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GENERALIZED RATIONAL CONVEXITY
IN BANACH ALGEBRAS

GUsTAVO CORACH AND FERNANDO D. SUAREZ

Let A be a complex commutative Banach algebra with identity and
let F be a closed subset of its spectrum X (A4). There are several hulls,
associated with F, which are useful in the study of approximation, in-
terpolation and separation problems: the polynomially and rationally
convex hulls are the most popular, the 4-convex hull has also been
considered and there are also holomorphically convex hulls. In this
paper we introduce a family of hulls, denoted by R,(F), and we study
some relations between these hulls and several known objects and
invariants in commutative Banach algebras.

We study the relations between R,(F) and the generalized Shilov
boundaries introduced by Basener [1] and Sibony [17], the topolog-
ical stable rank, introduced by Rieffel [15], the dimension of X(A),
the minimal number of generators of A, etc. We describe briefly
the contents of the paper. In §1 we introduce the hulls R,(F) and
prove several basic properties of them. In §2 we consider those F’s
such that R,(F) = X(A); the intersection of all those F’s, denoted by
I',(A), seems to play a role similar to that of the generalized bound-
aries S,(A) of Basener and Sibony; we prove that I'y(4) = Sy(A4) C
I'1(4) € Si(A4)--- but, in general, I',,(A4) is strictly contained in S, (A).
In §3 we introduce the invariant r(4) = min{n > 0: R,(F) = F for
every F}, which we call the rationality of A, and we relate it with the
sets I',(A) and S,(4). In §4 we study the relationship between the
topological stable rank of 4 with the new notions. In §5 we prove
that d(A4) < r(A4) + y(A) < 2y(A) where d(A) is the (covering) dimen-
sion of X(A) and y(4) is the minimal number of generators of A; the
proof of this result uses known facts on Cech cohomology groups of
some compact subsets of C”, due to Andreotti and Narasimhan and
Duchamp and Stout (see [7]).

Section 6 contains a generalization of a result of Forelli [11] and §7
contains some results about the hulls R, in the particular case of the
algebra H*°. Finally, in §8 we collect several open problems. There are
several direct predecessors of this paper: one is a work of Csordas and
Reiter [5], who introduced the hulls R; (which they call L-sets) and the
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condition r(A) = 1 (this is a separating algebra in their terminology);
another ancestor is a paper of Eifler [9], who studied F’s such that
R|(F) = X(A) (these are his inverting sets for A); finally we have taken
several facts about hulls from Stout’s book [19]. We thank the referee
for his valuable comments, in particular for correcting a mistake in
Theorem 7.1.

Preliminaries. In this paper a Banach algebra A means a complex
commutative Banach algebra with identity. The spectrum of A is the
set X(A) of all (identity preserving) homomorphisms 4 — C (called
characters). Every character is continuous; so we can consider on
X (A) the weak * topology of the dual 4*. With this topology X (A4) is
a compact Hausdorff space. The Gelfand map of A is the homomor-
phism g: 4 — C(X(A)) defined by g(a) = a, da(h) = h(a) (h € X(A4)).
The letter F denotes a non-void closed subset of X(A) and Ay is the
closed subalgebra of C(F) generated by the restrictions a|F (a € A).
In general, for a space X, C(X) is the algebra of all complex contin-
uous functions on X. For a € 4, ||d||r = ||a|F||c. Given a € A" we
set a(A) = {h(z):h € X(A)} = a(X(A)). The zero set of a € A" is
Z, = {h € X(A): h(a) = 0}. It is known that X(A;,) is homeomorphic
to Z,. If A is a Banach algebra and n > 1 we use in A” the norm
llall = ||(a1,.-->an)ll = (k< llai||*)!/2. This holds, in particular, for
z € C", where we write |z| instead of ||z||. In §6 we denote by H* the
kth Cech cohomology functor with integer coefficients.

1. Generalized rational hulls.

1.1. DeFINITIONS. Given a closed subset F of X(A) define Ro(F) =
{h € X(A):|h(a)| < |[a|lr (@ € A)}. For n > 1 and a € A" we
put A(F,a) = a Y(@(F)) = {h € X(A):h(a) € @(F)} and R,(F) =
N{A(F,a):a € A"}.

1.2. REMARKS. (i) Ro(F) is usually denoted by F and referred to
as the A-convex hull of F

(ii)) The sets R (F) were first considered in [S]; see also [19, p.
369].

(iii) Given a compact subset K of CA (where A is an arbitrary set
and CA is provided with the product topology) and a set of functions
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& defined on CA we can define the hulls

Ro(K, ) ={z € C*:|f(2)| < ||flIx for all f €},
R,(K,?)={zeCr f(z) € f(K) for all f=(fy,...,[n) €F"}
(n>1).

