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THE POISSON FLOW ASSOCIATED
WITH A MEASURE

DOUGLAS PAUL DOKKEN AND ROBERT ELLIS

This paper is devoted to the study of harmonic functions on groups.
The approach is via a detailed study of the Poisson flow associated
with a Borel probability measure / i o n a locally compact group T.
Again the basic idea is that though many results associated with the
study of harmonic functions on groups are couched in probabilistic
terms and proved using methods of probability theory, they really be-
long in the domain of topological dynamics. The major results include
a proof that a solvable connected Lie group admits only constants as
harmonic functions for a spread out measure μ with μ(A) = μ(A~ι)
for all Borel sets A, and a new non-geometric proof of a fundamental
result of Furstenberg's on semi-simple Lie groups.

0. Introduction. The technical aspects of the paper depend on the
methods and results developed in [E] and [D]. For the sake of com-
pleteness these are summarized in § 1.

In §2 another approach to the Poisson flow is given. Let 31 be the
algebra of right uniformly continuous functions on T, \3ί\ its Gelfand
space and ^f(μ) the set of idempotent measures v on \3l\ stationary
with respect to μ and having the same harmonic functions. If the
support of μ is all of Γ, the support S of v is a subflow of \3l\. The
main result of this section is that in this case there exists v e <2?{μ)
such that the restriction R: & —• C(S) maps the set %?μ of μ-harmonic
functions isometrically onto a uniformly closed Γ-invariant subalgebra
Jfμ of C(S). The Poisson flow (2?, T) is just the Gelfand space of %?μ.
This has several implications, among them that ωp e B (p e S) where
ω is the measure on B induced by v. Moreover the algebra of the
flow (uT, T) is isomorphic to the subalgebra of 31 generated by Xμ

and (B, T) is the subflow of (i/T, T) given by B = {vp\p e S}. In this
paper the results of this rather technical section are used only in §5.

Another aim of this paper is to obtain conditions under which a
subgroup K of T will act transitively on B. The particular case K =
{e} says that the constants are the only //-harmonic functions.

Sections 3 and 4 are devoted to this issue. In the former, conditions
are studied which suffice to guarantee that a particular element of T
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will act trivially on B, and the latter to the study of what happens
when the only ΛT-invariaht harmonic functions are constants. One
result along these lines: let T be connected, and K a compact normal
subgroup of T such that there are no ΛΓ-invariant harmonic functions
other than the constants; then there are no non-constant //-harmonic
functions.

These general results are applied to two specific cases in §§5 and 6.

In §5 the following result is proved: let T be a solvable connected
Lie group, μ a spread out measure on T such that the closed subgroup
generated by the support of μ is all of T and μ(A) = μ{A~x) for all
Borel subsets A of T. Then all μ-harmonic functions are constant
[B.R.].

Finally §6 is devoted to a proof of Furstenberg's result on semi-
simple Lie groups with finite center and no compact factors using
the methods developed in §§3 and 4. (If T = KAN is an Iwasawa
decomposition of such a group, then K acts transitively on the Poisson
space of μ for every supported spread out measure μ on T.)

1.0. Basic background. In this section we introduce the notation
and summarize some basic results to be used throughout the rest of
the paper. Primary references are [E] and [D].

1.1. By a flow we shall mean a transformation group (X, T) with
compact Hausdorff phase space X and locally compact phase group
T. We shall suppress the " Γ " and denote the flow by X.

A pointed flow (X, x0) is a flow X together with a point xo e X and
x0T = X. The theory of such flows is the subject of [E] where it is
shown that they are all homomorphic images of a universal pointed
flow (βT,e). (Here βT is the Stone-Cech compactification of T with
the discrete topology and e is the identity of T.)

Let (X,XQ) be a pointed flow. Then there exists a unique epimor-
phism π: βT —• X with π(e) = XQ. The adjoint, π* of π is a monomor-
phism of C(X) into C(βT) and its image denoted by (X,xo) is a Γ-
subalgebra of C{βT)\ i.e. a uniformly closed Γ-invariant subalgebra
of C{βT).

Conversely, let $/ be a Γ-subalgebra of C(βT) and set x = y (sf) if
/(JC) = f(y) (f G si). Then {si) is a closed Γ-invariant equivalence
relation on βT and so induces an action of T on the quotient space
βT/{si) which we denote \si\. The flow \si\ is pointed by [e]9 the
equivalence class to which e belongs.
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The foregoing shows that one can study either the class of pointed
flows or the collection of Γ-subalgebras of C(βT). We adopt the latter
point of view.

