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ON THE PROPAGATION OF DEPENDENCES

WILHELM STOLL

An alternative proof of recent uniqueness theorems by Shanyu Ji
is given. Ji’s results are extended to the propagation of certain de-
pendences from analytic subsets to the total space. Also these results
are lifted from C™ to ramified covering spaces of C. The first and
second main theorems of value distribution are the essential tools in
the proof.

Introduction. Let M be a connected, complex manifold of dimen-
sion m. Let m: M — C™ be a proper, surjective, holomorphic map.
Let 4,,..., A, be pure (m —1)-dimensional analytic subsets of M with
dim(4; N A4;) < m -2 whenever [ # j. Define 4 = 4, N---NA4,. Let
E,, ..., E; be hyperplanes in general position in the projective space
P, with n +1 < q. Let p and k be integers with 2 <p <k < n+ 1.
For each A = 1,...,k let f,: M — P, be a linearly nondegenerated
meromorphic map. Assume that at least one of these maps f; grows
quicker than the branching divisor of 7. Assume that at least one of
these maps f; has transcendental growth. For each j = 1,...,q as-
sume that f7!(E;) = A; does not depend on A = 1,...,k. Assume
that for each collection of integers 1 < A} < 4, < --- < 4, < k the

restricted maps f; |4, ..., f; |4 are not in general position. If
(0.1) kn<(k-p+1)(g—n-1)
then f},..., f; are not in general position (Theorem 4.2). This ex-

tends Theorem B of Shanyu Ji [J1] to parabolic covering spaces. He
considers the case M = C",p = 2,k = 3 and ¢ = 3n + 1 only. He
concludes that f,, f>, f3 satisfy a certain Property (P), which is perhaps
a bit stronger but rather incomprehensible. Either condition implies
algebraic dependence.

If each map f;: M — P, has rank n, condition (0.1) can be replaced
by

(0.2) k<(k-p+1)(g-—n-1)

and we obtain the generalization of Ji’s Theorem A (Theorem 6.2).
Also Ji’s Theorem C is extended (Theorem 6.1). Ji uses a special
differential operator on C” while we use the First Main Theorem for
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maps in general position. Then the proof becomes much shorter and
clearer. The paper is self contained. The necessary concepts and
results are explained to facilitate the reading of the paper. For the
general theory of value distribution consult Stoll [S5], Stoll [S6], Stoll
[S7], Stoll [S8] and Shabat [S1].

Historically the theory of uniqueness theorems began about 60 years
ago. Many contributed. Some of the relevant papers are listed under
“References”. Smiley [S3], [S4] first considered the propagation of
dependences from an analytic subset to the whole space.

1. General position. Let V' be a complex vector space of dimension
n+1 > 1. The vectors ay,...,q; are said to be in general position if
and only if for each selection of integers 1 < jp < j; <--- < j, <k
with p < n, the vectors aj,,...,a; are linearly independent, that is, if
and only if

(1.1) aj,A---Aaj #0.

If kK < n+ 1, the vectors ay,...,a; are in general position if and only
if they are linearly dependent.

The vectors ay,...,a; are said to be in special position if and only
if they are not in general position. Take p € N[1,k]. Then ay,...,a;
are said to be in p-special position if and only if for each selection

1 <j <--+ < jp <k, the vectors aj,,...,a; are in special position.
If p =1, thismeans a; = 0 for j =1,...,k. If p < n+ 1, this means
aj,,...,a;, are linearly dependent. If 1 < g <p <k andifaj,...,q

are in g-special position, then they are in p-special position. Also
k-special position is the same as special position.

Put V, = V—{0}. Let P(V) = V./C. be the complex projective space
associated to V. Let P: V., — P(V) be the residual map. For 4 C V
define P(4) = {P(x)|0 # z € 4}. Take ay,...,a; in P(V'). Then a; =
P(a;) with a; € V, for j = 1,...,k. The points gy, ..., a; are said to be
in general position (respectively special position, respectively p-special
position) if and only if ay,...,a; are in general position (respectively
special position, respectively p-special position). If ay,...,a; are in p-
special position, then 2 < p < k. Obviously ay,...,a; are in 2-special
position if and only if a; = a, = --- = a;. Take ay,...,a; in general
position in P(V) with 1 <k < n+ 1. Take a; € V, with P(a;) = a; for
j=1,...,k. Then a; A--- Aa; # 0. Define

(1.2) a;/\m/\ak=P(a1/\~~-/\ak)€P(/\V).

k
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These definitions do not depend on the choice of the representatives
aj.
Let V* be the dual vector space of V. Take a € P(V*). Then
a € V¥ exists with P(a) = a. Here a: V' — C is a linear map. The
kernel ker a depends on a only and is a n-dimensional linear subspace
of V. Then E[a] = P(kera) is a hyperplane in P(V'). Thus P(V*)
provides a bijective enumeration of all the hyperplanes in P(}V"). Take
ai,...,a; in P(V*). Then E[a,],..., E[a;] are said to be in general
position if and only if a,,...,a; are in general position.

Let (|): V x V — C be a positive definite hermitian form on V.
It is called a hermitian metric on V. Also V together with such a
hermitian metric is called a hermitian vector space. The associated
norm is defined by ||z|| = (zgr)!/? for all r € V. The given hermitian
metric on V' defines associated hermitian metrics on V* and A, V. If
aj=P(aj)eP(V) for j=1,...,k, then

S ar A= Aag|
1.3 OaA---Ag 0 = “———
(1.3) o~ Tl
depends on ay,...,a; only with 0 < [Oa A ---Ag, O < 1. The dots over

A indicate that (J-- -0 is not a function of a; A --- A a; as defined in
(1.2). In fact Oa;A---Aa 0 # 0 for k < n+1, if and only if ay,...,a;
are in general position.

An inner product (r,a) between r € V and a € V* is defined by
(r,a) = a(r) € C. If x = P(z) € P(V) and a = P(a) € P(V*), the
distance from x to E[a] is defined by

_ [z, a)|
(14 590 el
where 0 < Ox,ad < 1. The distance Ox,al] depends on x and a
only. Here Ox,a = 0 if and only if x € E[a].

These concepts shall be extended to meromorphic maps. Let M
and N be connected, complex manifolds of dimension m and n re-
spectively. Let S be an analytic subset of M with § # M. Let
f: M —S — N be holomorphic. The closure I'(f) of {(x, f(x))|x €
M-S} in M x N is called the closed graph of f. Letn: I'(f) — M and
f:T(f) — N be the projections defined by 7(x, ¥) = x and f(x,y) =y
for all (x,y) € I'(f). Then f is said to be meromorphic on M if and
only if 7 is proper and I'(f) is analytic. Assume that f is meromor-
phic. Define m = dim M. Then the indeterminacy.

(1.5) I(f) = {x e M|#n~ 1 (x) > 1}
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is analytic with dim /(f) < m—2. The map f extends to a holomorphic
map f: M —I(f) — N, but does not continue holomorphically to any
larger open subset of M. If 4 C M and B C N define

(1.6) f(4) = f(n=1(4)), f1(B)=n(f1(B)).

