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GENERALIZED RATIONAL CONVEXITY
IN BANACH ALGEBRAS

GUSTAVO CORACH AND FERNANDO D. SUAREZ

Let A be a complex commutative Banach algebra with identity and
let F be a closed subset of its spectrum X(A). There are several hulls,
associated with F, which are useful in the study of approximation, in-
terpolation and separation problems: the polynomially and rationally
convex hulls are the most popular, the /4-convex hull has also been
considered and there are also holomorphically convex hulls. In this
paper we introduce a family of hulls, denoted by Rn{F), and we study
some relations between these hulls and several known objects and
invariants in commutative Banach algebras.

We study the relations between Rn(F) and the generalized Shilov
boundaries introduced by Basener [1] and Sibony [17], the topolog-
ical stable rank, introduced by Rieffel [15], the dimension of X(A),
the minimal number of generators of A, etc. We describe briefly
the contents of the paper. In §1 we introduce the hulls Rn(F) and
prove several basic properties of them. In §2 we consider those F's
such that Rn(F) = X(A)\ the intersection of all those F's, denoted by
Γn(A)9 seems to play a role similar to that of the generalized bound-
aries Sn(A) of Basener and Sibony; we prove that T0(A) = S0(A) c
Γi (̂ 4) cS\(A)'" but, in general, Tn(A) is strictly contained in Sn(A).
In §3 we introduce the invariant r(A) = min{n > 0:Rn(F) = F for
every F}, which we call the rationality of A9 and we relate it with the
sets Γn(A) and Sn(A). In §4 we study the relationship between the
topological stable rank of A with the new notions. In §5 we prove
that d(A) < r(A) + γ(A) < 2γ(A) where d(A) is the (covering) dimen-
sion of X(A) and γ(A) is the minimal number of generators of A; the
proof of this result uses known facts on Cech cohomology groups of
some compact subsets of Cn, due to Andreotti and Narasimhan and
Duchamp and Stout (see [7]).

Section 6 contains a generalization of a result of Forelli [11] and §7
contains some results about the hulls Rn in the particular case of the
algebra H°°. Finally, in §8 we collect several open problems. There are
several direct predecessors of this paper: one is a work of Csordas and
Reiter [5], who introduced the hulls R\ (which they call L-sets) and the
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condition r(A) = 1 (this is a separating algebra in their terminology);
another ancestor is a paper of Eifler [9], who studied F's such that
R\(F) = X(A) (these are his inverting sets for A); finally we have taken
several facts about hulls from Stout's book [19], We thank the referee
for his valuable comments, in particular for correcting a mistake in
Theorem 7.1.

Preliminaries. In this paper a Banach algebra A means a complex
commutative Banach algebra with identity. The spectrum of A is the
set X{A) of all (identity preserving) homomorphisms A -> C (called
characters). Every character is continuous; so we can consider on
X{A) the weak * topology of the dual A*. With this topology X(A) is
a compact Hausdorff space. The Gelfand map of A is the homomor-
phism g.A -» C(X(A)) defined by g(a) = a, a(h) = h{a) (h e X(A)).
The letter F denotes a non-void closed subset of X(A) and AF is the
closed subalgebra of C(F) generated by the restrictions a\F {a e A).
In general, for a space X, C(X) is the algebra of all complex contin-
uous functions on X. For a e A, \\a\\F = Halloo- Given a e An we
set σ(A) = {h(z):h e X{A)} = a(X(A)). The zero set of a e An is
Za = {h G X(A):h(a) = 0}. It is known that X{AZa) is homeomorphic
to Za. If A is a Banach algebra and n > 1 we use in An the norm
| |α| | = Ufa,...,*,,)!! = ( Σ L i II^H 2) 1 / 2 This holds, in particular, for
z eCn, where we write \z\ instead of | |z | | . In §6 we denote by Hk the
/cth Cech cohomology functor with integer coefficients.

1. Generalized rational hulls.

1.1. DEFINITIONS. Given a closed subset F ofX(A) define Ro(F) =
{h e X{A):\h(a)\ < \\a\\F (α e A)}. For n > 1 and a e An we
put Δ(F,α) = 2- [(2(F)) = {h e X(A):h(a) e a(F)} and Rn(F) =
Γ\{A(F,a):aeA»}.

1.2. REMARKS, (i) Ro(F) is usually denoted by F and referred to
as the A-convex hull of F

(ii) The sets R\(F) were first considered in [5]; see also [19, p.
369].