If ¥ = 2 is the algebra of all complex polynomials in the vari-
ables X; (A € A), Ry(K, %) is the usual polynomial hull of K (see
[19]). If & = Hk the algebra of all rational functions with poles
off K, Ry(K,Zk) is the rational hull of K. It is well known that
Ry(K,Zx) = R(K,2). These classical hulls motivate the name of
generalized rational hulls given to the sets R,(F), which should be
denoted by R,(F, A).
We collect some facts about R,(F) in the next proposition.

1.3. PROPOSITION. (i) X(A) D -+ D Ry(F) D Ryyy(R) D -+ D
F (n<0).

(ii) IfR,(F)=F then R, (F)=F forall k > n.

(iii) IfR,(F)= X(A) then Ri(F) = X(A) for all k < n.

(iv) For h € X(A), h & fRo(F) if and only if for every ¢ > O there
exists a € A such that h(a) = 1 and ||d||F < e.

(v) Ifn>1and h € X(A), then h ¢ R,(F) if and only if there
exists a € A" such that h(a) = 0 and 0 ¢ a(F).

(vi) Ifn >1 and D is a dense subset of A" then

Ru(F) =(){A(a,F):a € D}.
(vii) For every k > 0 it holds
RA(F):n 2 0} = ({Ru(F):n > k} = F.

Proof. (i) Obviously A(F,a) D F for every a € A", so R,(F) D F
for n > 1. For a € A", A(F,a) = A(F,(a,0)), so R, (F) C R,(F) for
n > 1. The case R;(F) C Ry(F) is clear.

(ii) and (iii) follow easily from (i).

(iv) If h € X(A)\Ry(F), there is a € A4 such that |h(a)| > ||a||F-
Multiplying a by an appropriate constant we can suppose that 1 =
h(a) > ||a||r. Finally, replacing a by a” with n large enough we get
h(a) =1 and ||a@||r < &. The converse is obvious.

(v) If h € X(A)\R,(F), there is a € A" such that h(a) ¢ a(F). If
b =a — h(a), then h(b) =0 and 0 ¢ b(F).
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(vi) It suffices to prove that R,(F) D ({A(F,a):a € D}. Let h €
X(A)\R,(F). By (v) there is a € A" such that h(a) = 0 ¢ a(F).
Then ¢ = inf{|k(a)|:k € F} > 0 and we can choose b € D such that
[la — b|| < d/2. We shall show that |4(b)| < inf{|k(d)|: k € F}, which
will imply that h(b) ¢ b(F), i.e. that A ¢ N{A(F,d):d € D}. Now,
[la — b|| < /2 implies that |h(d)| = |h(b) — h(a)| < |la - b|| < §/2,
so it suffices to prove that |k(b)| > d/2 forevery k € F. If k € F
then ||k(a)| — |k(D)|] < |k(a) — k(b)| < |la — b|| < 6/2 so we get
k()| = |k(a)| —6/226-6/2=0/2.

(vii) Part (i) implies that, for each k > 0, "{R,(F):n > k} =
({Rn(F):n>0} D> F. If h ¢ F, for every k € F there is a; € 4 such
that ak(k) # 0 and g, (h) = 0.

Let U, be an open neighborhood of k such that @, (/) # 0 for all
| € U,. By compactness, there are ki,...,k, € F such that F C
Uy U---UUy,. If a=(a,,...,a,) then h(a) = 0 and 0 ¢ a(F). This
means, by (v), that 4 ¢ R,(F), so h ¢ (R, (F) O

1.4. REMARKS. (i) The equality () R,(F) = F can also be proved by
means of the axiomatic joint spectra theory of Zelazko [25] (see also
Curto [6], Eschmeier [10] and Vasilescu [23]). A spectral system on a
Banach algebra A is a rule ¢ which assigns to eacha € A" (n > 1) a
compact subset (a) of C” such that g(a) C o(a), p1(d(a,b)) = d(a)
and p,(d(a,b)) = o(b), where p;:C" x C" — C", p:C" x C" —
C™ are the usual projections. Given a spectral system g on 4, A =
({a~'(g(a)):a € A”,n > 1} is the only closed subset of X(A) such
that g(a) = a(A) (see [10, 1.1], for instance). It is easily seen that, for
every F, g:a — a(F) is a spectral system with A = N{R,(F):n > 1}
and d(a) = d(F) by definition. By the uniqueness of A it follows that
A=F.