Let V' be a complex vector space of dimension n+ 1. If N =P(V),
an alternative definition for a holomorphic map f: M —S — N to be
meromorphic on M is available: Let U # & be an open, connected
subset of M. A holomorphic map 0 # v: U — V is called a represen-
tation (at p € M if p € U) of f if and only if f(x) = P(v(x)) for all
x € U — S with v(x) # 0. The map f is meromorphic, if and only if
there is a representation of f at every point of M. A representation
v: U — V is said to be reduced if and only if dim v=1(0) < m—2, which
is equivalent to I(f)NU = v=!(0) if f is meromorphic. Ifv;: U; — V
are representations of f for j = 1,2 with U; N U, # <J; then there
is a meromorphic function 4: U; N U, — C such that v, = Av; on
U, NU,. If vy is reduced, 4 is holomorphic; if v; and v, are reduced,
h is holomorphic and without zeroes.

For j =1,...,k let fj: M — P(V) be a meromorphic map. Put
I=I(f))U---UI(f;). Then fi,..., f; are said to be in general position
if and only if there is a point x € M — I such that f;(x),..., fi(x) are
in general position. If so, this is true for all x € M — S, where S is
analytic with I C S # M. Let v;: U — V be a representation of f;
for j=1,...,k. If Kk <n+1,then fi,..., f; are in general position
if and only if v; A--- Av; # 0. If so, one and only one meromorphic
map

(1.7) fl/\~--/\fk:M—>P(/\V)
k

is defined by
(1.8) (in--ANfi)(x)=fi(x)A---A fi(x) forallxe M —S.

Take k € N and p € N[1,k]. Let fj: M — P(V) be meromorphic
maps for j = 1,...,k. Take x € M. Let v;: U — V be a reduced
representation of f; at x for j = 1,...,k. Then f,..., f; are said
to be in p-special position at x if and only if v;(x),...,0,(x) are in
p-special position at x. This definition does not depend on the choice
of the reduced representations v;. If Q # O is a subset of M, then
fis-.., J are in p-special position on Q, if and only if they are in p-
special position at every point of Q. If Q = M omit “on Q”. Also
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“special position” means “k-special position”. Obviously, fi,..., fx
are in special position if and only if they are not in general position.

If Sis aset Sk =8 x---xS (k-times). Let N be a connected,
complex manifold. For j =1,...,k let f;: M — N be meromorphic
maps. Put I = I(fj))U---UI(f;). Then fi,..., f; are said to be
algebraically dependent if there exists an analytic subset G of N* with
G # N* such that (fi(x),..., fi(x)) €G forall x e M —I.

ProPOSITION 1.1. Let M be a connected, complex manifold of di-
mension m. Let V be a complex vector space of dimension n + 1.
For each j € N[1,k] let f;: M — P(V') be a meromorphic map where
k <n+1. If fi,..., fi are in special position, then fi,..., f; are
algebraically dependent.

Proof. Since k < n + 1, an analytic subset Gy, of V¥ with G # V¥
is defined by

(1.9) G ={(1,-..x) €VFrI A+ A = 0}
A surjective holomorphic map P¥: (V,)k — P(V)k is defined by
(1‘10) Pk(?l,---,?-k)=(P(?l),---,P(Fk))

for all (zy,...,5¢) € (Va)k. If 0 # 4, € C and (xy,...,5) € Gy N (Va)K,
then (A1z1,...,Aktk) € Gi N (Va)X. Hence G, = P(Gy) is an analytic
subset of P(V)k with Gy, # P(V)k.

Define I = I(fi)U---UI(fy). Take xe M —1. Letv;: U — V be
a reduced representation of f; at x for j =1,...,k. Since k < n+1
and since fi,..., f; are in special position v; A --- Aoy = 0. Hence
p1(X) A--- Avg(x) = 0. Thus (v;(x),...,0.(x)) € Gy N (V.)*. Hence
(f1(%),..., fx(x)) € Gi. Thus fi,..., f; are algebraically dependent.O0

The rank of a holomorphic map is explained in [A1]. Let A and N
be connected, complex manifolds. Let f: M — N be a meromorphic
map. Let 7: I'(f) — M and f: I'(f) — N be the projections. Define
rank f = rank f. Then rank f = dim N if and only if f(M — I(f))
contains an interior point.

PROPOSITION 1.2. Let V be a finite dimensional complex vector space.
Let N be a connected, n-dimensional, compact, complex submanifold
of P(V)) such that N is not contained in any hyperplane of P(V'). Let
M be a connected, complex manifold of dimension m. Take k € N
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with k < n+ 1. Foreach j = 1,...,k, let fj: M — N be a mero-
morphic map. Let 1: N — P(W) be the inclusion map. Assume that
fis-.., fx are algebraically independent. Then 10 f,...,10 f; are in
general position.

Proof. If s e N[1, k], the set G; is analytic in V* and G; = P*(Gs) is
analytic in P(V)*. Hence D; = N° N G is analytic in N°. Abbreviate
gi=1o fjfor j=1,...,k. Assume that g,..., g are in special po-
sition. A smallest integer p exists such that gy,..., g, are in p-special
position. Then 2 < p < k. We re-enumerate such that g;,..., 8,1
are in general position. If p < k, put 4 = D, x N*7?; if p = k, put
A = D,. Then A is analytic in N*. The set I = I(f})U---UI(f;) is
analytic in M with dim7 < m — 2. Take x € M — I. We claim

(1.11) (fi(x), ..., f(x)) € 4 # N*.

There is an open, connected neighborhood U of x in M —1 such that
there is a reduced representation v;: U — V, of g; for j = 1,...,k.
Because gi,..., g,—1 are in general position, z € U exists with v;(z) A
-+ Avp_1(z) # 0. The linearly independent vectors v;(z),...,0,_1(z)
span a complex linear subspace L of V' with

(1.12) dimL=p-1<p<k<n+l<dimV.

Thus N ¢ P(L). Take w = P(v) € N — P(L) with v € V — L, which
implies v;(x) A --- Avp_1(z) Aw # 0. Thus (fi(2),..., -1, w) €
NP — D,. Therefore

(1.13) (f1(2)s- 5 [o-1(2), W, fy11(2), ..., fi(2)) € Nk — 4.

Therefore A # N,

Because g, ..., g are not in general position, v (x)A---Avb,(x) = 0.
Hence (fi(x),..., fp(x)) € Dy and (fi(x),..., fx(x)) € A. The claim
is proved. Thus fi,..., f; are algebraically dependent contrary to the
assumption. Consequently, gi,..., g are in general position. |

2. Divisors. Let M be a connected, complex manifold of dimension
m. Let O be the sheaf of germs of holomorphic functions on M. For
each a € M, the stalk O, of O over a is an integral domain with
unique prime factorization and with a unique maximal ideal m,. For
p €N, let m be the pth power of m,. Put mQ = 9,. Take 0 # f € O,.
One and only one non-negative integer u(f) exists with

(2.1) femll) _qpD+
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The number u(f) is called the zero-multiplicity of f. If 0 # f € O,,
and 0 # g € O,, then

(2.2) u(fg) = ulf) + n(g),
(2.3) u(f +g) > Min(u(f),u(g)) if f+g#0.

If u(f) # u(g), equality holds in (2.3). If g € O, — m,, then (2.2)
implies

(2.4) u(fg) = n(f).

Let U # <& be an open, connected subset of M. Let f # 0 be a
holomorphic function on U. For each z € U, the germ f; # 0 of f
at z is defined. A function ,u?,: U — Z, called the zero divisor of f is

defined by u%(z) = u(f;) for z € U.