(iii) Given a compact subset K of CΛ (where Λ is an arbitrary set
and CΛ is provided with the product topology) and a set of functions
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defined on CΛ we can define the hulls

= {ze C Λ : | /(z) | < \\f\\κ for all / e

= {ze CA:f(z)ef(K) for all / =

If c5̂  = ^ is the algebra of all complex polynomials in the vari-
ables Xλ (λ e Λ), R0(K9^) is the usual polynomial hull of K (see
[19]). If S? = &κ the algebra of all rational functions with poles
off K, RO(K,&>K) is the rational hull of K. It is well known that
RO(K,&K) = R\{K,9°). These classical hulls motivate the name of
generalized rational hulls given to the sets Rn{F), which should be
denoted by Rn(F9A).

We collect some facts about Rn(F) in the next proposition.

1.3. PROPOSITION, (i) X(A) D ••• D Rn{F) D Rn+\(R) D ••• D
F {n< 0).

(ii) IfRn(F) = F then Rk(F) = F /or α// fc > n.
(iii) IfRn(F) = X(A) then Rk(F) = X{A) for all k < n.
(iv) For h e X(A), h $. fRo{F) if and only if for every ε > 0 there

exists aeA such that h(a) = 1 and \\a\\F < ε
(v) Ifn>landhe X(A)9 then h £ Rn(F) if and only if there

exists aeAn such that h(a) = 0 and 0 £ a(F).
(vi) Ifn>\ and D is a dense subset of An then

Rn(F) = f){A(a,F):aeD}.

(vii) For every k > 0 it holds

f]{Rn(F):n> 0} = f]{Rn(F):n> k} = F.

Proof (i) Obviously Δ(F,a) D F for every a e An, so Rn(F) D F
for n > 1. For a G ̂ Λ , Δ(F,α) = Δ(F, (α,0)), so Λ π + i(F) C ΛΠ(F) for
Λ2 > 1. The case R\(F) c i?o(^) is clear.

(ii) and (iii) follow easily from (i).
(iv) If h e X(A)\R0(F), there is a e A such that \h(a)\ > \\a\\F.

Multiplying a by an appropriate constant we can suppose that 1 =
h(a) > \\a\\f. Finally, replacing a by an with n large enough we get
h(a) = 1 and \\a\\f < ε. The converse is obvious.

(v) If h e X(A)\Rn(F), there is a e An such that h{a) £ a(F). If

b = a- h(a)9 then h(b) = 0 and 0 φ b(F).
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(vi) It suffices to prove that Rn(F) D f){A(F,a):a e D}. Let h e
X(A)\Rn(F). By (v) there is a e An such that h{a) = 0 £ a(F).
Then δ = inf{|fc(α)|: k € F} > 0 and we can choose b e D such that
\\a - b\\ < δ/2. We shall show that \hφ)\ < mϊ{\kφ)\:k e F], which
will imply that hφ) <£ b(F), i.e. that h £ f]{A(F,d):d e D}. Now,
\\a - b\\ < δ/2 implies that \hφ)\ = \hφ) - h{a)\ < \\a - b\\ < δ/2,
so it suffices to prove that \kφ)\ > δ/2 for every k e F. If k e F
then \\k(a)\ - \kφ)\\ < \k(a) - kφ)\ < \\a - b\\ < δ/2 so we get
\kφ)\ > \k(a)\ -δ/2>δ- δ/2 = δ/2.

(vii) Part (i) implies that, for each k > 0, f]{Rn(F):n > k} =
f]{Rn(F): n>0}DF. If h $ F, for every k e F there is ak e A such
that ak(k) ψ 0 and ak{h) = 0.

Let ί7^ be an open neighborhood of k such that ak{l) φ 0 for all
I e Uk. By compactness, there are k\,...,kn e Z7 such that F c
ί/fcl U U Ukn. lfa = (akγ9..., akn) then h(a) = 0 and 0 £ 2(F). This
means, by (v), that A £ ΛΛ(F), SO"Λ ^ f)Rn(F) π

1.4. REMARKS, (i) The equality Π U ^ F ) = i 7 can also be proved by
means of the axiomatic joint spectra theory of Zelazko [25] (see also
Curto [6], Eschmeier [10] and Vasilescu [23]). A spectral system on a
Banach algebra A is a rule σ which assigns to each a € An (n > 1) a
compact subset σ(a) of Cn such that σ(tf) c σ(a), P\(σ(a,b)) = σ(α)
and p2(σ(a,b)) = σφ), where p^C 7 1 x C m -^ CΛ, p 2 :C Λ x P ^
Cm are the usual projections. Given a spectral system <τ on A, A =
f){a~ι(σ(a)):a e An,n > 1} is the only closed subset of X(A) such
that σ(a) = 2(Δ) (see [10, 1.1], for instance). It is easily seen that, for
every i7, σ:a —> ^(i7) is a spectral system with Δ = Π{^«(^) n > 1}
and σ(β) = 2(F) by definition. By the uniqueness of Δ it follows that
A = F.