One advantage of doing so is that C(βT) may be identified with
the set of bounded real-valued functions on Γ. Thus if / e
it has a unique continuous extension / to βT. (Recall that Γ

may be viewed as a subset of βT.) On the other hand if g G C(βT),
then its restriction / to Γ is in 3&(T) and f = g. In general we
shall not distinguish notationally between an element of <%{J) and its
continuous extension to βT.

So far no mention has been made of the topology y on T. However,
it is a simple matter to take this into account; one merely requires
that all the Γ-subalgebras si considered be contained in 31 = {/ G
38{T)\f is right uniformly continuous}. This will guarantee that the
map (x, t) —• xt: \sf\ x T —> \sf\ is continuous when Γ is provided
with the topology ST.

Of course when SΓ is the discrete topology on Γ, J = C(βT).
Moreover in general |«£P| has all the algebraic properties of βT and
may replace it in all discussions involving flows X where the map
(x, t) -• xt: X x ( Γ , y ) -• X is continuous.

1.2. Another advantage of the algebraic approach is that it allows
one to incorporate the study of measures on flows into this scheme.

Thus let μ be a positive linear functional on &{T) with //(I) = 1.
Then under the identification oϊ&{T) with C{βT), μ may be viewed
as a positive linear functional on C(βT) and all of its subalgebras.
Consequently μ induces μj, eJt(\s/\)= Jt{st\ the set of Borel prob-
ability measures on \s/\ for every Γ-subalgebra sf of C(βT).

In particular if μ e ^#(Γ) ? the set of Borel probability measures on
Γ, it is defined on bor(Γ), the set of bounded Borel functions on T.
The latter is a Γ-invariant uniformly closed subalgebra of &(T) and
so by the Hahn-Banach theorem μ may be extended to an element ~μ
of Jί = Jt(βT). Of course there are many choices for ~μ but which
one is made is irrelevant for our analysis and so it will also be denoted
by//.

Now let X be a flow, v e Jt{X) the set of probability measures on
X and μ e Jt = J?{BT). For / e C(X)91 e T set

= f f{xt)dv{x).
Jx
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Then fv e 3§{T) = C(βT) whence (fv,μ) = JβτJv(p)dμ(p) is de-
fined.

The map / —> (fv9μ): C(X) —• R defines a positive linear func-
tional vμ on C(X) with vμ(l) = 1. Thus i/μ G Jt(X).

At this point a word of caution is in order. Let / be a bounded
Borel function on X. Then fv(t) = Jχf(xt)dv(X) again defines an
element fv of 3§{T) and so fβTfv(p)dμ(p) is defined. However in
general this is not equal to fχ f(x) d(vμ)(x). For example: let / be a
bounded lower semicontinuous function on X. Then

ί f(x)d(vμ)(x)< ί Jv(p)dμ(p),
Jx JβT

but the two need not be equal.
Now it isn't hard to see that / e boτ(X) implies that fv e bor(Γ).

Hence if μeJt{T),

ί Mp)dμ(p) = ί fv(t)dμ(t) = ί f(x)d(uμ)(x).
JβT JT JX

Thus in this case vμ is the usual convolution of the measures v
and μ.

The map (v,μ) -^ vμ: ^{X) x Jt —• Jt{X) defines an action of Jt
on Jt(X) such that the map μ —• vμ: Jt —• Jt(X) is continuous for
all v e Jt(X) and the map v —> vμ: Jt(X) —• Jt(X) is continuous for
3ΆμeJt(T) [2.1.12 of D].

Again when (X, (Γ,^)) is a flow, i/ e ^f(JT), fve& (fe C(X)),
and ^f may be replaced by Jt{βt) in the preceding discussion.

We shall identify the elements of a compact Hausdorff space X with
the subset {δy\y e X} c -#(ΛQ where ^ is the Dirac measure at y.
When this is done the map π is seen to be an extension of the action
(x,p) ^ xp: X x βT -+ X of βT on X.

For a detailed discussion of these remarks see [D].

1.3. NOTATION. Let γ e Jΐ{β). Then Qγ = cΫw(γT), the closed
convex hull of γT9 Bγ = ex(βy) the closure of the extreme points of
Qγ, and ωγ e Jt(Bγ) with barycenter b(ωγ) = y. The support of γ will
be denoted *Sy.

Since (yΓ, 7) is a flow when Γ is given the topology &~, al(yΓ, 7) c
31 whence there exists a canonical map κγ: \3l\-+ γT with κγ([e]) = γ.

Finally 2fy = {/ G ^ | / y = /}, the set of harmonic functions with
respect to γ.

