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M-IDEALS OF COMPACT OPERATORS

CHONG-MAN CHO

Suppose X is a reflexive Banach space and Y is a closed sub-
space of a cy-sum of finite dimensional Banach spaces. If K(X,Y),
the space of the compact linear operators from X to Y, is dense in
L(X,Y), the space of the bounded linear operators from X to Y, in
the strong operator topology, then K(X,Y) is an M-ideal in L(X,Y).

1. Introduction. Harmand and Lima [7] proved that if X is a Banach
space for which K(X), the space of compact operators on X, is an M-
ideal in L(X), the space of continuous linear operators on X, then
there exists a net {7,} in K(X) such that

(i) ||Tx]l £ 1 for all

(i1) T, — Ix strongly,

(iil) T} — Ix- strongly,

(iv) || Ix — T,|| — 1.

Thus, if K(X) is an M-ideal in L(X) then X satisfies the metric com-
pact approximation property.

Later Cho and Johnson [3] proved that if X is a closed subspace
of (3°;2 1 Xn)p (dimX, < o0, 1 < p < oo) which has the compact
approximation property, then K(X) is an M-ideal in L(X).

Recently Werner [15] obtained the same conclusion for a closed
subspace X of a cyp-sum of finite dimensional Banach spaces which
has the metric compact approximation property. More specifically, he
proved the following.

THEOREM. If X is a closed subspace of a cy-sum of finite dimensional
spaces, then the following are equivalent:

(a) X has the metric compact approximation property.

(b) For each Banach space W, K(W, X) is an M-ideal in L(W, X).

(c) K(X) is an M-ideal in L(X).
Werner’s proof [15] of the implication (c) = (a) above can be used in
the case of a pair of Banach spaces X and Y to prove that if K(X,Y) is
an M-ideal in L(X,Y), then the closed unit ball of K(X,Y) is dense in
the closed unit ball of L(X,Y) in the topology of uniform convergence
on compact sets in X.
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The main result of this paper is Theorem 3. In Theorem 3 we will
prove that if X is a reflexive Banach space and Y is a closed subspace
of (3°Z)),, the co-sum of a family {Z;:i € I} of finite dimensional
Banach spaces, for which K(X,Y) is dense in L(X,Y) in the strong
operator topology, then K(X,Y) is an M-ideal in L(X,Y). Thus, if
either X or Y has the compact approximation property then K (X, Y)
is an M-ideal in L(X,Y).

2. Notation and preliminaries. A closed subspace J of a Banach
space X is said to be an L-summand if there exists a closed subspace
J' of X such that X is an algebraic direct sum of J and J’, and also
satisfies a norm condition ||j +j'|| = ||j||+|j'|| forall j € J and j' € J'.
In this case we write X = J @; J'. A closed subspace J of a Banach
space X is called an M-ideal in X if JO, the annihilator of J in X*, is
an L-summand in X*.

If X and Y are Banach spaces, L(X, Y) (resp. K(X,Y)) will denote
the space of all bounded linear operators (resp. compact operators)
from X to Y. If X = Y, then we simply write L(X) (resp. K(X)).
Unless otherwise specified, these spaces are understood to be Banach
spaces with operator norm.

If X is a Banach space, By will denote the closed unit ball of X. A
Banach space X is said to have the compact approximation property
(resp. metric compact approximation property) if the identity opera-
tor on X is in the closure of K(X) (resp. B(x)) with respect to the
topology of uniform convergence on compact sets in X.

If {Z;:i € I} is a family of Banach spaces, the cy-sum (> Z;)., of
{Z;} is the Banach space of all functions z on / with the properties
that for i € I, z(i) € Z; and for any ¢ > O there exists a finite set
A C I such that |z(i)| < ¢ for i € I\A. The norm on (}_ Z;),, is the
supremum norm. For a subset 4 of I, the projection P, in (}_ Z;),,
associated with A is defined by

z(i) ifieA,

(P42)(i) = { 0 ifi¢Adforze(YZ),.

3. M-ideals. Alfsen and Effros [1] and Lima [9] characterized M-
ideals by the intersection properties of balls. In this paper we will use
the following characterization of M-ideals due to Lima [9]: A closed
subspace J of a Banach space X is an AM-ideal in X if and only if for
any ¢ > 0, for any x € By and for any y; € By (i = 1,2,3), there
exists y € J such that ||x +y;, —y||<1+efori=1,2,3.
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The following theorem is essentially due to Werner [15] although he
restricted attention to the case X = Y and the identity map on X.

THEOREM 1. Let X and Y be Banach spaces. If K(X,Y) is an M-
ideal in L(X,Y), then By x,y) is dense in By x y) in the topology of
uniform convergence on compact sets in X.

Proof. Suppose K(X,Y) is an M-ideal in L(X,Y) and suppose
L(X,Y)* = K(X,Y)° &, J for a subspace J of L(X,Y)*. Then
the map ¢ — ¢ + K(X,Y)° defines an isometry from J onto
L(X,Y)*/K(X,Y)° and hence the map ¢ — ¢ | g(x,y) defines an isom-
etry from J onto K(X,Y)* via L(X,Y)*/K(X,Y)°.

Let Q be the projection from L(X,Y)* onto J. Then ¢ € L(X,Y)*
is in the range of Q if and only if the restriction of ¢ to K(X,Y) has
the same norm as ¢.