(ii) Observe that each Rn is an involution operator in the sense that
Rn(Fn(F)) = R

2. The condition Rn(F) = X(A).

2.1. PROPOSITION. The following conditions are equivalent.

(2) For every a e -4Λ, σ(a) = a(F).
(3) For every α G yl", ZΛ n F = 0 implies that Za = 0.

Proof. (1) => (2). Suppose that σ(α) ^ ^(i7) for some α e ^4Π. Then
there is h e -̂ (̂ 4) such that h(a) £ 2(F). This means that
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so h £ Rn(F), which contradicts (1). (2) => (3). Take a e An such
that Za Φ 0 . Then Oeσ(a) = a(F) and there exists k e F such that
k{a) = 0, or, which is the same, k eZaΠF.

(3) => (1). If h £ Rn(F), there exists a e An such that h(a) = 0 and
0 £ a(F)\ in other terms, h e Za and Za Π F = 0; this contradicts
(3). D

2.2. DEFINITION. Let n > 1. F is n-inverting (for 4) if 0 ^ 2(F) =*
a E C/Λ(Λ) = {c G ̂ " : Σ L i Λc* = Λ}, for all a e An. Forn = 1 this
is a notion due to Eifler [9].

It is easy to see that a e Un(A) if and only if 0 £ σ(a). Thus, F is
^-inverting if and only if Rn{F) = X(A). We say that F is 0-inverting
if R0(F) = X(A).

The intersection of all ^-inverting subsets of X(A) will be denoted
Γn(A):

Tn(A) = f\{F:Rn{F) = X(A)} (n > 0).

The proof of the next result follows easily from 1.3 (iii) and the defi-
nition of the Shilov boundary (see also the next paragraph):

2.3. PROPOSITION, (i) TQ(A) is the Shilov boundary of A.
{ιϊ)T0{A)cTx{A)cT2{A)C'-.
Therefore Tn(A) is non-void for all n>0.

The next result relates the notion of hulls Rn to that of generalized
Shilov boundaries introduced by Basener [1] and Sibony [17]. Recall
the definitions. A boundary for A is a closed subset F of X{A) such
that \\a\\F = \\a\\χ(A) (a € A). The Shilov boundary S0(A) is the
intersection of all boundaries and it turns to be itself a boundary. For
n > 1, the nth boundary of A is the closure in X{A) of \J{S)o(Aza): a e
An} (this makes sense because S0{AZa) c X(AZa) = Za c X{A)). We
denote it by Sn(A).

An interesting result of Tonev [21] is the following: Sn(A) is the
intersection of all ^-boundaries of A and it is itself an ^-boundary,
where a closed subset E of X(A) is an n-boundary (for A) if
min{\k(a)\:ke E} = min{\k(a)\:ke X(A)} for all a e Un+ι(A).

For more information on these generalized boundaries the reader is
referred to [1, 17, 21].

2.4. PROPOSITION. Forn>0 Rn(Sn(A)) = X(A).

Proof The case n = 0 is trivial. For n > 1 suppose, on the contrary,
that there is h e X(A)\Rn(Sn(A)). Then, by 1.3 (v), there exists aeAn
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such that h(a) = 0 and 0 $ a(Sn(A)). This means that Sn(A)nZa = 0 .
Now Za φ 0 and S0(AZa) φ 0 but, by definition of Sn(A), S0(AZa) C
Sn(A) Π ZΛ, contradiction. Thus Rn(Sn(A)) = X(A), as claimed. D

2.5. COROLLARY. Γn(A) c Sn(A) (n > 1).

2.6. PROPOSITION. For every n > 1 Tn(A) D Sn-ι(A).

Proof. Suppose, on the contrary, that there exist h e Sn-\(A) and
a closed subset F of X(A) not containing Λ such that Rn(F) = X(A).
Consider an open neighborhood U of h which does not meet F. From
Tonev's characterization of Sn-\(A) [21] there is a e Un(A) such that

min{\k(a)\:ke X(A)} = min{\k(a)\:ke keU}

< min{|fc(α)|: k e X(A)\U} < min{|^(α)|: k e F}.

Let h0 e U such that \ho(a)\ = min{|A:(α)|:A: e U}. Then \ho(a)\ <
min{\k(a)\:k e F}, by the inequalities above, so that ho(a) £ a(F),
which means that ho $. Rn(F), contradiction. D

2.7. COROLLARY. Γ O ( ^ ) = Sb(^t) C Γ^^) c S{(A) c . Therefore
Π

We prove now that the unions considered at 2.7 are dense in X(A).

2.8. PROPOSITION. \J{Sn(A):n > 0} is dense in X{A).

Proof. Suppose on the contrary that there exists h G X(A)\F, where
F is the closure of\JSn(A).