(i1) Observe that each R, is an involution operator in the sense that
Ry (Fu(F)) = Ru(F).

2. The condition R, (F) = X (A4).

2.1. PropoOSITION. The following conditions are equivalent.
(1) Ry(F) = X (A).

(2) For every a € A", a(a) = a(F).

(3) For every a€ A", Z, N F = & implies that Z, = &.

Proof. (1) = (2). Suppose that g(a) # a(F) for some a € A". Then
there is 4 € X (A4) such that A(a) ¢ a(F). This means that 2 ¢ A(F, a)
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so h ¢ R,(F), which contradicts (1). (2) = (3). Take a € 4" such
that Z, # &. Then 0 € g(a) = a(F) and there exists k € F such that
k(a) = 0, or, which is the same, k € Z, N F.

(3) = (1). If h ¢ R,(F), there exists a € 4” such that ~#(a) = 0 and
0 ¢ a(F); in other terms, 2 € Z, and Z, N F = &; this contradicts
(3). m]

2.2. DEFINITION. Let n > 1. F is n-inverting (for A) if 0 ¢ a(F) =
a€ Uy(A) ={ce A"y ;_, Acy = A}, for all a € A". For n = 1 this
is a notion due to Eifler [9].

It is easy to see that a € U,(A) if and only if 0 ¢ o(a). Thus, F is
n-inverting if and only if R,(F) = X(A4). We say that F is O-inverting
if Ro(F) = X(4).

The intersection of all n-inverting subsets of X (A4) will be denoted
In(A):

Tn(A) = {F:Ru(F)=X(4)} (n20).

The proof of the next result follows easily from 1.3 (iii) and the defi-
nition of the Shilov boundary (see also the next paragraph):

2.3. PROPOSITION. (i) I'g(A) is the Shilov boundary of A.
(ii) To(4) c T (A) c T (A) C ---.
Therefore T',,(A) is non-void for all n > 0.

The next result relates the notion of hulls R, to that of generalized
Shilov boundaries introduced by Basener [1] and Sibony [17]. Recall
the definitions. A boundary for A is a closed subset F of X(A) such
that ||@||r = ||@||x) (a € A). The Shilov boundary Sy(4) is the
intersection of all boundaries and it turns to be itself a boundary. For
n > 1, the nth boundary of 4 is the closure in X (A4) of |J{S)o(A4z,):a €
A"} (this makes sense because Sp(Az,) C X(Az,) = Z, C X(A4)). We
denote it by S,(A).

An interesting result of Tonev [21] is the following: S,(4) is the
intersection of all n-boundaries of 4 and it is itself an n-boundary,
where a closed subset E of X(A) is an n-boundary (for A) if
min{|k(a)|:k € E} = min{|k(a)|:k € X(A4)} for all a € U, (A4).

For more information on these generalized boundaries the reader is
referred to [1, 17, 21].

2.4. ProPOSITION. For n >0 R,(S,(A4)) = X(A4).

Proof. The case n = 0 is trivial. For n > 1 suppose, on the contrary,
that there is 4 € X(A4)\R,(S»(A)). Then, by 1.3 (v), there exists a € A"
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such that 2(a) = 0 and 0 ¢ @(S,(A4)). This means that S,(4)NZ, = 2.
Now Z, # & and Syp(Az,) # @ but, by definition of S,(4), Sp(4z,) C
Sn(A4) N Z,, contradiction. Thus R,(S,(4)) = X(A4), as claimed. O

2.5. COROLLARY. I',(A4) C Sy(A) (n > 1).
2.6. PROPOSITION. For every n > 11,(A4) D S,—1(4).

Proof. Suppose, on the contrary, that there exist 2 € S,,_;(4) and
a closed subset F' of X(A4) not containing /4 such that R,(F) = X(A4).
Consider an open neighborhood U of 4 which does not meet F. From
Tonev’s characterization of S,_;(A) [21] there is a € U,(A4) such that

min{|k(a)|:k € X(4)} = min{|k(a)|:k € k € U}
< min{|k(a)|:k € X(A)\U} < min{|k(a)|: k € F}.

Let Ay € U such that |hg(a)| = min{|k(a)|:k € U}. Then |hg(a)| <
min{|k(a)|: k € F}, by the inequalities above, so that hy(a) ¢ a(F),
which means that /4y ¢ R,(F), contradiction. O

2.7. CorROLLARY. I'o(A4) = Sp(4) c 'y (A4) € S;(A4) C ---. Therefore
Uzozo Sn(a) = Upso I'n(A4). o

We prove now that the unions considered at 2.7 are dense in X (A4).
2.8. PROPOSITION. |J{S,(A):n > 0} is dense in X(A).