When it is clear which measure is being discussed and there is no
chance of confusion, the various subscripts involved will be dropped.
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1.4. DEFINITION. Let μ G J^(T)9 γ G Jf{β). Then γ is stationary
with respect to μ if γμ = γ. The set of idempotent, stationary measures
γ with <%$ = %Tμ will be denoted &(μ). Thus 7 G <Sf{μ) if and only if

1.5. REMARKS 1. Let μ G jf(T). Then there exists v G cnv{μ"|/7 =
1,2,...} with 1/ e&(μ).

2. Let μ G Jt(T), γ G &(μ). Then: (a) (Bγ, T) is the Poisson flow
associated with μ [Fl] [D]. (b) The barycenter map b: J?(B7) —> Qγ is
bijective. (c) ωγμ = ω 7 . (d) 5 7 is a Γ-invariant subset of Qγ. (e) If
suppω7 is Γ-invariant, then Bγ = suppω7.

The proof of the following is straightforward and will be omitted.

1.6. PROPOSITION. Let u,λ G Jΐ?(μ). Then (i) vλ — v and λv = A,
(ii) i/ze maps1 Lv: Λ,Γ —> z/77 tfftd L^: z/Γ —• λ Γ SWC/J ί/zαi Lu{p) — vp

(p G λΓ) απί/ L^(^) = λq (q £ vT) are isomorphisms which are inverse
to one another, (iii) ωχoL~{ - ωv andω^oLj1 = ω^, (iv) Lvoκλ = K^,

Thus the flows {^Γ|z/ G ^(μ)} are canonically isomorphic. The
next proposition shows that the algebras C{vT) are all canonically
isomorphic to the uniformly closed subalgebra generated by Stμ.

1.7. PROPOSITION. Let κ\\3ί\-± ~vT be the canonical map. Then
κ*(C(uT)) = al(^J), the uniformly closed subalgebra generated by the
μ-harmonic functions.

Proof. Let / G ̂  and a(f) its affine extension to Jΐ{β). Then

= (f,δp)=f(p)
Hence im?c* D ̂  and so im/c* D

On the other hand let p, 9 G | ^ | be such that f(p) = f(q) (/ G ̂ )
and suppose that /z(i/p) = {κ*h)(p) φ (κ*h)(q) = Λ(ι/^) for some
A G C(ί7f). Since the elements of C(ΰT) of the form a(f)\ w , fe&,
separate points of vT there exists / G C(vT) with fv{p) = (/, z/p) ^
(f,vq) = fv(q). But this contradicts the original assumption since
fv e^μ. The proof is completed.

1.8. COROLLARY. Lei (X9T,ω) be a flow such that ωμ = ω,
^ G 3*{μ\ Then there exists a homomorphism φwT -+ ωT c
vwίλ (̂1 )̂ = ω (compare 4.4 0/ [G]).
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Proof. Let / e C(X). Then fωμ = fω implies that fωe<%μ =
%?v. Hence fωv = fω. Thus ωv = ω and the canonical map p —•
ωp\\3l\-* ~ωT factors through vT.

2.0. The Poisson flow associated with a measure μeJt(T). Some
more results concerning the Poisson flow (Bγ, T, ωy) are obtained un-
der the additional assumption that suppμ = T. Then it is immedi-
ate that κγ(Sγ) D By. It is shown that there exists λ G <2f{μ) with
κλ{Sλ) = Bλ. In this case the restriction / -+ f\ Sλ: & -> C{Sλ) maps
Sίfχ isometrically onto a uniformly closed Γ-invariant subalgebra of
C(Sλ).

2.1. LEMMA. Let X be a flow and η e j£[β) be such that the map
γ —> γη: Jί{X) —• Jt(X) is continuous. Then (f γη) = fx(f9δxη) dγ(x)

Proof. Let K be the set of measures on X for which 2.1 is valid.
Then clearly K is convex and the assumption on η implies that it is
closed.

Now if y e X, fx(fSxη)dδy(x) = (f,δyη) so that X c K. Hence

2.2. PROPOSITION. Let X be a flow and η e J£{31) be such that the
map γ -> γη: Jί{X) -> Jt(X) is continuous. Then (supp)suppη =

Proof. Let γ e Jf(X), u e suppy, p G suppf/ and / e C(X) with
/ > 0 and f(up) > 0. Then the map fu: \&\ -> R such that /w(#) =
f(uq) (q G 1^1) is continuous and positive. Consequently (fδuη) =
(fδu, vi) = (/w? η) > a> 0 since /? G supp^/. This implies by 2.1 that
(/, γη) = fχ(f, δxη) dγ{x) > 0 since u G supp γ9 whence up G supp γη.
Thus (supp7)(suppη) C suppyjy and so (suppγ)(suppη) c sϋppyT/ =
supp γη.