IfTeL(X,Y)CL(X,Y)* with ||T|| < 1, then for ¢ = ¢; + ¢, in
L(X,Y)* with ¢, € K(X,Y)° and ¢, € J we have

(Q'T)p =TQ(p1 + ¢2) = Ths.

Thus Q*T € K(X, Y)°° = J* = K(X, Y)*™.
Since Q*T € K(X,Y)* and ||Q*T|| < 1, by Goldstine’s theorem
there is a net {K,} in Bg(x y) such that

K, — Q*'T in the weak*-topology induced by K(X, Y)*.

Since for each x € X and each y* € Y*, y* ® x is in the range of Q,
we have

Y (Kox) = Ko(y* ® X) = (@°T)(y* ® x) = y*(T'x).

This shows that 7 is in the closure of Bk x y) in the weak operator
topology and hence in the strong operator topology.

The following theorem plays a key role in the proof of the main
theorem.

THEOREM 2. Let X be a reflexive Banach space and let Y be a closed
subspace of Z = (3. Z))c,, the co-sum of a family {Z;:i € I} of finite
dimensional Banach spaces. If K(X,Y) is dense in L(X,Y) in the
strong operator topology, then for any T € By x )y there exist nets
{Ka} in K(X, Y) and {Qa} in BK(X,Z) such that ”T - Qa” < ”T”,
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[|Qa — Kol| — O and for any finite subset A of I there exists o such
that P,(T — Q,) =0 for a > ay.

Proof. Let T € Br(x,y) and let {Tg} be a net in K(X,Y) such that
Ty — T strongly. View T and T}’s as operators in L(X,Z). Since
P,T — T strongly (A4 ranges over the finite subsets of /), by replacing
the index sets of {73} and {P,} by the product directed set we have
T,— P,T — O strongly and there exists r > 0 such that |7, - P,T|| < r
for all y.

We claim that 7, — P,T — O weakly in K(X, Z). Z* = (3 Z});: has
the metric approximation property and the Radon Nikodym property
[5, p. 219]. Since Z is an M-ideal in Z** [7], Z* is complemented in
Z*** by norm one projection [7].

Thus K(X Zy=X"*&Z*=X® Z*[5, p. 247].

Ifx®z*eX®Z*and T =} | x} ® z; is a finite rank operator
from X to Z,

(x® 2")(T) = Zx<x 2(zi) = 2°(Tx).

Since the finite rank operators are dense in K (X, Z),
(x** ® Z*)(Ty - PyT) = x**(Ty - PyT)*Z* — 0.

Since X ® Z* is dense in X®Z* = K(X,Z)*, T, — P,T — 0 weakly
in K(X,Z).

Since T, — P,T — 0 weakly in K(X, Z), there exists a net {K, — Q,}
of convex combinations of {7, — P,7} which converges to zero in
norm, where K, is a convex combination of T,’s and Q, is a convex
combination of P,7’s. Moreover, we can choose the net {K, — Q,} so
that for any finite set 4 of 7, there exists o such that

P,Q,=P,T forall a>a.
From the construction of Q,, it is obvious that ||(7 — Q,)x|| < ||Tx||
for all o and all x € X.

THEOREM 3. Let X,Y and Z be as in Theorem 2. If K(X,Y) is
dense in L(X,Y) in the strong operator topology, then K(X,Y) is an
M-ideal in L(X,Y).

Proof. Let S1,52,83 € Bx(x,y) and T € By y). It suffices to show
that for any ¢ > 0 there exists K € K(X, Y) such that

IS;+T~K||<1+e (i=1,2,3).
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Since (J7_, Si(Bx) has the compact closure in Y, there exists a finite
subset 4 of I such that

ISix — P4Six|| < J¢ forxe€Byandi=1,2,3.

By Theorem 2, choose a net {Q,} in By x, y), a net {K,} in K(X,Y)
and o such that

PyT-Q,)=0 and ||Q.—K,|l<%e fora>ap

and
I(T — Qu)x|| £ ||Tx]| forall x €& X and all a.

Then for x € By, a > ag and i = 1,2, 3, we have

1Six + Tx — Kox|| < ||PaSix + (T — Qu)x|| + 3¢ + 3¢
= max{||P4S;x||, (T — Qu)x||} + ¢
< max{||S;x||,||Tx||} +e <1+e.

Thus ||S;+ T -K,||<1+efora>apandi=1,2,3.

COROLLARY 4. Let X be a reflexive Banach space and let Y be a
closed subspace of (3_ Z;)., (dim Z; < co). Ifeither X or Y has the com-
pact approximation property, then K(X,Y) is an M-ideal in L(X,Y).

Proof. Suppose X has the compact approximation property. Let
0# T e L(X,Y) and let K be a compact set in X. Then for any ¢ > 0
there exists a compact operator 77 on X such that ||T7x —x|| < ¢/||T||
for all x € K. Now TTy € K(X,Y) and ||TT)x — Tx|| < ¢ for all
x € K. This shows that K(X, Y) is dense in L(X,Y) in the topology
of uniform convergence on compact sets in X. By Theorem 3, K(X,Y)
is an M-ideal in L(X,Y). The proof of the other case is similar.
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