Proof. Suppose on the contrary that there exists # € X (A4)\F, where
F is the closure of | .S, (4).

Let U = X(A4)\F. By 1.3 (v) there exist » € N and a € A" such that
h(a) =0and @(F) 0. Then FNZ, = T so Sp(4dz,) C Z, C U and
Sn(A) N U is non-void which is absurd by the definition of U. Thus
F = X(A) as claimed. O

2.9. REMARK. It is worth noting that, in general, I',(A4) is not
an n-inverting set. For this, let A = A(D") = the n-polydisc algebra,
a=(ay,...,an) €C*with|ag| < 1 (k=1,...,n) and ¢ € 4 defined
by ¢((1k)(z) = (z — a;)/(1 — za;). By a result of Rudin [16], Theorem
4.7.2 and the definition of R, R{(K,UT") = D" = X(A), where K|, is
the image of ¢, = (¢4, ..., (") and T = {z € D:|z| = 1}. Then, by
its definition, I'; (A4) is contained in ((K, U T") where the intersection
is taken over all a € C" with |a;| < 1 for all k£, which is obviously T".
Moreover, by 2.3, I'j(4) D I'g(4) = So(A) = T" so that I'j(A4) = T".
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However R;(T") = T", for if w € D"\T” then |wy| < 1 for some
k =1,...,n and the polynomial p(zy,..., z,) = z; — w; vanishes at w
and has no zero at T". |

3. The condition R,(F) = F. Let r(4) = min{n > 0:R,(F) =
F VF} and r(A4) = +oo if there is no such »; we call r(A) the rationality
of 4.

3.1. ProrosITION. (i) Ry(F) = F if and only if for every ¢ > 0 and
h € X(A)\F there exists a € A such that h(a) = 1 and ||d||F < &.

(i) If A is regular then r(A) = 0.

(iii) Suppose that there exists a € A" such that a: X(A) — C" is
injective. Then r(A) < n.

Proof. (i) follows easily from 1.3 (iv).

(i) If A is regular and & € X(A)\F there exists a € A such that
a|lF =0 and A(a) = 1; apply (i).

(iii) If @ is injective, for every F it holds A(a, F) = a~!(a(F)) = F,
so R,(F)=(A(a,F) and r(A4) < n. m

3.2. ReEMaRrks. (i) In [24] Wilken says that A4 is approximately
regular (on X (A)) if for each 4 € X(A), each closed set F in X(A) not
containing 4 and each ¢ > 0 there is a € 4 with A(a) = 1 and ||d||Fr < e.
By 3.1 (i) A4 is approximately regular if and only if r(A4) = 0.

(i1) Let 4 be n-generated, in the sense that there are ay,...,a, in 4
such that the subalgebra generated by a,,...,a, isdense in A. Then 3.1
(iii) implies that r(A4) < n, because if a = (ay,...,a,) then a: X(4) —

o(a) C C" is a homeomorphism. Thus, r(A4) < y(A) if y(A) is the
minimum number of generators of 4. However, this inequality is not
sharp. In fact, if X is an infinite dimensional compact space, e.g.
X =[0,1]N, then 4 = C(X) is regular, so r(4) = 0 by 3.1 (ii), and
y(A) = +oo. We will see later a more precise relationship between
r(A), y(A) and the dimension of X (A).

(iii) Suppose that there exist a,,...,a, in 4 such that the closed full
subalgebra generated by them is A. Then & is injective and r(4) < n.

(iv) The condition r(4) < 1 has been introduced by Csordas and
Reiter [5], who called such A’s “separating algebras”. Most of their
results can be generalized to our setting.

3.3. ProposITION. If r(A) < n then T, (A) = S,(4) = X(A).
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Proof. By 2.5 it suffices to see that I',,(4) = X(A4). But if r(4) <
n the only closed set F in X(A) which satisfies R,(F) = X(A) is
X(A). o

3.4. ExampLEs. Given a compact subset X of C” let A(X) be the
algebra of all maps X — C which are holomorphic in the interior of
X. Then r(A(X)) < n if X is polynomially convex, for in this case the
coordinate functions zy,..., z, generate A(X). In particular, if D is
the closed unit disc r(A4(D)) = 1 because Ry(F) # F for every F with
C\F disconnected, so 0 < r(4(D)) < 1. In general, r(4(D")) = n. We
will return later to this example.

3.5. ProprosITION. If R,(F) = F then F is the intersection of a
Sfamily of sets P, s = {h € X(A):|h(a)| > } for some elements a € A"
and 6 > 0.