Let U = X(A)\F. By 1.3 (v) there exist neN and a e An such that
h(a) = 0 and a{F) $ 0. Then FnZa = 0 so S0(AZa) c Za c U and
^(^4) Π U is non-void which is absurd by the definition of U. Thus
F = X(A) as claimed. D

2.9. REMARK. It is worth noting that, in general, Tn(A) is not
an n-inverting set. For this, let A = A(Dn) = the «-polydisc algebra,
α = ( α i , . . . , α n ) e C n with \αk\ < 1 (k = 1,...,«) and ^ ) G Λ defined
by ^^ } (z) = (z - αk)/(\ - zαΛ). By a result of Rudin [16], Theorem
4.7.2 and the definition of Rk, Rι(KαUJn) = Dn = X(A)9 where Kα is
the image of φα = (φ{d\..., φ{α]) and T = {z e D: |z | = 1}. Then, by
its definition, Γj(A) is contained in f](KQuJn) where the intersection
is taken over all α G Cn with \αk\ < 1 for all k, which is obviously Tn.
Moreover, by 2.3, Γ^^) D Γ0(A) = S0(A) = Jn so that Γ{(A) = Jn.
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However Rx(Tn) = TΛ, for if it; € Dn\Jn then \wk\ < 1 for some
k = 1,...,« and the polynomial /?(zj , . . . , zn) = zx•- wt vanishes at w
and has no zero at Tn. π

3. The condition Rn(F) = F. Let r{A) = min{n > 0:Rn(F) =
F VF} and r(A) = +oo if there is no such n\ we call r(^4) the rationality
oϊ A.

3.1. PROPOSITION, (i) Ro(F) = F if and only if for every ε > 0 and
h e X(A)\F there exists aeA such that h(a) = 1 and \\a\\F < ε.

(ii) If A is regular then r(A) = 0.
(iii) Suppose that there exists a e An such that a: X(A) —• C" is

injective. Then r(A) < n.

Proof, (i) follows easily from 1.3 (iv).

(ii) If A is regular and h e X(A)\F there exists a e A such that
a\F = 0 and h(a) = 1; apply (i).

(iii) If a is injective, for every F it holds Δ(α, F) = a~ι(a(F)) = F,
so Rn{F) = f)A(a,F) and r(A) <n. π

3.2. REMARKS, (i) In [24] Wilken says that A is approximately
regular (on X(A)) if for each h G X(A), each closed set F in X(A) not
containing Λ and each ε > 0 there is α e 4̂ with h(a) = 1 and \\a\\f < ε.
By 3.1 (i) A is approximately regular if and only if r(A) = 0.

(ii) Let A be ^-generated, in the sense that there are a\,..., an in A
such that the subalgebra generated by a\,..., an is dense in A. Then 3.1
(iii) implies that r(A) < n, because if a = (a\,...,an) then a:X{A) —•
σ(a) C Cn is a homeomorphism. Thus, r(^4) < y(̂ 4) if γ(A) is the
minimum number of generators of A. However, this inequality is not
sharp. In fact, if X is an infinite dimensional compact space, e.g.
X = [0, I f , then A = C{X) is regular, so r{A) = 0 by 3.1 (ii), and
y[A) = +oo. We will see later a more precise relationship between
r(A), γ(A) and the dimension of X(A).

(iii) Suppose that there exist a\,...,aninA such that the closed./!///
subalgebra generated by them is A. Then a is injective and r{A) < n.

(iv) The condition r(A) < 1 has been introduced by Csordas and
Reiter [5], who called such A's "separating algebras". Most of their
results can be generalized to our setting.

3.3. PROPOSITION. Ifr(A) < n then Γn(A) = Sn(A) = X{A).
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Proof. By 2.5 it suffices to see that Γn(A) = X(A). But if r(A) <
n the only closed set F in X(A) which satisfies Rn(F) = X(A) is
X(A). Π

3.4. EXAMPLES. Given a compact subset X of Cn let ̂ 4(X) be the
algebra of all maps X —• C which are holomorphic in the interior of
X. Then r(A(X)) < n if X is polynomially convex, for in this case the
coordinate functions z\,...,zn generate A(X). In particular, if D is
the closed unit disc r(A(Ό)) = 1 because Ro(F) Φ F for every F with
C\F disconnected, so 0 < r(A(D)) < 1. In general, r{A(Ώn)) = n. We
will return later to this example.

3.5. PROPOSITION. If Rn(F) = F then F is the intersection of a
family of sets Pa^ = {h e X(A): \h{a)\ > δ} for some elements a e An

and δ > 0.