Let v: M — Z be an integral valued function. Then (U, g,h) is
called a Cousin definition of v (at a if a € U) if and only if U is an
open, connected subset of M and if g # 0 and & # 0 are holomorphic
functions on U with v|U = u — u) and with dim(g=1(0)nA~1(0)) <
m—2. The function v: M — Z is said to be a divisor on M if and only
if there is a Cousin definition of v at every point of M. If (Uj, gj, h;)
are Cousin definitions of v for j = 1,2 and if U = U; N U,, then there
exists a holomorphic function k£ without zeros on U such that g, = kg;
and hy = khy on U. The divisor v is non-negative (as a function) if
and only if there is a Cousin definition (U, g, 1) at every point of M,
that is for each a € M, there is an open, connected neighborhood U
of a and a holomorphic function g # 0 on U such that v|U = ug.

If A is an analytic subset of M, the set :R(A4) of regular points of A
is open and dense in the topological space 4. The set Z(4) = A—R(A)
of singular points of A is analytic in M and nowhere dense in A. If A
is a pure (m — 1)-dimensional analytic subset of M, one and only one
divisor v4 on M exists with v4(x) = 1 for all x € R(A4) and v4(x) =0
forall x e M — A. Thenv, >0 on M.

The set D, of all divisors on A is a module under function addi-
tion. The zero element of D, is the null-divisor v = 0. Take v € Dy,.
The closure suppv of {x € M|v(x) # 0} is called the support of v.
Then suppr = J if and only if v = 0. If v # 0, then S = suppv is a
pure (m — 1)-dimensional analytic subset of /. Here v|R(S) is locally
constant. Let B be the set of branches of S. Then {SR(S) N B}pewx
is the family of connectivity components of R(S). Each B € B is
the closure of R(S) N B. For each B € B, there is a unique integer
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p(v, B) # 0 such that

(2.5) v|(R(S)N B) = p(v, B).

The locally finite sum

(2.6) V= Z p(v,B)vg
BeB

is called the analytic chain representation of v. If n € Z, the divisor

(2.7) v(™ = 3" Min(n, p(v, B))vg
BeB

is called the truncation of v at level n. Here 0 # v > 0 if and only if
p(v,B) > 0 for all B € B # & which is the case if and only if

(2.8) suppr = {x e Mlv(x) >0} # D.

Let E be an analytic subset of M with dimE < m — 2. For each
divisor v: M — E — Z there is one and only one divisor 7: M — Z
with |(M — E) =v. If v > 0, then # > 0. The map v — ¥ defines
an isomorphism D,,_g — Dj,. Thus if v; and v, are divisors on M
with v{|(M — E) = v»y|(M — E), then v; = v, on M.

Let N be a connected, complex manifold of dimension n. Let
f: M — N be a meromorphic map. Let v: N — Z be a divisor
on N with f(M — I(f)) & suppv. Then there exists one and only one
divisor f*(v) on M called the pull back divisor satisfying the following
condition:

(C) Let U # O be an open, connected subset of M — I(f). Let
(W, g, h) be a Cousin definition of v with f(U) C W. Then go f|U #
0#ho f|U and

(2.9) S WU = ud, ;- ufofIU.
If v > 0, then f*(v) > 0. If f*(v;) exists for j = 1,2, then

f*(v1 + vy) exists with f*(vy) + f*(vp) = f*(vy + v1). If 4 is a pure
(n — 1)-dimensional, analytic subset of N with f(M — I(f)) ¢ 4, ab-
breviate f*(v4) = f*(4) and f*(a) = f*({a}) if A = {a}.

Now, we will introduce various divisors which will be needed later
on. Let P; = P(C?) = CU{oo} be the Riemann sphere. A meromorphic
function on M is a meromorphic map f: M — P, with f # oco. Take
b € P, with f # b. Then f*(b) is a non-negative divisor on M
called the b-divisor of f. If f is a holomorphic function on M, then

4% = f*(0). Hence we denote f*(b) = u?.
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Let V' be a complex vector space of dimension n + 1. Let f: M —
P(V) and g: M — P(V*) be meromorphic maps. Then f, g are said
to be free if there exists a point x € M — (I(f)UI(g)) such that f(x) ¢
E[g(x)]. If f, g are free, then one and only one divisor xr, > 0 called
the intersection divisor is defined by the following condition.

(I) Let U # O be an open, connected subset of M with reduced
representations v: U — V of fand w: U — V* of g. Since f, g are
free, (v, 1) # 0. Then u, |U = u?n,m).

If ¢ = a is constant, uy, is also called the intersection divisor of f
with E[a] and we have uy, = f*(E[a]).

Let s be a holomorphic section of a holomorphic vector bundle W
over M. The zero set Z(s) = {x € M|s(x) = 0, € W} is analytic.
Here Z(s) = M if and only if s = 0. Assume that s # 0. Let 2% =
{(Uy, t3,h3)},en be the family of all triples (U, t;, h;) where U; # O
is an open, connected subset of M, where h; # 0 is a holomorphic
function on U; and where #; is a holomorphic section of W over
U, with dimZ(t;) < m — 2 such that s|U; = h;t;. Then {Uy},ep
isacoveringof M. If ue¢ Aand { e Awith U = U, NU; # I,
then ugulU = ﬂ?,;lU . Hence one and only one divisor u; called the

zero divisor of s exists on M such that u;|U; = ,u% for all A € A.
Obviously s > 0 and supp u; C Z(s) with dim, Z(s) <m -2 if x €
Z(s) — supp us. If W is a line bundle, supp s = Z(s) and Z(t;) = &
for all 1 € A.

Let T(M) be the holomorphic cotangent bundle on M. Take p €
N[1, m]. A holomorphic form ¢ of degree p is nothing but a holomor-
phic section of A, Z(M). Hence p, > 0 is defined if ¢ # 0. Recall
that K»s = A,,, T(M) is the canonical bundle of M. It is a holomorphic
line bundle.

Let M and N be connected complex manifolds of dimension m.
Let f: M — N be a holomorphic map of rank m. If U # O is
open and connected in M and W is open and connected in N with
f(U) C W and if ¢ # 0 is any holomorphic form of degree m on N,
then f*(¢) # 0. There exists one and only one divisor f called the
branching divisor of B such that the following property is satisfied:

(B) Let U # & be open and connected in M. Let W be open and
connected in N with f(U) C W. Let ¢ be a holomorphic form of
degree m on N with Z(¢) = &. Then B|U = us. ) u-

Obviously g > 0. If B = supp 8, then f is locally biholomorphic at
x € M if and only if x € M — B.
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Let V' be a complex vector space. Let v: M — V be a holomorphic
vector function with v # 0. Then M x V is a trivial line bundle. A
holomorphic section d of M x V is defined by d(x) = (x, v(x)) for all
x € M. Then o # 0 if and only v # 0. Assume that v # 0. Then
the zero divisor pu, = ps > 0 is defined with suppu, C v=1(0). If
x € v~1(0) — supp u, then dim, v=1(0) < m — 2.

