" is called a Cross variety if (i) 7 is locally finite, (ii) the laws of
7" are finitely based, and (iii) the number of non-isomorphic critical
groups in 7 is finite.

Then the Oates and Powell theorem [17, Theorem 52.11] states that
the variety generated by a finite group is a Cross variety. Thus (4),
and (B), are Cross varieties, so by [17, Theorem 51.52] we have that
the subvariety (4),N(B), is a Cross variety; let C be the direct product
of the finitely many non-isomorphic critical groups in (4), N (B),. By
[17, Remark 51.41], (4), N (B), is generated by its critical groups,
whence (4), N (B), = (C)y, giving the lemma.

THEOREM 3.3. The map Gen: %y (5F) — Z(Z), given by Gen(P)
= (P)gv, is a monomorphism. Thus %, (Zr) satisfies each identity
satisfied by %, (%), and in particular is modular.

Proof. The first statement follows from Lemmas 3.1 and 3.2. The
second statement follows from the first, as was shown at the beginning
of this section.
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4. Joins with the pseudovariety of groups. We denote by £ and
Fr the pseudovariety of all finite groups and the class of all finite,
fundamental inverse semigroups, respectively, while % denotes the
class of all fundamental inverse semigroups.

THEOREM 4.1. For any pseudovarieties P, & of inverse semigroups
PN CONGr & PNFr CECNFr.

Proof. Recall that a finite inverse semigroup is covered by a finite
E-unitary inverse semigroup (the construction in the proof of [18,
Lemma VII.4.4] preserves finiteness), and recall that hence any finite
inverse semigroup is covered by a subdirect product of S/u and a finite
group G (the proof of [18, Theorem VII.4.8] also yields this result for
finite inverse semigroups).

The proof of Kleinman’s result [18, Theorem XII.2.4] for varieties
now yields Theorem 4.1.

COROLLARY 4.2. For any pseudovarieties &, @ of inverse semigroups,

PVNEr=@VGr & PN =€ NF.

CoOROLLARY 4.3. For any pseudovariety 2 of inverse semigroups,

PVEGr ={S € F|S/ue P}

Proof. Together with the result that a finite inverse semigroup S is
covered by a subdirect product of S/u and a finite group G, the proof
of [18, Corollary XII2.6] also proves Corollary 4.3.

For any class .# of inverse semigroups we define

Fu=A{S/n|S €7}

COROLLARY 4.4. (i) For any class % of finite inverse semigroups,
(Z)po NFF = (T [ 1) pp N FF.
(ii) For any class % of inverse semigroups (% )y NF = (% [u)y NF.

Proof. (i) Trivially, (Z /u)py NFr C (Z)py N Fr. Take any S € 7.
Since S/u € % /u we have S € (%' /u) v V ZF, by Corollary 4.3. Hence
(Z)po CS{Z [UWypv V ZF and $0 (F') py V ZF C(F /1) v V EF, and then
by Theorem 4.1 we have (%), NFr C (Z /1) py N FF, giving equality,
as required.
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(ii) An entirely similar proof to the proof of (i), using [18, Theorem
XI1.2.4 and Corollary XI1.2.6], gives statement (ii).

COROLLARY 4.5. For any pseudovariety & of inverse semigroups, if
P is determined by the w-sequence of identities [u; = v;)ien Say, then
PN G is determined by the w-sequence [u; 't tiu; = vt 14v;]ien,
where each t; is not in the content of u; and of v;.

Proof. Simple modifications of the proof of [18, Corollary XII1.2.7]
(for example, replacing “satisfies u, = v, for all a € 4” by “satisfies
u; = v; for all i > n, for some n”) gives a proof of Corollary 4.5.

THEOREM 4.6. The mapping ¢: Zp(SF) — [FF, Lpv (FF)] defined by
P =P\ E for each P € Ly (FF), is a complete lattice morphism.
The ¢ o ¢~ congruence class containing any P € %y, () is given by

Ppod™! =[(P NFF)pw, PN EF].

Proof. For any indexed set {&; | i € I} of pseudovarieties of inverse
semigroups we have that trivially

<\/9’i) v&r = \/(# V&)

iel iel

and, from Corollary 4.3 we have that

(ﬂgv,-) V& = {S €S |S/ue ﬂ%}
iel i€l
=[S e |S/ue s} =V ),
iel iel

so ¢ is a complete lattice morphism.