Proof. Let hy € X(A)\F. By 1.3 (v) there is a € A" such that
ho(a) = 0 ¢ a(F). Let 6 = min{|h(a)|:h € F}. Then 6 > 0 and
ho & P,5)>. Thus, F = P, 5 for a family {(a,d)} in 4" x R*. ]

4. The topological stable rank, R, and S,. The topological stable
rank of A is the least n such that U,(A4) is dense in 4"; we denote it
by tsr(A4). This is a notion introduced by Rieffel [15] which replaced
efficiently, in the case of Banach algebras, the more algebraic stable
range conditions of Hyman Bass [2].

4.1. PROPOSITION. Suppose that tst(A) < n. Then R,(S,_1(A4)) =
X(A).

Proof. By [4, 1.10] there is a dense subset D of 4” such that o(a)
has no interior points, for every a € D. Then g(a) coincides with its
boundary da(a). But, by a result of Tonev [21] da(a) C a(S,_1(4))
(a € A™). Thus, for every a € D, a(a) = a(S,—(A)), so that by 1.3
(vi),

Ru(Sn-1(4)) = [{A(a, S-1(4)):a € D}
=@ (s(a)):a € D} = X(4),

because 2~ !(a(a)) = X(4) (a € A"). a

4.2. CoOROLLARY. Suppose that tsr(A) < n and r(A) < n. Then
Sn—1(4) = X (A). o
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4.3. PROPOSITION. Suppose that tst(4A) = 1. Then Ry(F) = R (F).

Proof. It always holds Ry(F) D R{(F), (1.3 (i)). Let h ¢ R,(F). By
1.3 (v) there is a € A such that A(a) = 0 and min{|k(a)|:k € F} > 1.
By hypothesis, the invertible elements form a dense subset of A, so
there is an invertible u € 4 with ||a — u|| < 1/2. Then |h(u)| < 1/2
and min{|k(u)|:k € F} > 1/2, so |h(u~")| > 2 and ||u~!||r < 2, which
implies that & ¢ Ry (F). ]

4.4. COROLLARY. Suppose that tst(A) = 1 and r(4) < 1. Then
r(A) =0.

It is an open problem if tsr(A4) and tsr(C(X(A))) coincide. We
present two results relating this problem with the invariant r(A).

4.5. PROPOSITION. Suppose that r(A) = 0. Then tsr(C(X(A4))) <
tsr(A).

Proof. Suppose that tsr(C(X(A4))) > n + 1. Then there exist F, a
closed subset of X(4), and ¢y,...,9, € C(X(A)) such that ¢(F) =
(p1(F),...,on(F)) c CI\{0} and ¢|F admits no extension to
C(X(A4),C}) [22]. By the fact that Ry(F) = F, there is 6 € A} lying in
the component of ¢|F in C(F, C!): in fact, X(Afr) = Ro(F) = F and
it is well known that, for a Banach algebra B, U,(B) and C(X(B),C")
are homotopy equivalent [20]. Now, by definition of Af, AAIF is dense
in Ar so that there is a € A" such that g@|F belongs to the component of
0 in C(F,C"). In particular, a|F admits no extension to C(X(4), C?).
By the results of Vaserstein [22] or Rieffel [15], this means precisely
that @ does not belong to the closure of U,(C(X(A4))) (in C(X(4))"),
which implies that a does not belong to the closure of U,(A4) (in 4A").
Thus tsr(4) > n + 1. This proves that tsr(A4) > tsr(C(X(A4))). O

4.6. COROLLARY. Ifr(A) < 1andtsr(A) =1 thentsr(C(X(A))) = 1.
Proof. Combine 4.5 and 4.4. O

4.7 Problem. 1t is not known if tsr(4) = tsr(C(X(4)), in general,
even for regular algebras.

5. The main result. This section contains the main result of the
paper, which states that the topological dimension of X (A4) is at most
y(A) + r(4). We need some results about the cohomology of certain
compact subsets of C”.
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5.1. LEMMA. Let Ry,...,R,, be rational convex compact subsets of
C" and J = U, Ry. Then H"*/(J) =0 for all i > m.