Let V' be a complex vector space of dimension n + 1. Take k €
N[1,n+1]. Let f;: M — P(V') be a meromorphic map for j = 1,...,k.
Assume that fi,..., f; are in general position. Then there exists one
and only one divisor u(f;A---Af;) on M satisfying the following con-
dition:

(G) Let U # <& be an open, connected subset of M. Letv;: U = V
be a reduced representation of f; for j = 1,...,k. Since fi,..., f; are
in general position with k < n + 1, the vector function to = vy A--- A
or: U — A,: V is not identically zero. Then

(2.10) HAA - AU = piro.

Obviously u(fiA---Afi) > 0. The dots indicate that u is not a func-
tion of fj A--- A f; as defined in (1.7) and (1.8) but of the k-tuple

Siseoos Jre

The following theorem is the fundament of our proof of Ji’s theo-
rems.

THEOREM 2.1. Let M be a connected complex manifold of dimension
m. Let A be a pure (m—1)-dimensional, analytic subset of M. Let V be
a complex vector space of dimension n+1 > 1. Let p and k be integers
withl <p<k<n+1. Foreachj=1,...,k, let fji: M - P(V) be a
meromorphic map. Assume that fi,..., fi are in general position. Also
assume that fi,..., fi are in p-special position on A. Then we have

(2.11) (k—p+Dvg < p(hA---Afy)-

REMARK TO THEOREM 2.1. The assumptions imply p > 2. If p =2,
then f,,..., f; are in 2-special position on A if and only if

(2.12) fild=fld=--= fi|4.
In his paper [J1] Ji considers only the case p = 2.

Proof. Since vy|(M — A) = 0 and u(fiA---Afi) > 0 it suffices to
prove (2.11) on A. Again by the properties of divisors, it suffices
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to prove (2.11) on A4 — I where I is an analytic subset of M with
dim 7 < m — 2. Abbreviate S = supp u(fiA---Afy). Then

k
(2.13) I=X(S)USAUIfi A A KU I)
j=1

is an analytic subset of M with dim7 < m — 2.

Take any x € 4— 1. Then there exists an open, connected neighbor-
hood U of x with UN I = & and reduced representations v;: U — V
of fjfor j = 1,...,kand y: U — AV of i A---A fi. Since
UNnI = &, we have y(z) # 0 and v;(z) # 0 for j = 1,...,k for
all z € U. Also their exists a unique holomorphic function /4 on
U such that hy = vy A--- Avg. Then u(fiA---Afi)lU = ) and
SNU = h~'(0). Since fi,...,f; are in p-special position on A4, we
have v;(z)A---Avp(z) =0and v, (2)A---Avg(z) =0forall ze UNA.
Since y(z) # 0 for z € U N A4, we obtain hA(z) = 0 for all z € U N A.
Thus ANU C SNU. Consequently x € S. Thus A —1 C S. Then
A=A-TCS=S.

Again consider the local situation constructed above. Since UNI =
&, we have x € R(A)NR(S) with 4 C Sanddimy 4 = m—1 = dimy S.
Therefore we can take U such that UNA4 = UNS = UNR(A4) =
UNAR(S) is a connected, (m —1)-dimensional complex submanifold of
U and such that there is a biholomorphic map a = (f,x): U — P x Q.
Here P is a ball centered at f(x) =0 C"! and Q is a disc centered
at x(x) = 0 € C. The restriction f: U N A — P is biholomorphic.
Let 6 = (BlJUNA)"': P — U N A be the inverse of f. We have
x~10) = AN U with x(z) # 0 for all z € U. Hence v4|U = ud.
The Hartogs series development of v; delivers holomorphic vector
functions w;: P — V" and 3;: U — V such that

(214) Uj=mj0ﬂ+X*3j.

Since d: P — U N A is biholomorphic and y o J = 0, we obtain v; =
Uj 0.

Take any g € N[1,k]. Let T, be the set of all increasing, injective
maps 7: N[1,9] — N[1,k]. If | < g < k and if 7 € T, then there exists
one and only one £ € T;_, such that (/mt)N(Jmt) = &. Obviously,
we have (Jm1) U (Jmt) = N[1,k]. One and only one permutation
n.: N[1,k] — N[1, k] is defined by n.(j) = t(j) for j = 1,...,q and
n:.(j)=1%(—¢q)forall j=qg+1,....k. If g =k, define n, = 7. If
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T € Tq with g € N[1, k] define ¢, = sign 7, and

(2.15) e =t A Ay P— NV,
q
(2.16) 3t =3 )N Nigg): U—»/\V.
q
The identity 1: N[1, k] — N[1, k] is the only element of T}. Define
(2.17) 3=n=nAAp:U—>\V.
k

If ¢ e N[1,k — 1], define
(2.18) 9= (w0 f)Asi: U— AV
€T, k
The vector functions tv., 3., 9, and 3 are holomorphic.
Because f,..., f; are in p-special position on 4 with 2 < p <k <
n+ 1, we have o, = 0 for all T € T, with p < g < k. Therefore we
obtain

p—1
(2.19) hoyg=vo; A Ao = x* 9y, + 753,
q=1
p—1
(2.20) heog=x PN P g+ 1P
g=1

Since y(z) # 0 for all z € U, (2.20) implies

(2.21)  p(HA-- AU =1y > (k—p+ Dy = (k —p + Dw,|U.
Thus (2.11) holds on M — I. Since [ is analytic with dim7 < m — 2,
the inequality (2.11) holds on M. O

3. Value distribution theory on parabolic manifolds.

(a) Parabolic manifolds. Let M be a connected, complex manifold
of dimension m. Let 7 be a non-negative function of class C* on M.
For 0 < r € R define
(3.1) M[r]={xe M|t(x) <r*}, M(r)={xe Mt(x)<r’},

(3.2) M{r)={xe M|t(x)=r*}, M,={xeMt(x)>0}.

The ext_erior derivative d splits into d = @ + 0 and twists to d° =
(i/4m)(0 — 9). Define

(3.3) v=dd‘t on M, w=ddlogt on M,,

(3.4) o=dlogtAw™ ! on M,.
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Then 7 is said to be a parabolic exhaustion and (M, 1) a parabolic
manifold if and only if 7 is unbounded, M[r] is compact for all 0 <
r € R and

(3.5) 0w>0, do=0"=0%0" on M..

Then v > 0 on M. Define &, = {r € R*|d7(x) # 0 for all x € M(r)}.
Then R, — &, has measure zero. If r € €, then M(7) is the boundary of
M(r) and M (r) is a differentiable, (2m — 1)-dimensional submanifold
of class C* which we orient to the exterior of M(r). A constant¢ > 0
is defined by

(3.6) g=/ o ifrec¢, / V" =cr if0<reR.
M{r) Mir]

For example (C™, 1) is a parabolic manifold where
(3.7)  to(z1,eeerzZm) = |z21P 4+ |zm)? if (21,...,2m) €C™M.

Here ¢;, =R* and ¢ = 1.

Let M be a connected complex manifold of dimension m. Let
n: M — C™ be a surjective, proper holomorphic map. Then 7 = 7gon
is a parabolic exhaustion of M. Then (M, 1) is called a parabolic cov-
ering space of C™. Let B be the branching divisor of M. Then (M, 1)
is said to be affinely branched if and only if the (m — 1)-dimensional
component of n(supp B) is affine algebraic.

The disjoint union P” = C™ UP,,_, is the projective compactifica-
tion of C™. The parabolic covering space (M, 1) is said to be affine
algebraic if and only if the following conditions are met: .