Part of the proof of [18, Theorem XII.2.8] is easily changed to
prove that ¢ o ¢~! = [(Z# N FF)pw, P V Zr], but the following is
slightly simpler. Take any @ € %#¢ o ¢~!; then P¢ = @¢, that is,
PN Gr =&V %, whence £ NFr = & NFr from Corollary 4.2. Thus

(PNIFF)=(E@NFF)CECEOVIF =PV,

whence @ € [(# N FF)pw, P V Fr], and s0 P o ¢! C (P NFF)pw,
PN Frl.

To prove the converse we first note that (# N Fr) N F =
P NFr, whence (P NFr)py VG = P V Zr by Corollary 4.2, and
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that trivially (#V &r) V& = PV Zr; thus (PNFr) py € Ppod~! and
PN Gr € Ppod~!, and since a congruence class of a lattice contains
the interval between any comparable pair that it contains, we have
UPNTF) v, PVEF] C Ppod™". Thus [(PNFF) pu, PVEF] = Ppog™,
as required.

5. Modularity of certain intervals. We show that for each &# €
Zw(SF), the interval [(# N FF)py, P V ZF] is modular. The corre-
sponding result for varieties, due to Reilly [20] (see also [18, Theorem
X11.2.8]), was proved from the fact that the idempotent-separating
congruences on a regular semigroup form a modular lattice, by us-
ing idempotent-separating, fully invariant congruences on a relatively
free inverse semigroup, for which there seems to be no counterpart in
pseudovarieties. We prove our result from Reilly’s result.

By a locally finite variety we mean a variety in which each member is
locally finite (that is, in which each finite subset of each member gen-
erates a finite subalgebra). For clarity, we sometimes use the symbols
Vy and V,, for the join of varieties and the join of pseudovarieties
respectively.

LEMMA 5.1. For any locally finite varieties 7" and %,
(7 Ny W)Y\ Fon = (¥ NFor) N pp (¥ 0 Fir).

Proof. The containment of the class on the right in the class on the
left is trivial.

So take any 4 € 7" v, #'. Then there exist V € # and W e 7',
a subdirect product B of V' and W, and a morphism ¢: B — A of B
onto A (it follows that 4, and thence 7" Vv, 7', are locally finite).

Now suppose further that 4 € (7" V, #Z') N %~. For each a € A
choose b, € ap~!; then without loss of generality B is generated by
the finite set {b,:a € A}, whence B is finite. Hence V and W are
finite, whence V € 2N F»., W € " N F~ and so A = Bp € (' N
Fir) Vv (W NFr). Thus (7" Vo W' )NFir C (7 NFr) Vo (7 NFirn),
which gives equality as required.

THEOREM 5.2. For each & € Zpy(SF), the interval [(# N Fr)py,
PN Zr) is modular.

Proof. Take any &, %, Z € [(P N FF)py, P V ZF] with & C Z.
Then (as in any lattice) 2V (¥ N.Z) C (X V¥ )NZ, so now we show
the opposite inclusion.
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Take any S € (ZVZ)NZ. Then thereexist X € 27, Y € %, a
subdirect product 7 of X and Y, and a morphism ¢ of T onto S.

Define 2’ = (X,(X x Y)/u), %' = (Y, (X x Y)/u)y and 2’ =
(S, X, (X x Y)/u)y. Then 2’ C Z'; we show that 2”7/, %', Z" satisfy
the modularity equation 2’ v (' NZ")=(&'v¥') nZ".

Since (X x Y)/u = (X/u) x (Y/u) (Result 2.2 (i1)), we see that
Z' = (X, Y/u)y, and &' = (Y, X/u),, and by Corollary 4.4 (ii) we
have that

Z'NF =(X/u,Y/u,NF =%'nF.
Also S € (X XY ) py 50 S/ € (X XY)py whence S/u € (X XY) o NGr =
(X x Y)/u)pp N FF by Corollary 4.4 (i). Hence

F'NT = (S/u. X/ (X x Y)/u)y NS
=(X/u,(XxY)/upNF =2'NF,
again by Corollary 4.4(ii). Thus 27, ', 2’ all belong to the interval
[(Z'NF )y, Z'Vy Z] of %, (F), and this interval is modular, by Reilly’s
result [18, Theorem XII.2.8]. Thus ,
Se @'V ¥ )NZ'=2"Vv, (¥ NnZ")
and so

SeFenN[Z' Vo (%' nZ")]
=(FinNZ )V [(FenNY )N (Fin N Z')]
(by Lemma 5.1, since 2, %', 2" are locally finite)
= (X, (XXY)/tWpw Voo (Y, (X X Y)/t8) po N (S, X, (X X Y)/14) pv]
(by Result 2.3(ii))
CZVpw (¥ NZ),

since (X xXY)/ue(ZV¥)NF =PNF =2ZNF =ZNF =ZNF.
Thus (ZVpw ¥ )NZ C 2 Vp (¥ NZ), which completes the proof.