Proof. We proceed by induction in m. Let m = 1. If K C C" is
polynomially convex then H"+/(K) = 0 for all i > 0 [7]. If K c C"
is rationally convex, then K is homeomorphic to some polynomially
convex K' c C"*! [19, p. 373] so that H"*{(K) = H"(K') = 0
for all i > 1. Suppose that the assertion holds for 1,2,...,m and let
J = Uj”“ R, where each R, is rationally convex, R, C C". Consider
the Mayer-Vietoris exact sequence

) m ~[m+l
. gnti-l ((UR/(> an_H) — Hnti (U Rk)
1 1

m
- H" (U Rk) & H™ (Rpy1) = -
1
Then, by inductive hypothesis, if i > m + 1,
. m .
H™ (URk) =0,  H"(Ryu)=0
1

and

m m
Hi-l ((URk) an+1> = grti-l (URk anH) =0
1 1

because each R, N R, is rationally convex. Then, by the exactness,
H™I(J) = H (U Ry) = 0. O

We say that a compact subset K of C” is k-rationally convex if
R, (K) = K, where

Re(K) = {p™ (0 (K)):p = (b1, . 1), i €Cltr, . ]}
This set is denoted 4;(K) in Stodkowski’s paper [18, p. 323].

5.2. CoROLLARY. Let K be an (n — 1)-rationally convex subset of
C". Then K does not separate C" (i.e., C"\K is connected).

Proof. Suppose, on the contrary, that C"\K is disconnected, and
assume that K ¢ B = {z € C":|z| = (L, ]zi|*)"/? < M}. Then
there are polynomials py,...,p,—; such that p(zy) = 0 ¢ p(K), where
p = (P1,...,Pn—1). Then there is § > 0 such that K C UZ;,‘ R, , where
R, = {z € B:|px(z)| > J}. Observe that each R, is rationally convex,
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so that, by 6.1, H"”(Uﬁ;% R;) = 0 for all i > n — 1; in particular
H?*=1(UIZI Ry) = 0, so that (JJZ] R, does not separate C" [14, p.
100]. But zy € B\ UZ;}Rk, K C UZ;} R, and K separates C", so
UZ;{ R, should separate C”, contradiction. m|

5.3. CorROLLARY. For every compact subset K of C", R,_{(K) con-
tains all bounded components of C"\K.

5.4. REMARK. It is false, in general, that R,_;(K) consists, exactly,
of K and all bounded components of C"\K. For instance, at 2.9 with
n=2,any a = (aj,a;) and K = K, U T? it holds R;(K) = D? and K
does not separate C2.

5.5. PROPOSITION. If A is generated by a,...,a, then R (a(F)) =
a(Ry(F)) for every closed subset F of X(A).

Proof. The inclusion @(F;(F)) C Ri(a(F)) holds in general: if 4 €
R, (F) and p = (py,...,px) is a polynomial map p(k(a)) = h(p(a)) €
p(@)(F) = p(a(F)), so that h(a) € R, (aX(A)(F)). To see the converse
inclusion let z € Ry (a(F)). Observe that R, (a(F)) C Ri(o(a)) =
o(a) because the joint spectrum of a system of generators is always
polynomially convex, a fortiori k-rationally convex for every k > 1.
Then z = h(a) for some h € X(A), and p(z) € p(a(F)) for all p, that
is A(p(a)) € p(a)(F) for all p. Now, using the fact that the set of all
p(a) is dense in A* and applying 1.3 (vi) we conclude that & € Ry (F).
Thus, Rk(Zi(F)) Cc a(Rk (F)). 0

5.6. THEOREM. If A is a complex commutative Banach algebra with
identity and d(A) is the dimension of its spectrum X (A) then

d(4) < y(4) + r(4) < 2y(A).

Proof. By 3.2 (ii) r(A) < y(A) and it suffices to prove the first in-
equality. Let n = y(4) and k = r(A4). By [14, Ch. VIII] it suffices to
prove that H"*+(F) = 0 for all closed subsets F of X(4) and i > k.
For i > n+1, H"*(F) = 0 because F is homeomorphic to some com-
pact subset of C”. For k < i < n we prove the assertion by a reverse
induction.

Consider a (fixed) homeomorphism a: X(4) — og(a) C C", and let
T =o(a).

(+) Suppose that H"t/(F) = 0 for j > i > k and for all closed
subsets F of X(A).
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(a) Consider first a compact set of the form

k
P=|J{zeT:Ipj(z)| > d;}
j=1
for some polynomials py, ..., px, and positive numbers dy,...,J;. Let
Rj={zeT:|pj(z)| > 6;}. Then

k
Hn+[—1( = grt+i-1 (U ) by 6.1.

(b) Let & be the collection of all P like in (a). If J =2, P, (P, €
2) then H"*~1(J) = 0. We prove this assertion by induction in m.
For m = 1, it has been proved at (a). Suppose that it holds for 1,...,m
andlet P,..., Py €L, E= P, F=P,andr=n+i-1.
Consider the portion of the Mayer-Vietoris exact sequence

— H'(EYeH'(F)—- H(ENF)— H*(EUF) —

Then H'(E) = 0 by inductive hypothesis, H"(F) = 0 by (a) and
H™Y(E U F) = 0 by (+) (that is, by our first inductive hypothesis),
because E U F is homeomorphic to a closed subset of X(A). Thus

m+1
H (ﬂ P) =H'(ENF)=0,

I=1

which proves the assertion of (b).