(1) M is an affine algebraic manifold with projective closure M.

(2) m: M — C™ extends to a holomorphic map T: M — P, =
C"UP,,—;.

B M-M=T (Pn).

If so, n(supp f) is an affine algebraic variety in C™ of pure dimension
m — 1 if f = 0. In particular, (M, 7) is affinely branched. Every con-
nected m-dimensional affine algebraic manifold M can be represented
as an affine algebraic, parabolic covering space (M, 7) of C™.

(b) Divisors on parabolic manifolds. Let (M, 7) be a parabolic man-
ifold of dimension m. Let v be a divisor on M. Put S = suppr and
S[t] = Sn M(t] for 0 <t € R. The counting function n,: Rt — R of v
is defined by

(3.8) n, (1) = £2=2m / w1 for all ¢ € R*.
NG
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Then n,(t) — n,(0) for t — 0 with £ > 0. We have

(3.9) ny(t) =/ vw™ ' 4+1n,(0) forall teR".
S[1]

If v > 0, then n, > 0 increases, define
(3.10) 0<n,(o0) = tlim n,(t) < oo.
—00

A divisor v > 0 is said to have affine growth if and only if n,(co0) <
oo. A divisor v > 0 on an affine algebraic parabolic covering space has
affine growth if and only if #(supp ) is affine algebraic in C™.

If v, and v, are divisors on M, then n,, 4, = 1y, +n,,. If (M, 7) =
(C™, 7o) and if v is a divisor on C™”, then n,(0) = v(0).

For all 0 < s < r the valence function N,, of v is defined by

(3.11) N(r,s) = / n,(z)ftf.

If vy,v, are divisors on M, then N, ;,, = Ny, + N,,. If v > 0, then
N, > 0 increases with r and decreases with s. We have
(3.12) fim Ye(:3) _
r—oo logr

(c) The First Main Theorem. Let (M, ) be a parabolic manifold
of dimension m. Let V' be a hermitian vector space of dimension
n+1> 1. Define ty: V — R* by 75(x) = ||z||? for all t € V. Then
there exists one and only one form Q of bidegree (1, 1) on P(V) with

(3.13) P*(Q) =ddlogty on V..

The form Q is positive and of class C. It is called the Fubini-Study
form on P(V).

Let f: M — P(V) be a meromorphic map. For all ¢ > 0 the spheri-
cal image function Ay of f is defined by

ny(00) < oo.

(3.15) Ag(t) = 272 Q) Av™ L
M)

Then Ay > O increases. Define 4,(0) = limo,0A/(f) € Ry and
Ag(o0) = limy—o0 A¢(2). For 0 < ¢ € R we have

(3.16) As(t) = /M ’ Q) A ™ + 4,(0)

for all z > 0. The map f is said to have rational growth if As(oco0) <
oo and transcendental growth if As(co) = oco. If (M, 1) is an affine
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algebraic parabolic covering space of C™, then f has rational growth
if and only if f is rational. In the general case f is constant if and
only if 4¢(c0) = 0.

For all 0 < s < r € R the characteristic function Ty of f is defined
by

(3.17) T/(r,s) = fsrAf(t)d—t’-.

Here T, > 0 increases in r and decreases in 5. Also f is constant if
and only if T, = 0. If f is not constant, then 7(r,s) — oo for r — oo.
Also we have

T¢(r,s)
r—oo logr Ay(00).

The non-constant meromorphic map f: M — P(V) is said to grow
quicker than the non-negative divisor v: M — Z. if and only if

N,(r,s)
Tor.5) — 0, r— oo.

Let g: M — P(V*) be a meromorphic map such that f, g is free.
Then ns, > 0 denotes the counting function and Ny, > 0 the valence
function of the intersection divisor us, > 0. Also Of, g0 # 0. A
continuous function m/, on R* called the compensation function of
f and g is uniquely defined by

(3.18)

(3.19)

1
3.20 m r=/ lo >0 forallreé¢,.
( ) f,g( ) M(r) ng,gD T

For 0 < s < r € R, the First Main Theorem holds
(3.21) Ty(r,s) + Tg(r,s) = Ny (r,5) +mpg(r) — myg(s).

If g = a € P(V*) is constant, then 7,(r,s) = 0. The meromorphic
map f is said to be linearly non-degenerated if and only if (f,a) is
free for all a € P(V*). If so, then

(3.22) T/(r,s) = / Nyo(r,)Q. for0<s<reR
aeP(V*)

where Q* is the Fubini-Study form on P(V*).

(d) The Second Main Theorem. Take 0 < s € R. Let g and 4 be
real valued functions on R(s,+o00). We write g < 4 if and only if

there exists a set E of finite measure in R(s,+o00) such that g(r) <
h(r) for all r € R(s,+o00) — E. Since our functions may depend on
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several parameters we write g(r) < h(r) instead of g < h where the

function variable is always denoted by r and E may depend on the
other variables.

THEOREM 3.1. Second Main Theorem. Let (M,t) be a parabolic
covering manifold of C™ with branching divisor 8. Let V' be a hermi-
tian vector space of dimension n+ 1. Let f: M — P(V) be a linearly
non-degenerated meromorphic map. Let ay,...,a, be in general posi-

tion in P(V*) withq >n+1. For j =1,...,q, let N}"a)} > 0 be the
valence function of the truncation ,u%j of the intersection divisor iy, .
Take s > 0. Then there is a constant ¢ > 0 such that

(3.23) (g—n- l)Tf(r s)
ZN(" (r,s) + n(n+ 1)Ng(r,s)

+ c(log Ty(r,s) + log* Ng(r,s) + log(r/s)).

Proof. We refer to Stoll [S7, pp. 169-180]. The assumptions (B1)-
(B5) on p. 171 are satisfied with Ric.(r,5) = Ng(r,s) by (11.27). There
exists a holomorphic form B of bidegree (m — 1,0) on M such that
7 majorized B with majorant Y(r) < 1 4 r27~2, Thus assumptions
(A1)-(A8) are satisfied. Therefore (11.23) holds. Thus a constant
¢ > 0 holds such that

(3.24) (q—n—1)Tp(r,s)+ Ny (r,s)
<D Ny (rs) + %n(n + 1)Ng(r, s)

j=1
+ c(log Ty(r, s) + log" Ng(r, s) + log(r/s)).

By [S7, Lemma 13.3, p. 180, estimate 13.21] or by [S8, Theorem
8.7, p. 260, estimate (8.25)] we have

q
(3.25) ZNM r,s) < Ny, (r,s)+ Y N (r,
j=1 =

Now (3.24) and (3.25) imply (3.23) immediately. O

(e) The First Main Theorem for general position. Let (M,7) be a
parabolic manifold of dimension m. Let V' be a hermitian vector
space of dimension n+ 1. For j = 1,...,k let fj: M — P(V) be a
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meromorphic map. Assume that 1 < k < n+1. Assume that f{,..., f;
are in general position. The divisor u(fiA---Afy) > 0 exists. Let
NysA---Afy be the valence function. Also OfiA---AfO = 0. Hence
the compensation function

1
3.26 Mg aAf (1 =/ log =————5=02>0
(3.26) finehfi(7) vy CETTA - ARTC 2

exists for all r € &, and extends to a continuous function on R*. For
0 < s < r € R we have the First Main Theorem for general position

k
(3.27) D Ty (r5) = Njaeasi (1) + mypps (1)
=1

—MfaAAf (s) + Tﬁ/\"'/\ﬁ( (r,s)
(see Stoll [S8, p. 146, equation (3.36)]. Now (3.27) yields the estimate
k
(3.28) Nppensi(r8) <Y Tr(r,8) + mpp.nz(s)
j=1
forO<s<reR.