We shall now show that the map 7" — 7" N.%~ of Lemma 5.1 is an
isomorphism from a certain lattice of varieties to a certain lattice of
pseudovarieties.

For locally finite varieties 7" and 7', since Z N# and 7 V, #  are
also locally finite, we see that the set %, (%) of locally finite subva-
rieties of a variety % forms a (not necessarily complete) sublattice of
the lattice of all subvarieties of Z.

By a locally finite pseudovariety &2 we mean one such that the gen-
erated variety (%), is locally finite. It is easily seen that the set of
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locally finite pseudovarieties in a variety 2 forms a (not necessarily
complete) sublattice, -7y, (%), of Ly (%).

Agliano and Nation also obtained Theorem 5.3 (i) [1, Lemma 1.4(1)],
and Theorem 5.3(ii) in the case where % is locally finite (whence
G (%) = F (%) and Fypy (%) = Zpo(#)) [1, Lemma 1.4 (i) ).

THEOREM 5.3. (i) If # is a locally finite pseudovariety, then (%), N
Fon = P.

(ii) For any variety %, the map 7" — 7" N %~ is an isomorphism of
Zi (%), the lattice of locally finite subvarieties of %, to L;sy, (%), the
lattice of locally finite pseudovarieties in % . The inverse isomorphism
maps each & € Ly, (%) t0 (F)y.

Proof. (i) Trivially & C (%), N %~. Take any A € (), N Fr.
Then there exist algebras C;, i € I, in 2, a subdirect product B
of the C;, i € I, and a morphism ¢:B — A of B onto A. For
each a € 4 choose an element b, € ap~! C B, and put B’ = ({b, |
a € A}), the subalgebra of B generated by {b,|a € A}. Since (#),
is locally finite, B’ is finite, and is a subdirect product of algebras C;,
i € I, where each C] is a subalgebra of C;. As B’ is finite, there are
essentially only finitely many morphisms from B’ onto algebras (one
for each congruence on B’), so by discarding repeats, we have that
B' is isomorphic to a subdirect product of finitely many C;’s. Thus
A= B'¢p € #, whence (%), N %~ C &, which completes the proof.

(i1) A locally finite variety is generated by its finite members, that is,
for each 7" € S, (%), we have 7" = (7" N.F%»~),. Hence the map 7" —
7" NFr sends L, (%) 10 ZLfpy (%), and further is one-to-one. From
part (i), the map is onto. From Lemma 5.1, the map is a V-morphism,
and trivially it is an N-morphism. Thus it is an isomorphism. Since
7" = (7" NFr), for each 7" € 4, (%), the inverse isomorphism maps
P 10 (P)y, for each P € F,, (%).

REMARK 5.4. For & = %, the pseudovariety of finite groups, the
proof specializes to a different proof (to that of Theorem 3.3) that
Zp(%F) 1s modular, simply by deleting all mention of (X xY)/u, X/u
and Y/u (the purpose of including (X x Y)/u is to put 2/, %', Z’ into
a suitable subinterval of .%,(.#)). J. B. Nation noted that this proof
applied to any modular lattice .%,(#%) of all subvarieties of a variety
%, yielding that the lattice %, (%) of pseudovarieties in % is also
modular. He then modified the proof (private communication) to deal
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with arbitrary term functions (not just V(¥ NZ) and (ZV¥)NZ),
thereby obtaining the result that, for any variety % of any algebras,
(%) satisfies each identity satisfied by .4, (%) (see [1, Corollary
2.6], where this result appears with a different proof).

REMARK 5.5. C. J. Ash (private communication) generalized the
just mentioned result and the result [6, 9.1] that the lattice of ideals
(L) of alattice L satisfies the same identities as L, by proving that an
algebraic lattice satisfies the same identities as its sublattice generated
by its compact elements (under finite meets and joins). To deduce [6,
9.1], merely note that the compact elements in .# (L) are the principal
ideals, and L is isomorphic to its lattice of principal deals. To deduce
[1, Corollary 2.6], first note that the compact elements of .#, (%) are
the finitely generated pseudovarieties (those generated by one finite
algebra). Now from Theorem 5.3 (ii) one can show [1, Corollary
2.6]. Key results proved by Ash as part of his proof of this joint
generalization were the following: (i) if L is an algebraic lattice and
{x;|i €I} and {y;|j € J} are upwardly directed subsets of L, then
(Vier Xi) A (Vjes Xj) = Vierjes Xi A X; and (ii) for any n-ary lattice

term function p and any elements a;, ay, ..., a, in an algebraic lattice
L, p(ay,ay,...,a,) =\{p(ci,c2,...,cn)| each ¢; is compact and ¢; <
a,-}.