Finally, we consider a closed subset F' of X(A) and its image F’' C
C" by @: X(4) — T.

F' is k-rationally convex by 5.5, so that F' = Q, for some (possi-
bly infinite collection of) Q,, € P. For each Q, it holds H"*~1(Q,) =
by (b). Thus, by the continuity of Cech cohomology we get H"*~!(F)
= H"*'~1(F") = 0, which finishes the proof. O

5.7. CorROLLARY. If d(A) = 2n and y(A) = n then r(A) = n. O

5.8. ExampLEs. (i) Let X C C” be the polydisc D” or the ball B,
or any polynomially convex compact subset of C” with interior. Then
r(A(X)) = n.

(11) Let A(D*°) be the closure in C(D*) of all polynomials in a finite
number of variables.

Observe that every A(D") is a quotient of A(D*).
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It is easy to prove, in general, that r(A4/I) < r(A) for all ideals [/
of A.

Then r(A(D*)) > r(A(D")) = n for all n, by 5.7.

Thus, r(A(D*)) = oo.

(iii) This is an example of a k-rationally convex compact subset of
C" which is not the union of two 1-rationally convex sets. Consider

K, ={zeD*|z;|>1/20r|z5| > 1/2},
Ky = {z € D% |z3] > 1/2 or |z4] > 1/2}.

It is clear that K;, K, and K; N K, are 2-rationally convex sets. We
consider the exact sequence

- — HS(K)) ® H%(Ky) — HS(K, N K,) — H'(K; UKy)
—H(K)eH (K-

Now H®(K;) = H®(K;) = 0 because K; and K, are unions of two
1-rationally convex sets. By the same reason, H'(K;) = H'(K;) = 0.
Thus, H%(K; N K,) = H'(K; UK;) # 0, because K; U K, separates C*,
so that by 5.1 K; UK} is not the union of two 1-rationally convex sets.

6. A result of Forelli. Our generalized rational hulls give a notion
of separation associated to n-tuples of elements of A. In this sec-
tion we consider n-tuples of elements of an ideal I of 4. In [11]
Forelli proves that, if A is the disc algebra, I is an ideal of 4 and F is
a compact subset of D such that F N hull(7) = & (where hull(/) =
{z € D: f(z) = 0 Vf € I}) then there exists f € I such that f|F
does not vanish. Here we generalize Forelli’s theorem in the following
sense:

6.1. THEOREM. Let A be n-generated, F a closed subset of X(A)
such that F Nnhull(I) = &. Then there exist a = (ay,...,a,) € I" with
0¢a(F).

Proof. First we suppose that 4 is uniform. Then A4 is A(X) for
some polynomially convex compact X C C". Now, if V' is an open
neighborhood of hull(7) such that V' N F = &, then by the polynomial
convexity of hull(/) and a result of Gunning and Rossi [13, p. 218]
there exist » polynomials py,...,p, in C[t,,...,t,] such that

Vo{zeX:|pi(2)|<1,...,|pn(2)] < 1} D hull(]).

Define C; = {z € X:|pi(z)| > 1}. Then hull(J) N C; = &, Cy is
rationally convex (k = 1,...,n) and F c J;_, Cx. Fix k. By com-
pactness, there exists g = (g1,...,8m) € I"™ such that 0 ¢ g(Cy).
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The spectrum of R(Cj) (the closed subalgebra generated by the ra-
tional functions with poles off C) is Cy, is rationally convex. Thus,
0 ¢ g(Cy) means that g € U,,(R(Cy)) and, by the definition of R(Cy),
there exist polynomials r;,s; (j = 1,...,m) such that s; does not
vanish on C; and 4 = Z;n=1 rig;/s; does not vanish on C;. Thus
S = ( ;-":]sj)h € I and f; does not vanish on C,. Now, k being
arbitrary, we get f = (f},..., fn) € I" such that 0 ¢ f(UU;_, Cx) and,
a fortiori, 0 ¢ f(F), as claimed.

For A not necessarily uniform, we only need to observe that, in
the proof above, we work with elements in A so the result holds in
general. O

6.2. COROLLARY. Under the same hypothesis if V. C X(A) is a
neighborhood of hull(I) then there exists an n-generated ideal J C I
such that hull(Z)  hull(J) C V.