4. The propagation theorem for maps into projective space. In this
section we consider the case of a meromorphic map f: M — P(V).
In §6 we shall consider the case of a dominant meromorphic map
f: M — N where M and N are connected complex manifolds and N
is a compact projective variety. Dominant means dim N = rank f.

THEOREM 4.1. Let (M, ) be a parabolic manifold of dimension m.
Let A be a pure (m — 1)-dimensional, analytic subset of M. Let N4 be
the valence function of the divisor v4. Let V be a hermitian vector space
of dimension n + 1. Let p and k be integers with2 < p <k <n+1.
For A =1,...,k let f,: M — P(V) be a meromorphic map. Assume
that fi,..., fi are in general position on M. Assume that f,..., f; are
in p-special position on A. Then for 0 < s < r € R we have

k

(4.1) (k=p+ 1)Ny(r,5) Y Tp(r,5) + mpp.pg(5).
A=1

Proof. Theorem 3.1 implies
(4.2) (k—p+1)Ny(r,s) < Nf,A...Afk(r,s).
Now (3.28) and (4.2) imply (4.1). a
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THEOREM 4.2. First Propagation Theorem. Let (M, t) be a parabolic
covering manifold of C™ with branching divisor 8. Let V be a hermi-
tian vector space of dimension n+ 1 > 1. Let p and k be integers
with2 <p<k<n+1 Fori=1,....klet fi: M — P(V) be
a linearly non-degenerated, meromorphic map. Assume that at least
one of these maps f; grows quicker than the branching divisor . As-
sume that at least one of these maps f, has transcendental growth. Let
ay,...,aq be in general position in P(V*) with ¢ > n + 1. Assume
that for each j = 1,...,q the analytic set A;j = suppuy,, does not
depend on A = 1,...,k. Assume that dim(A4; N Aj,) < m — 2 whenever
1<j1<j2<q. Define A=A, U---UA,. Assume that f,,..., f are
in p-special position on A. Assume that

(4.3) nk<(k-p+1)(g—-n-1).

Then fi,..., fi are in special position on M. In particular, fi,..., fr
are algebraically dependent.

Proof. Assume that fi,..., f; are in general position on M. Since
vy > lu(f:l)a, forj=1,...,gand A =1,...,k, and since vy = v4, +
-+++vy,, Theorem 3.1 implies

(4.4) (g—n—=1T;(rs) < nNy(r,s) + 3n(n + 1)Np(r,s)
+ c;(log Ty (r,s) + log* Np(r,s) + logr/s).
Define T'=T; +---+ T4 and ¢ = ¢; +--- + ¢, > 0. Addition yields
(4.5)  (@—n—1T(r,s) < nkNy(r,s) + In(n+ 1)kNg(r,s)
+ ck(log T'(r,s) + log Ng(r,s) + logr/s).
Here

Ng(r,s) logr/s
Trns) 0 ™ T(rs)

Hence (4.1), (4.5) and (4.6) yield

(4.6) — 0 forr— oo.

(4.7 (gq—n—-1)k—-p+1)<nk
which contradicts (4.3). Therefore f1,..., f; are in special position on
M. By Proposition 1.1, fi,..., f; are algebraically dependent. O

If M =C™andif n: M — C™ is the identity, § = 0. Thus Theorem
4.2 extends Theorem B of Ji [J1] who considers the case M = C™,p =
2,k = 3 and p = 3n + 1 only. He concludes that fi, f5, fs satisfy
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a certain condition (P), which is perhaps a bit stronger but rather
incomprehensible.

If we assume p = k in Theorem 4.1 we obtain a special case of a
Theorem of Smiley [S3], [S4] see also Stoll [S7, Theorem 13.8 and
Theorem 13.10].

5. Value distribution theory for dominant maps. Let M and N be
connected, complex manifolds. Put m = dimM and n = dim N. A
meromorphic map f: M — N is said to be dominant if and only if
rank f = n, which is the case if and only if f(AM) has an interior
point. In the case of an algebraic map this means precisely that f(A/)
is dense in N. In the non-algebraic case, f(N) may not be dense if
f is dominant. If f: M — N is a dominant meromorphic map, then
m > n. The Carlson-Griffiths-King theory of value distribution [C1],
[G1] applies to dominant meromorphic maps. We will not outline the
most general setting of this theory (see Stoll [S5]) but restrict ourself
to a special case. We will make the following assumptions.

(A1) Let (M, 1) be a parabolic covering manifold of C™ with branch-
ing divisor f.

(A2) Let V be a finite dimensional hermitian vector space.

(A3) Let N be a compact, connected, complex submanifold of P(V').

(A4) Put dim N = n and let :1: N — P(V') be the inclusion map.

(AS) Assume that N is not contained in any hyperplane of P(V).

(A6) Let K be the canonical bundle of N. Let H be the hyperplane
section bundle of P(V') and define L = H|N.

Here (AS5) is equivalent to the requirement that : is not linearly
degenerated. Take a € P(V*). Then a = P(a) with a € V*. Then a
defines a section @ € I'(P(V), H) with E[a] = supp u;z. This section
restricts to a holomorphic section 4 = do1 = a|I'(N, L) with

(5.1 E;[a] = supp u; = E[a]N N.

LEMMA 5.1. Assume (A1)-(A6). Let f: M — N be a dominant
meromorphic map. Define g =10 f: M — P(V). Take a € P(V*).
Then g,a are free.

Proof. Assume that g,a is not free. Then f(M — I(f)) C Er[al.
Because f(M — I(f)) contains an interior point of N, we obtain N =
E;[a] which contradicts (AS). O

Therefore we define the value distribution functions of f as those
of g =10 f. Hence Ay = Ag, Ty = Tg,ns, = nga,Nsy = Ngg,
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my, = Mg, and the First Main Theorem holds
(5.2) Tys(r,s) = Nsg(r,s)+mey(r)—mpe,(s) if0O<s<reR.
f e /s /s

Take ay,...,a, in P(V*). Then Ey[a],..., EL[a,] are said to have
strictly normal crossings at x € Ey[a;]U ---U E[a,] = E if and only
if the following property holds:

(H) Take any holomorphic section s of L over an open, connected
neighborhood U of x in N with Z(s) = &. Pick a; € V,* with P(a;) =
aj for j = 1,...,q. Then there are holomorphic functions #; # 0 on
Usuchthat a;|lU =hjsforj=1,...,q. Let 1 < ji <---< j; < qbe
any collection of integers with x € Er[a; ] for A=1,...,¢. Then

(5.3) dhj,(x) A+ Ndhj,(x) # 0.

Thus if Ez[a,], ..., EL[ag] have strictly normal crossings and if I, =
{/ eN[1,q]|x € EL[a;]} then #I, < n.

LEMMA 5.2. Assume (A2)-(A6) with N = P(V). Take ay,...,a,4
in P(V*). Then Ela;] = Erla;] for j = 1,...,q and a,...,a, are
in general position if and only if E[a,],..., E[ag] have strictly normal
Crossings.