6. Meets with the pseudovariety of groups. The following lemma is
analogous to the result that (%) ,, N.Fr = (Z' /1) pp N FF for any class
Z of finite inverse semigroups (Corollary 4.4 (i)). By Subgroups(.#")
we mean the class of all groups which are subgroups of members of a
class 7.

LEMMA 6.1. For any class % of finite inverse semigroups, (%) py N
Zr = (Subgroups(.%)) pv.

Proof. Of course (Subgroups(.%)),y C (#)p N Zr. Take any G €
(Z ) pp NZF. Then there exist Cy, C,, ..., C, € %, an inverse subsemi-
group 7 of C; xCy x---x C,, and a morphism ¢ of 7 onto G. Then as
in [22] there exists a subgroup H of T such that Hp = G (simply put
H = H,, the #-class of T containing e, any minimal idempotent of
the subsemigroup Gop~! of T'). Since H < C; x C; X --- x C, we have
H <G xGyx---x Gy, for some groups G; < C;, i =1,2,...,n. Thus
G € (G,Gy,...,Gy)pv € (Subgroups(%)) pv, whence (Z)p N ZF C

(Subgroups(.%')) py, which completes the proof.
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REMARK 6.2. It is not always the case that
(Z')w NZ = (Subgroups(%’)),,

since for .# the class of [finite] combinatorial inverse semigroups,
(Z)y = & [18, Lemma XII.1.7] whence (%Z), N & = %, while
(Subgroups(.%)), is the trivial variety. Likewise, not all of the ana-
logue for varieties of the following theorem is true; see [18, Theorems
XI1.3.2 and Exercise XII.3.8(iv)].

THEOREM 6.3. The map y defined by Py = P NZx, for each P €
L (FF), is a complete lattice morphism of L, () onto L (r).
Each y o w~! congruence class is an interval of %, (5).

Proof. Take any set {&;|i € I} of pseudovarieties of inverse semi-
groups. From Lemma 6.1, we have

(ngi)ﬂ?p=<ug"i> NZr
i€l iel v
= <U(.9?’,- nfp)> ngr = \/(#n%).
iel pv iel
Trivially, (N;c; %) NZF = ;1 (P NEF), so ¥ is a complete lattice
morphism. In particular, each y o y~! class of %, (%) is a com-
plete sublattice of .%,, (%) and hence is an interval (since .2, () is

complete).
Clearly the interval containing each & € %, (%) is given by

Py oy~ =[P N %, Max(£ N )],

where Max(# NZr) = {S € A | Subgroups(S) C N %r}.

REMARK 6.4. The congruence v = (¢ o 9~ 1) N (w o y~1) is nontriv-
ial, which can be seen by modifying Reilly’s ingenious example [18,
Example XII.3.6]. Replace Z by Z,, the additive group of integers
modulo »n (with n > 1), and replace 2, the variety of abelian groups,
by &%, r, the pseudovariety of finite abelian groups of exponent n. Of
course one also replaces &/, and (B}) by %, & and (B]),, respec-
tively. These modifications also show that the lattice %, ((B1) pv V&r)
is not modular (cf. [18, Corollary XI1.3.7]).
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7. The lowest three intervals.

NOTATION.

g denotes the class of one element (or trivial) semigroups.

B, denotes the five element combinatorial Brandt semigroup.

B = (By)y, Br = (BZ)pv =F NFnr.

& = the variety of semilattices.

% = the pseudovariety of finite semilattices = . N F.

[u = v,u; = v;]%y denotes the pseudovariety determined by the
w-sequence

U=v, U =", U=V, U=Ty, U=T,...,
in which every second identity is u = v.

Thus S € [u = v, u; = v;}°2\ means that S satisfies ¥ = v and, for
some r, satisfies u; = v; for all i > n.

Put %% = [xx~'y = yxx~1]7Y, the pseudovariety of all finite Clif-
ford semigroups (that is, all finite semigroups which are semilattices
of groups). The next theorem shows that %% V &r = $%F; we study
the modular interval [, ¥ZF].