Proof. Let h0 e X(A)\F. By 1.3 (v) there is a e An such that
ho(a) = 0 φ a(F). Let δ = min{\h(a)\:h e F}. Then δ > 0 and
ho £ Pa,δ/2 Thus, F = Γ\Pa,δ for a family {(a,δ)} in An x R+. D

4. The topological stable rank, Rn and 5 Λ . The topological stable
rank of 4̂ is the least n such that Un(A) is dense in An\ we denote it
by tsr(^4). This is a notion introduced by Rieίfel [15] which replaced
efficiently, in the case of Banach algebras, the more algebraic stable
range conditions of Hyman Bass [2].

4.1. PROPOSITION. Suppose that tsr(^) < n. Then Rn(Sn-\(A)) =
X{A).

Proof. By [4, 1.10] there is a dense subset D of An such that σ(a)
has no interior points, for every a e D. Then σ(a) coincides with its
boundary dσ(a). But, by a result of Tonev [21] dσ(a) C a(Sn-\(A))
(a e An). Thus, for every a € D, σ(a) = a(Sn-\(A))9 so that by 1.3
(vi),

^ G D}

because fl-^σία)) = X(A) (a e An). π

4.2. COROLLARY. Suppose that tsx(A) < n and r(A) < n. Then
= X(A). D
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4.3. PROPOSITION. Suppose that tsr(Λ) = 1. Then R0(F) = R\(F).

Proof. It always holds R0(F) D R\(F)9 (1.3 (i)). Let h £ R\{F). By
1.3 (v) there is a e A such that h(a) = 0 and min{\k(a)\: k e F} > 1.
By hypothesis, the invertible elements form a dense subset of A9 so
there is an invertible u e A with \\a - u\\ < 1/2. Then \h(u)\ < 1/2
and min{|A:(M)|:k e F} > 1/2, so \h(u~ι)\ > 2 and \\u'x\\F < 2, which
implies that h£R0(F). π

4.4. COROLLARY. Suppose that tsr(Λ) = 1 and r(A) < 1. Then
r{A) = 0.

It is an open problem if tsr(Λ) and tsr(C(X(^))) coincide. We
present two results relating this problem with the invariant r(A).

4.5. PROPOSITION. Suppose that r(A) = 0. Then tsτ(C(X(A))) <
tsv(A).

Proof. Suppose that Xsτ(C(X(A))) > n + 1. Then there exist F, a
closed subset of X(A), and φ\9...,φn G C(X(A)) such that φ(F) =
(<Pι(F),...9φn(F)) c C"\{0} and φ\F admits no extension to
C(X(A)9 CJ) [22]. By the fact that R0(F) = F, there is (9 € Λ£ lying in
the component of φ\F in C(F9 C?): in fact, X ( ^ F ) = Ro(F) = F and
it is well known that, for a Banach algebra B, Un(B) and C(X(B)9 CJ)
are homotopy equivalent [20]. Now, by definition of Af, A\F is dense
in y4ir so that there isaeAn such that 2 |F belongs to the component of
θ in C(F9 CJ). In particular, 2|JF admits no extension to C(X(A)9 CJ).
By the results of Vaserstein [22] or Rieffel [15], this means precisely
that a does not belong to the closure of Un{C(X(A))) (in C{X{A))n),
which implies that a does not belong to the closure of Un(A) (in An).
Thus tsr(^) > n + 1. This proves that tsr(Λ) > tsr(C(X(^))). D

4.6. COROLLARY. Ifr(A) < 1 andtsτ(A) = 1 ίΛ*/ι tsr(C(ΛXΛ))) = 1.

Proof. Combine 4.5 and 4.4. α

4.7 Problem. It is not known if tsr(A) = tsτ(C(X(A))9 in general,
even for regular algebras.

5. The main result. This section contains the main result of the
paper, which states that the topological dimension of X(A) is at most
γ(A) + r(A). We need some results about the cohomology of certain
compact subsets of Cn.
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5.1. LEMMA. Let R\,..., Rm be rational convex compact subsets of
Cn and J = (J£Li Rk Then Hn+i{J) = Ofor all i > m.

Proof. We proceed by induction in ra. Let m = 1. If K c Cn is
polynomially convex then Hn^(K) = 0 for all i > 0 [7]. If K c Cn

is rationally convex, then K is homeomorphic to some polynomially
convex K' c C"+ 1 [19, p. 373] so that Hn+i(K) = Hn+ί{K') = 0
for all / > 1. Suppose that the assertion holds for 1,2,..., m and let
/ = Uί"+ 1 Rk> where each Rk is rationally convex, Rk c Cn. Consider
the Mayer-Vietoris exact sequence

I I n n n I __. τjn+i I I I r>

{JRk I ΠΛm+i I -^/ί I ( J Rk

1 / / \ 1

-+Hn+i (\jRkJ θ// π + / ( i? m + i )

Then, by inductive hypothesis, if / > m + 1,

and « m \ \ (m \

I ID n p I _ ττn+i-\ I ID n p I _ c\
1 / / \ 1 /

because each Rk nRm+\ is rationally convex. Then, by the exactness,

We say that a compact subset ίΓ of Cn is k-rationally convex if
Rk(K) = K, where

This set is denoted /*£(Λ:) in Slodkowski's paper [18, p. 323].