Proof. Take any x = P(z) € P(V). Then E(x) = {Ax|A € C} is the
complex line defined by x. Take any b € V,*. Thenb: V — Cis a
linear map and E[b] = P(kerb). Also A(b) = {r € V|b(z) = 1} is an
n-dimensional affine plane in V' and P, = P: A(b) — P(V) — E[b] is
biholomorphic. Take z € P(V') and let 7, be the holomorphic tangent
space of P(V) at z. If z € P(V') — E[b], then T, can be identified via
P, with kerb affixed to 3 = P;'(z) € A(b) as tangent space of A(b).
Thus P(3) = z with b(3) = 1.

Now b defines a section b = b of H = L on P(V) by b(x) = b|E(x)
since H is the dual bundle to the tautological bundle {(x,z) € P(V) x
V|t € E(X)}. Then Z(b) = E[b].

For each j € N[1,q] take a; € V* such that P(a;) = a;. Take
x =P(z) in P(V) and b = P(b) € P(V'*) with b(x) = 1. Then there is a
holomorphic function %; on P(V) — E[b] such that &; = h;b. Take any
z € P(V) — E[b]. Then d;(z) = hj(2)b(z). If 3 € A(b) with z = P(3),
then d;(z) = a;(3) and b(z)(3) = 1. Hence h;(z) = a;(3)/b(3). If
v € kerb = T, then

(5.4) dhj(Z, U) = aj(n).



ON THE PROPAGATION OF DEPENDENCES 331

Assume that a,,...,aq are in general position. Take x € E[a;] U
.-+ U E[ag). Take any collection of integers 1 < j; < --- < j; < ¢
with x € E[a;] for A =1,...,q. Determine b,b,a;,r as above. Then
a,(r) =0forA=1,...,¢. Ift > n+1 then aj,...,q;,, are lin-
early independent. Hence ¢ = 0 which contradicts b(xr) = 1. There-
fore ¢ < n. By general position, aj,,...,a; are linearly independent.
If aj|kerb,...,a;|kerb are linearly dependent, there are constants
Ci,...,¢ not all zero such that a = cja;, +--- + ¢a;, € V* with
kerb C kera. Also O # r € kera — kerb. Hence dimkera = n + 1
and a = 0. Since a;,,...,a; are linearly independent, a = 0 is im-
possible. Thus dhj (z) = a; |kerb,...,dh;(z) = aj|kerb are linearly
independent. Hence E[a,],..., E[a,] have strictly normal crossings.

Assume that Ela,),..., E[a4] have strictly normal crossings. Take
any collection of integers 1 < j; <--- < jy < gwitht<n+1,witht <
n + 1, then we have to show that a;,...,a; are linearly independent.
Assume that a; , ..., a; are linearly dependent. Then € V'* exists such
that a; (r) =0 for A = 1,...,t. Thus x = P(r) € E[a;]N---N E[a;].
Strictly normal crossings implies ¢ < n. Since aj,,...,a; are linearly
dependent, also a;, | kerb,...,a;|kerb are linearly dependent. By (5.4)
we obtain dhj (x) A --- Adhj(x) = 0 which contradicts (5.3). Thus
aj,,...,a; are linearly independent. O

Now we will make the following additional assumption:

(A7) Take ay,...,aq in P(V*) such that Er[a;],...,Er[as] have
strictly normal crossings.

The hermitian metric on V' defines a hermitian metric / along the
fibers of H whose Chern form c¢(H, /) is the Fubini Study form Q on
P(V'). Naturally, / restricts to a hermitian metric / along the fibers of
L such that ¢(L,!) = 1*(c(H,!)). Thusif f: M — N is a meromorphic
map and g =10 f we obtain

(5.5) g*(Q)=g"1*"(c(H,1)) = f*(c(L,1)),
T(r,s) = Te(r,s) = /s (2-2m PRACCOLE

such that our definition of the characteristic agrees with [S5].
Let ® be the set of all real numbers v € R, such that there is a
hermitian metric x along the fibers of K such that

(5.6) c(K,x)+wve(L,l)>0 on N.
Since ¢(L,l) = Q > 0 we see that ® # J. Define
(5.7) [K*: L] =inf®.

m—l‘_j_t
t
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THEOREM 5.3. Second Main Theorem for dominant maps. Assume
(A1)-(A7). Assume that q > [K* : L]. Let f: M — N be a dominant
holomorphic map. Take s > 0 and ¢ > 0 with ¢ < q — [K* : L]. Define
Aj =supp [~YELla;]) for j=1,...,q and A = A{U---U A,. Then
there is a constant ¢ > 0 such that

(5.8)  (¢—I[K*:L]1-¢)Ts(r,s)
< Ny(r,5) + Ng(r,s) + clog T¢(r,s) + elogr.

Proof. We want to apply Theorem 18.13E in [S5]. Obviously as-
sumptions (D1)-(D8) are satisfied. Assumption (D9) requires: “Let
F be an effective Jacobian section of f dominated by 7. Let Y be
the dominator”. We will not discuss the definition of these terms. An
effective Jacobian section is a holomorphic section F # 0 in a cer-
tain line bundle on M. Under our assumption [S5, Proposition 18.6]
provides us with an effective Jacobian section F dominated by 7 with
Y = m. Hence the assumptions (D1)-(D9) are satisfied. Let ur be
the zero divisor of F in Theorem 18.13E; the exceptional set F in R™
is picked such that [; xdx < co. Because x¢ > 1 if x > 1, the set E
has finite measure. Thus Theorem 18.13E with 18.17 implies

(5.9) Ny (r,s)+(q — [K* : L] —&)Ty(r,s)

g
<Y " Nyg (1,5) + Rice(r, s)
-

+c¢1log T¢(r,s) + c2logm + c3logr

where ¢; > 0 and ¢, > 0 are some constants and ¢3 = 2ecn. We have
Ric.(r,s) = Ng(r,s) in our situation. Replacing ¢ by another smaller
&, we can replace c;logm + c3logr by elogr. Lemma 4.1 by Smiley
[S3] (see also Drouilhet [D1]) ascertains

q
(5.10) D" Nya,(1,8) = Nus(1,5) < Na(r ).
j=1

Thus (5.9) and (5.10) imply (5.8). O

Now we proceed to replace the holomorphic map f in Theorem
5.3 by a meromorphic map. Assume that (A1)-(A7) holds and that
f: M — N is a dominant meromorphic map. Recall that we are given
a proper, surjective holomorphic map n: M — C™ such that 7 = ||z||?
and that g is the branching divisor of n. Let I'(f) be the closed
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graph of fin M x N and let {: T'(f) — M and f: I'(f) — N be the
projections. The map ¢ is proper and {: I'(f) - {1 (I(f) — M = I(f)
is biholomorphic. Let A: M — I'(f) be a resolution of singularities
of I'(f). Then M is a connected, complex manifold of dimension .
The map A: M — I'(f) is proper, surjective and holomorphic. The set
I(f) = A=Y~ (f))) is analytic with 7(f) # M. The map

(5.11) A M- I(f) = T(f) - NI

is biholomorphic. The map p = { o A: M — M is proper, surjective
and holomorphic. The map p: M —I(f) — M—I(f) is biholomorphic.
The map # = mo p: M — C™ is proper, surjective and holomorphic.
Then ¢ = 10 p = 190 # is a parabolic exhaustion of M. Therefore
(M, 7) is a parabolic covering manifold of C™. Let # be the branching
divisor of #. Because p: M — I(f) — M — I(f) is biholomorphic we
have B(x) = B(p(x)) for all x € M — I(f).