Proof. 1t suffices to take F = X(A)\V and J = (f1,..., fn)- m]

7. Some results on H°°. The famous “corona theorem” of Carleson
[3] says that if fi,..., f, are bounded holomorphic functions on the
open disc A (in symbols, fi,..., f, € H*®) such that |fi|+ - -+|f| >0
for some § > O then there exist gy,..., 8, € H® suchthat >} | fi8 =
1; if we suppose A imbedded in X(H®), Carleson’s result says that
A is dense. The rationality of H* is closely related to the corona
theorem. More precisely, if we knew that r(H*) < m then it would
suffice to prove Carleson’s theorem for m-tuples. In fact, if there exists
@ € H(H)\A (here A is the closure of A in X(H>)), then there is an
f = (fi,e.., f;) € (H®)" with r = r(H®) such that f(¢) = 0 and
f(x) # 0 for all x € A. We may assume that f € (H®)™, filling the
last coordinates with zeros if it is necessary. Thus, by compactness
of A, |f(2)] = |/i(x)] + -+ |fm(z)] > 6 > O for some & and all
z € F, so f verifies the corona hypothesis and then, by our assumption,
f € Uy (H™), which contradicts the existence of ¢.

In particular, if we knew that »(H*) = 1 this would imply trivially
Carleson’s theorem. We collect in this section a few results about the
hull R,, of H®.

We recall that {z,} C A is an interpolating sequence if for every
bounded sequence {b,} there exists /' € H* such that f(z,) = b,
(n > 1). By identifying the points of A with some characters of H,
we define G = {x € X(H®):x is a cluster point of an interpolating
sequence {z,}}.
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Obviously G D A and it can be shown that G N Sy(H*®) = & but
G U Sp(H®) is strictly contained in X (H®).

7.1. THEOREM. Let F be a compact subset of X (H®).
(1) If F C So(H®) then R|(F) = F.
(2) If F ¢ X(H®) then

Ry(F)\F C X(H®)\G.

Proof. (1) Let x € X(H®)\So(H*). By a theorem of Newman
[12, p. 194] there is a Blaschke product B such that B(x) = 0 and
|B|F| = 1. Then x ¢ R;(F). This proves that R, (F) C So(H*). Let
x € So(H®)\F. Recall that X(L®) ~ So(H*®) and L*® = C(X(L®)).
Then, there is u € L™ such that u(F) = 1, || = 1 and u(x) = —1.
By a theorem of Douglas and Rudin [12, p. 192] there exist Blaschke
products By and B, such that ||B;/B; — u||sz~) < &€ < 1, if ¢ > 0.
Let h = B; — B,. Then, if z€ F

|h(2)| = |B1(2) —u(z)By(z)| < &|Ba(z)| = &
and

|h(x)| = |Bi(x) + Bz2(x) — 2By (x)|
> |[2B2(x)| — |B1(x) + B2 (x)||
= 2 —|By(x) + By(x)|
=2 —|By(x) —u(x)By(x)| > 2 —e.

This proves that |(x)| > ||A||F, a fortiori x ¢ R (F).

(2) Let x € G\F. Then there is an interpolating sequence {z,}
such x € L = closure of {z,:n € N}. Let Q: H*® — [* be defined by
O(f) = {f(zn)}nen. Then Q is onto and Q: H® — 1° = C(X(I*°)) =
C(L) is onto, too, because Q*: X(/*°) — L is a homeomorphism.

Let g € C(L) such that Z, N (FNL) = . Then there is f € H*®
such that f|L = g. Thus, if B is a Blaschke product whose zeros
an, (n € N), then (B, f) separates x from F, for (B, f)(x) = 0 and
if z € F and B(z) = 0 by [15, pp. 379] z € L so that f(z) = g(z)
# 0. m]

8. Some open problems. There are several questions about the sub-
jects considered in this paper that we have not been able to answer.
We collect in this section those that we consider the most relevant.

8.1. H®. As usual in uniform algebra theory, this algebra is a
source of many interesting questions. We do not know neither the
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dimension of its spectrum nor its rationalilty »(H). It is possible that
r(H*™) = +oo. We also ignore its Bass’ stable rank and its topological
stable rank.

8.2. r(A) vs. tsr(A4). We suspect that r(a) < tsr(4) — 1, but we do
not have a proof even for the case tsr(4) = 1.

8.3. tsr(A4) vs. tsr(C(X(A))). These two invariants should be re-
lated, but we only have partial answers (see §4).

8.4. Is it true that S,_{(4) = X(4) if tsr(A) < n?
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