5.2. COROLLARY. Let K be an (n - \)-rationally convex subset of
Cn. Then K does not separate Cn (i.e., Cn\K is connected).

Proof. Suppose, on the contrary, that Cn\K is disconnected, and
assume that K c B = {z e Cn:\z\ = (£* = i M 2 ) 1 / 2 < M}. Then
there are polynomialsp\9...,pn-\ such that P(ZQ) = 0 ^p(K), where
P = (P\,. - >Ai-i). Then there is (5 > 0 such that AT c (J^l} ^ 9 where
Rk = {z e B: \pk(z)\ > δ}. Observe that each Rk is rationally convex,
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so that, by 6.1, Hn+ι{{fkz\ Rk) = 0 for all i > n - 1; in particular

H2n-χi\fkZ\Rk) = 0, so that [fkZ\Rk does not separate CΛ [14, p.

100]. But z 0 e B\\Jn

kz\Rk, K c [fkZ\Rk and K separates CΛ, so

Ujtli ^ should separate CΛ, contradiction. D

5.3. COROLLARY. For every compact subset K ofCn, Rn-\(K) con-
tains all bounded components ofCn\K.

5.4. REMARK. It is false, in general, that Rn-\{K) consists, exactly,
of K and all bounded components of Cn\K. For instance, at 2.9 with
n = 2, any a = (aua2) and K = Ka U T 2 it holds R\(K) = D2 and K
does not separate C2.

5.5. PROPOSITION. If A is generated by a\,...,an then Rk(a(F)) =
a(Rk(F)) for every closed subset F ofX(A).

Proof, The inclusion a(Fk(F)) c Rk(a(F)) holds in general: if h e
Rk{F) and p = (p\,... ,/fy) is a polynomial map p{h{a)) = h{p{a)) e
p(a)(F) = p(a(F)), so that Λ(α) e i ? ^ ( ^ ( ^ ) ( i Γ ) ) . To see the converse
inclusion let z e Rk(a{F)). Observe that Rk{a(F)) c Rk(σ{a)) =
σ(a) because the joint spectrum of a system of generators is always
polynomially convex, a fortiori Λ -rationally convex for every k > 1.
Then z = h(a) for some h e X(A)9 and /?(z) e p(a(F)) for all /?, that
is h(p(a)) e p(a)(F) for all /?. Now, using the fact that the set of all
p(ά) is dense in Ak and applying 1.3 (vi) we conclude that h e Rk(F).
Ύhus,Rk(a(F))ca(Rk(F)). D

5.6. THEOREM. If A is a complex commutative Banach algebra with
identity and d(A) is the dimension of its spectrum X(A) then

d(A)<γ(A) + r(A)<2γ(A).

Proof. By 3.2 (ii) r(A) < γ(A) and it suffices to prove the first in-
equality. Let n = γ(A) and k = r(A). By [14, Ch. VIII] it suffices to
prove that Hn+i{F) = 0 for all closed subsets F of X{A) and i > k.
For i>n + l, Hn+ι(F) = 0 because F is homeomorphic to some com-
pact subset of Cn. For k < i < n we prove the assertion by a reverse
induction.

Consider a (fixed) homeomorphism a:X(A) —• σ(a) c C", and let
T = σ(a).

(+) Suppose that Hn+J{F) = 0 for j > i > k and for all closed
subsets F of X{A).
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(a) Consider first a compact set of the form

k

P=\J{zeT:\Pj(z)\>δj}

j=ι

f o r s o m e p o l y n o m i a l s P ι , . . . , P k , a n d p o s i t i v e n u m b e r s δχ,...,δk. L e t
Rj = {zeT: \pj(z)\ > δj}. Then

Hn+i'x{P) = Hn+i~x ( \J Rj j = 0 by 6.1.