_LEMMA 5.4. Assume that there are given divi:vors vonMandv on
M such that v(x) = v(p(x)) forall x e M —I(f). Take 0 < s <'r.
Then

(5.12) N;y(r,s) = Ny(r,s).

Proof Define S = suppv and § = supp 0. Define Sp = SN I(f)
and Sy =SNI(f). PutS; =8-Sy and S; =S —S,. Then p: Sl —
S, is biholomorphic. Let C be a branch of S;. Then C = p(C) is
an 1ArreduAc1ble analytic subset of I(f). Hence dimC < m — 2. Let
Jj: C - M and j: C — M be the inclu§ion maps. The map p restricts
to pg: C — C such that jo pg = poj. Because dimC < m — 2, we
have j*(v" 1) = 0. Thus
(5.13) j*(0"') = j*(dd°t™") = j*((dd°T o p)™ ")

= J*(p*(dd‘t)"") = (po J)*((ddT)")
= (jopo)* (") = p5(j* (™)) = p5(0) = 0

Take 0 < t € R. We obtain

(5.14) [ aam*l=/ 176’”“‘+/ Dy (™1
St Sila] Sol]
= [ wepprem = [ womt= [ pomet,
$ila Silfl st

Thus n; = n, which implies (5.12). O
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In particular N/} = Ng. The map f = f oA is holomorphic. If

x € M - I(f), then f(x) = f(A(x)) = f({(A(x))) = f(p(x)). Thus
Jf has rank n. If a € P(V*), then uyz,(p(x)) = pz,(x). Define 4; =
supp 4y, and A} = SUppU;, = f“(EL[aj]). Then /fj - I =
p~Y(A; - I(f)). Define A=A U---UAgand A = A U---UA,. Then
we have

(5.15) N;(r,s) = Ny(r,s) forall0<s<r.

Because p: M — I(f) — M — I(f) is biholomorphic and f=fopon
M — I(f), we have

(5.16) / f”‘(l*(Q))/\f)'""‘=/. P Q) AV
Ml1] M)

= [ @) Aom!
Ml1)

for all ¢ > 0. Thus Tf~ = T;. The assumptions of Theorem 5.3 are

satisfied for f, M, %, A;, A. Hence (5.8) holds accordingly. With these
identities we obtain

THEOREM 5.4. Second Main Theorem for dominant meromorphic
maps. Assume (A1)-(A7). Assume that q > [K* : L). Let f: M —
N be a dominant meromorphic map. For j = 1,...,q define A; =
supp fiy,- Put A= Ay U---UA,. Take positive real numbers s and ¢
with ¢ < q —[K* : L]. Then there is a constant ¢ > 0 such that

(5.17) (g —[K*: L]1—¢&)Ty(r,s)
< Ny(r,s) + Ng(r,s) + clog Ty(r,s) + ¢logr.

6. Propagation Theorems for dominant holomorphic maps.

THEOREM 6.1. Second Propagation Theorem. Assume (Al)-(A7).
Assume that ¢ > [K* : L). Let p and k be integers with 2 < p < k <
dimV. For A= 1,...,k let f,: M — N be dominant, meromorphic
maps. Assume that at least one of these maps f, grows quicker than
the branching divisor. Assume that for each j = 1,...,q the analytic
set Aj = supp Uy, , does not depend on 4 = 1,...,k. Define A =
Ay U---UAy. Define g =10 f, forall 2 = 1,...,k. Assume that
gi,-..., &k are in p-special position on A. Assume that

(6.1) k<(k-p+1)q-I[K*:L].
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Then gi,..., g are in special position on M and f,,..., f; are alge-
braically dependent.

Proof. Since Ty, = Ty, for A = 1,...,k, T = Tp+ -+ Ty =
Tg, + -+ Tg,. Assume that gy,..., g are in general position. Then
(4.1) implies
(6.2) (k=p+ 1)Ny(r,s) < T(r,s) + mgp.pg(5)

Take e e Rwith0 < e < g—[K*:Lland 0 < s € R. Then (5.17)
holds for each f; where 4 and B do not depend on A. Also ¢ can be
taken independently of Aand 7, < T for 1 = 1,..., k. Hence addition
implies
(6.3) (¢g—[K*:L]—¢)T(r,s)

< kNy(r,s) + k(Ng(r,s) + clog T(r,s) + elogr).

The constant in (6.2) can be absorbed into ¢logr. Hence (6.2) yields

(6.4) (¢q-[K*:L]-¢)
k
<
S x—p+1 Ty
Here T'(r,s)/logr — Ag (0) + --- + Ag,(0) < oo for r — oo where the
limit is positive. Hence a constant B > 0 exists such that

(Ng(r,s)+ clog T(r,s) + elogr).

.. k
(65) (q—[K L]—S)Sm+83
Thus ¢ — 0 yields (k —p + 1)(¢ — [K* : L]) < k which contradicts
(6.1). O

If (M,7) = (C™",t9) andif k =3,p=2and [K*: L] <q—2, we
obtain Theorem C of Ji [J1] except that his “Property (P)” is replaced
by special position.

Assume that K ® L9~2 is positive. Then [K* : L] < ¢ — 2 and
k = 2 = p satisfies (6.1). Hence f,, f, are in special position on M,
which means f; = f,. We retrieve a Uniqueness Theorem of Drouilhet
[D1].

If N=P(V),then K=H " !and L = H. Thus [K*: L] =n+ 1.
Lemma 5.2 and Theorem 6.1 imply

THEOREM 6.2. Third Propagation Theorem. Let (M, 1) be a para-
bolic covering manifold of C™ with branching divisor B. Let V be a
hermitian vector space of dimension n+1 > 1. Let p and k be integers
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with2 <p<k<n+1l Ford=1,...,klet fi: M — P¥V) be
dominant meromorphic maps. Assume that at least one of the maps f;
grows quicker than the branching divisor B. Let ay, ..., a4 be in general
position in P(V*) with q > n+ 1. Assume that for each j = 1,...,1
the analytic set A; = supp uy, , does not depend on A = 1,....k. Put
A=A U---UA,. Assume that f,,..., f are in p-special position on
A. Assume that

(6.6) k<k-p+1)(g—n-1).
Then fi,..., fi are in special position. In particular they are alge-
braically dependent.

Thus for dominant maps, Theorem 4.2 is improved. No f, needs to
have transcendental growth. Different A;j may have common branches
and kn in (4.3) is replaced by k in (6.4).

If (M,7) = (C™,19) and if Kk = 3,p = 2 and g = n + 3, then (6.6)
is satisfied and we obtain Theorem A of Ji [J1] with “Property (P)”
replaced by “special position”. If k =2 = p and g > n + 3, then (6.6)
is satisfied. Hence f], f> are in special position on M. Thus f; = f.
Therefore we retrieve a Uniqueness Theorem of Drouilhet [D1].

If each map f; does not grow quicker than the branching divisor,
but if at least one map f; separates the fibers of n, we still obtain
propagation theorems by a Theorem of Noguchi [N2]. Also see Stoll
[S9].
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