THEOREM 7.1. If P = [u; = v;}i0y is a group pseudovariety, then

PNy F = [xx"1 =x71x, (ww;1)? = uw; 0y

= the class of finite semilattices of groups in #
= {5 € # | S is a subdirect product of groups in &
with possibly a zero adjoined}.

Conversely, any pseudovariety & consisting of Clifford semigroups
and not consisting only of groups satisfies

Proof. The proofs of [18, Theorems I1.2.6 and XII.4.3 and Lemma
X11.4.4] also suffice for this theorem.

REMARK 7.2. Recall from §1 that % r denotes the pseudovari-
ety of finite semigroups with idempotents commuting, and recall the
following definition (for each & € %, (%)):

(P)max = {S € F.r| Reg(S) C #}.

Then from Theorem 7.1, the semigroup pseudovarieties (%)pax, for
each Z € [%%, 5%F], are precisely those considered by Ash, Hall and
Pin in [4], and for which the corresponding varieties of languages are
found.
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COROLLARY 7.3.
[, FZp] ={P V FF | P € L (FF)}
and
-Cva[%F] = %v(gF) U [yF,._%F]-

By [18, Proposition XII.4.6] the class .%2# of strict inverse semi-
groups (subdirect products of groups and Brandt semigroups) is a va-
riety, determined by the identity ww ™! = w—lw where w = yxy~!.
It follows that %%, the class of finite strict inverse semigroups, is a
pseudovariety, determined by the same identity; that is

P =[ww ' =wlw, w = yxy~1].
Likewise, from [18, Proposition XII.4.8] it follows that
By =[w?=w,w = yxy™ ']
= {S € # | S is a (finite) subdirect product of (finite)
combinatorial Brandt semigroups if |S| > 1}.

For any w-sequence of identities [#; = v;];en, there are at most R,

variables involved, say x;, x, x3,.... Thus u; = v; could be written
as u;(xy,x2,x3,...) = v;i(x1, X2, X3, ... ), though of course only finitely
many of xi, X, X3,... actually occur in the two words u; and v;. We

write (x;) = (X1, X2, X3,...) and u;(x;) = v;(x;) for u;(xy, X2, x3,...) =
vi(x1, X2, X3,...)-
As in [18], for any inverse semigroup word w, the notation w € G
means the identity ww~! = w~lw, and w € E means the identity
2
w* =w.

THEOREM 7.4. If & = [u;(x;) = vi(xx)lien is any group pseudova-
riety, then
PNy Br =[yxy~" € G ui(yexeyi Nvivexi vy D' € Elien
= {S € %% | Subgroups(S) C £}
= {S € S| S is a (finite) subdirect product of groups in #
and (finite) Brandt semigroups over groups in }.

Proof. The proof of [18, Theorem XII.4.10] suffices also to prove
Theorem 7.4. Note that in particular & V p, B = S 5.

The following analogue of [18, Proposition XII.4.13] is easily proved
(Y, denotes the two element semilattice, and a strict pseudovariety
means one containing only strict inverse semigroups).
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THEOREM 7.5. For any P € Zpy(HF),

(i) & is a group pseudovariety if and only if Y, ¢ 2,
(ii) £ is a Clifford pseudovariety if and only if B, ¢ 2,
(iii) & is a strict pseudovariety if and only if B} ¢ .

COROLLARY 7.6. In the lattice £y, (SF),

(i) S is the least nongroup pseudovariety,
(ii) BF is the least non-Clifford pseudovariety,
(ili) (B])pv is the least nonstrict pseudovariety,
(lV) T < yp < @F < (le)pv-

Note that from Corollary 7.6 (ii) and (iv), we have that %, (%F) is
the three element chain.

LEMMA 7.7. Let Z be a strict pseudovariety which is not a Clifford
pseudovariety. Then P = (P N %r) V Br.

Proof. The proof of [18, Lemma XII.4.15] also suffices to prove
Lemma 7.7.

THEOREM 7.8. The function y: Zp(F57) — ZLpw(Br) X Lo (GF),
given by Py = (P NBr, P NZF) for each P € L (F5), is a lattice
isomorphism.

Proof. The proof of [18, Theorem XII1.4.16] also suffices to prove
Theorem 7.8.

COROLLARY 7.9. The lattice %, (527 ) is modular.

Proof. Now %, (%F) is modular, by Theorem 3.3 or Theorem 5.2,
and the three element chain .%}, (%F) is modular, 50 %, (BFr ) X-Zy (TF)
= Zw(FF) is also modular.
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