(b) Let &> be the collection of all P like in (a). If / = fl/li Pi {Pi €
^ ) then Hn+'~X(J) = 0. We prove this assertion by induction in m.
For w = 1, it has been proved at (a). Suppose that it holds for 1,. . . , m
andletPι,...,Pm+ι e&>, E = f)?=ιPh F = Pm+X and r - n + i- 1.
Consider the portion of the Mayer-Vietoris exact sequence

> Hr(E) Θ Hr(F) -v Hr(E n F) -

Then /f^^1) = 0 by inductive hypothesis, Hr(F) = 0 by (a) and
Hr+X{E U F) = 0 by (+) (that is, by our first inductive hypothesis),
because E u i 7 is homeomorphic to a closed subset of X(^ί). Thus

which proves the assertion of (b).
Finally, we consider a closed subset F of X(A) and its image Ff c

Cn by a: X(A)-+T.
F' is /:-rationally convex by 5.5, so that F' = f] Qa for some (possi-

bly infinite collection of) Qa e P. For each Qa it holds Hn+i~ι(QQ) = 0
by (b). Thus, by the continuity of Cech cohomology we get Hn+ι~x(F)
= Hn^-{(Ff) = 0, which finishes the proof. D

5.7. COROLLARY. Ifd(A) = 2n and γ(A) = n then r{A) = n. D

5.8. EXAMPLES, (i) Let X c Cn be the polydisc Dn or the ball Bn

or any polynomially convex compact subset of Cn with interior. Then
r(A{X)) = n.

(ii) Let A(D°°) be the closure in C(D°°) of all polynomials in a finite
number of variables.

Observe that every A(Όn) is a quotient of A(D°°).
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It is easy to prove, in general, that r(A/I) < r(A) for all ideals /
of A.

Then r(A(D°°)) > r(A(Όn)) = n for all n, by 5.7.
Thus, r{A(D°°)) = oo.
(iii) This is an example of a fc-rationally convex compact subset of

Cπ which is not the union of two 1-rationally convex sets. Consider

^ 1 = { z € ί ) 4 : | z 1 | > l / 2 o r | z 2 | > l / 2 } ,

K2 = {z e D4: |z 3 | > 1/2 or |z 4 | > 1/2}.

It is clear that Ku K2 and Kx n K2 are 2-rationally convex sets. We
consider the exact sequence

> H6{KX)®H6{K2) -> H\KX ΠK2) -+ Hη{Kx UK2)

Now H6(Kχ) = H6(K2) = 0 because K\ and ΛΓ2 are unions of two
1-rationally convex sets. By the same reason, HΊ{K{) = HΊ{K2) = 0.
Thus, H6(Kι ΠK2) £ Z / 7 ^ ! UϋΓ2) φ 0, because ^ UU: 2 separates C4,
so that by 5.1 K\ UK2 is not the union of two 1-rationally convex sets.

6. A result of Forelli. Our generalized rational hulls give a notion
of separation associated to ^-tuples of elements of A. In this sec-
tion we consider n-tuples of elements of an ideal / of A. In [11]
Forelli proves that, if A is the disc algebra, / is an ideal of A and F is
a compact subset of D such that F n hull(7) = 0 (where hull(7) =
{z e D:f(z) = 0 V / G /}) then there exists f e I such that f\F
does not vanish. Here we generalize Forelli's theorem in the following
sense:

6.1. THEOREM. Let A be n-generated, F a closed subset of X{A)

such that F nhull(7) = 0 . Then there exist a = (au...,an) e In with

0£a(F).

Proof. First we suppose that A is uniform. Then A is A(X) for
some polynomially convex compact I c C n . Now, if V is an open
neighborhood of hull(7) such that V Π F = 0, then by the polynomial
convexity of hull(/) and a result of Gunning and Rossi [13, p. 218]
there exist n polynomialsP\>...,pn in C[/i,...,/«] such that

Define Ck = {z e X:\pk(z)\ > 1}. Then hull(7) n Q = 0, Ck is
rationally convex (k = 1,...,«) and F c IJ/Li Ck F i χ ̂  By com-
pactness, there exists g = (g\9...,gm) € Im such that 0 φ g(Ck).
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The spectrum of R(Ck) (the closed subalgebra generated by the ra-
tional functions with poles off Ck) is Ck, is rationally convex. Thus,
0 φ g(Ck) means that g G Um(R(Ck)) and, by the definition of i?(Q),
there exist polynomials rj,Sj (j = l, . . . ,ra) such that Sj does not
vanish on Ck and h — ΣyLi rjSjlsj d ° e s n o t vanish on Ck. Thus
fk — (ΠJLi J7")^ G ^ a n c * Λ does n o t vanish on Q . Now, /: being
arbitrary, we get / = (fx,...,/„) e Γ such that 0 φ / ((JLi Q ) a n d >
a fortiori, 0 ^ /( i 7 ) , as claimed.

For A not necessarily uniform, we only need to observe that, in
the proof above, we work with elements in A so the result holds in
general. D

6.2. COROLLARY. Under the same hypothesis if V c X(A) is a
neighborhood o/hull(/) then there exists an n-generated ideal J c /
such that hull(/) c hull(/) c V.

Proof. It suffices to take F = X(A)\V and / = (fΪ9..., f n ) . π

7. Some results on H°°. The famous "corona theorem" of Carleson
[3] says that if f\,...,/« are bounded holomorphic functions on the
open discΔ (in symbols, f\,...9fn G H°°) such that \f\\-\ \-\fn\ >δ
for some δ > 0 then there exist g\,...,gn Ξ ί^00 such that ΣX=i fkgk —
1; if we suppose Δ imbedded in X(H°°), Carleson's result says that
Δ is dense. The rationality of H°° is closely related to the corona
theorem. More precisely, if we knew that r(H°°) < m then it would
suffice to prove Carleson's theorem for m-tuples. In fact, if there exists
φ G H(H)\A (here Δ is the closure of Δ in X(H°°)), then there is an
/ = (/i,...,/ r) G (H°°γ with r = r(H°°) such that f(φ) = 0 and
f(x) φ 0 for all x G Δ. We may assume that / G (H°°)m, filling the
last coordinates with zeros if it is necessary. Thus, by compactness
of Δ, |/(z) | = \fι(x)\ + ••• + \fm(z)\ > δ > 0 for some δ and all
z G F, so /verifies the corona hypothesis and then, by our assumption,
/ G Um(H°°), which contradicts the existence of φ.

In particular, if we knew that r(H°°) = 1 this would imply trivially
Carleson's theorem. We collect in this section a few results about the
YixύlRn of//00.

We recall that {zn} c Δ is an interpolating sequence if for every
bounded sequence {bn} there exists / G H°° such that f(zn) = bn

(n>\). By identifying the points of Δ with some characters of //°°,
we define G = {x G X(H°°):x is a cluster point of an interpolating
sequence {zn}}.
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Obviously G D A and it can be shown that G Π So(H°°) = 0 but
G U S0{H°°) is strictly contained in X(H°°).

7.1. THEOREM. Let F be a compact subset ofX{H°°).
(l)IfFc S0(H°°) then R^F) = F.
(2) IfF c Λf(/P°) then

R2(F)\F c X(H°°)\G.

Proof. (1) Let x e X(//0 0)\50(/f0 0). By a theorem of Newman
[12, p. 194] there is a Blaschke product B such that B(x) = 0 and
\B\F\ = 1. Then x £ R\{F). This proves that RX{F) c S0{H°°). Let
x e SΌ(/f°°)\F. Recall that X{L°°) « Sb(/f°°) and L 0 0 = C(X(L°°)).
Then, there is u e L°° such that M(F) = 1, \u\ = 1 and u(x) = - 1 .
By a theorem of Douglas and Rudin [12, p. 192] there exist Blaschke
products B\ and B2 such that \\B\/B2 - U\\S^H°°) < ε < 1, if e > 0.
Let h = Bx- B2. Then, if z e F

\h(z)\ = | ^ ( z ) - u(z)B2(z)\ < ε\B2(z)\ = ε

and

\h(x)\ = \Bι(x)+B2(x)-2B2(x)\

= 2 -

This proves that \h(x)\ > \\h\\F, a fortiori x φ R\{F).
(2) Let x G G\F. Then there is an interpolating sequence {zn}

such Λ: € L = closure of {zn: n e N}. Let β: i/ 0 0 -+ /°° be defined by
Q(f) = {f(zn)}neN. Then Q is onto and Q:H°° - Γ°° = C(ΛΓ(/°°)) =
C(L) is onto, too, because β*:X(/°°) —>• L is a homeomorphism.

Let g € C(L) such that Zg n (F Π L) = 0 . Then there is f e H°°
such that / | L = g. Thus, if 5 is a Blaschke product whose zeros
an (n G N), then (B,f) separates x from F, for ( 5 , / ) ( J C ) = 0 and
if z e F and B{z) = 0 by [15, pp. 379] z e l s o that f(z) = g(z)
φQ. D

8. Some open problems. There are several questions about the sub-
jects considered in this paper that we have not been able to answer.
We collect in this section those that we consider the most relevant.

8.1. H°°. As usual in uniform algebra theory, this algebra is a
source of many interesting questions. We do not know neither the
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dimension of its spectrum nor its rationalilty r(H°°). It is possible that
r(H°°) = +00. We also ignore its Bass' stable rank and its topological
stable rank.

8.2. r(A) vs. tsr(A). We suspect that r(a) < tsr(A) - 1, but we do
not have a proof even for the case tsr(^4) = 1.

8.3. tsr(A) vs. tsτ(C(X(A))). These two invariants should be re-
lated, but we only have partial answers (see §4).

8.4. Is it true that Sn-X(A) = X(A) if tsr(A) < ril
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