Now assume u & (supp y)(supp η). Then there exists / G C(X) with
0 < / < I, f(u) = 1, and supp/ contained in the complement of
(supp γ) (supp η).

Then 0 = f(xp) = (f,δxp) (x G suppy, /? G supp?/) whence
(fδxη) = 0 (A: G suppx). Thus

/, ̂ ^7> rfy W = / (/, ̂ ι/> rfy W = o
X ^

whence w £ supp y?/. The proof is completed.
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2.3. COROLLARY. Let μ e^{T) with suppμ = T, and γ e
Then (a) Sγ is T-invariant, (b) supp ωγ is T'invariant and (c) supp ωy

= Br.

Proof, Since γμ = γ and ωyμ — ωy, (a) and (b) follow from 2.2.
The image of cnv(supρωy) under the barycenter map is a closed,

convex, Γ-invariant subset of Qy which contains γ. Hence

6(c5v(suppωy)) = Qγ,

whence suppω y = ex(cnvsuppω7) = ^(excnvsuppωy) = exQγ = Bγ.
(Recall that b is bijective.)

2.4. PROPOSITION. Let μ e JT(T), supp// = T, andγ e &(μ). Then
Kγ{Sγ) D By.

Proof. Let K be the canonical extension of κy to a map from,
to cnv(yΓ) c Jί{β). Then κ(cnvSγ) is a closed convex Γ-invariant
subset of cnv(yΓ) containing γ. Hence ϊc(cδvSy) = cm(γT) whence

κ(Sγ) = κ(Sγ) = κ(ex(cnv*S7)) D ex(cnv(γT)) = By.

Our goal now is to find γ G <2f{μ) with κy{Sy) = Bγ.

2.5. NOTATION. For the rest of this section the following notation
will be in force: μ e Λf (Γ), supp// = Γ, v e J?(μ)9 S = Sv, K = K^,
B = Bu, ω = Ωv and L = κ~ι(B) n 5. Notice that L is a closed
invariant subset of 5.

2.6. LEMMA. L ί̂ Λ € Jf{3l)9 suppλ c L, and λκ~ι = ω. Then
vλ — v.

Proof. Let f e &, p,q e L with κ{p) = κ{q) i.e. up = vq. Then
fv{p) = (fvp) = (fvq) = fv{q) whence fv — φ o K for some
p 6 C(£).

Now (/,i/λ) = (/M) = (<P°κ,λ) = (φ,λκ~1} = (φ,ω).
On the other hand let α(/) be the affine extension of / to Jί{β) and

let b = vpeB. Then *(/)(£) = (/,^) = /i/(p) = ^(κ:(p)) = p(*)
whence a(f)\ B = Ψ Finally (/, i/) = a(f){v) = (α(/)| 5 , ω) = (φ, ω) =
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2.7. LEMMA. There exists A2 = A e Jί(β) such that vλ = v,
suppA c L and λ κ~~x = ω.

Proof. Let K = {λe <£{&)\vλ = v, suppA c L}.
The Hahn-Banach theorem and 2.6 imply that K φ 0.
Now let λ,peK. Then J/A/> = up = v. Moreover A e cnvsuppA c

cnvL and p e cnvsupp/? c cϊϊvL imply that λp G (cnvL)(cϊϊvL) c
cSvL (recall L is Γ-invariant), whence suppΛ/? c L.

Thus AT is a non-empty semigroup. Since it is clearly closed, there
exists λe K with λ2 = λ.

Finally let γ = λ κ:~1, / e ^ . Then

ic,A) = (/i/, A) = (/,i/λ>

Hence 6(y) = i/ = ft(ω) and so γ = ω since 6 is one-one [D, 3.1.8].

2.8. PROPOSITION. There exists λ e JS?(μ) with κλ(Sλ) = Bλ.

Proof. Let p2 = p e Jt{β) with vp = v and supp/? c L. Such
exists by 2.7.

Set λ = pv. Then λ2 — pvpv = pv — λ, λv = /?ι/2 — pv — λ and
j/Λ, = z/̂ i/ = z/2 = i/. Consequently ^ = ̂  = ̂  a n d so A e -S (̂//).

Since L is Γ-invariant and supp/? c £, supp A c L.
Now Lλ\ VT —• AΓ is an isomorphism (1.6) whence Lλ{Bp) = Bλ.

Hence ^(5^) c κλ{L) = Lλκu(L) = Lλ{Bu) = Bλ. The proof is com-
plete. (2.4).

2.9. NOTATION. For the rest of this section A will denote a measure
guaranteed by 2.8. Thus A e <2f(μ) with ι/A = i/, Ai/ = A, 5^ c 5Ί/ and

= Bλ. The restriction of jq to 5^ will be denoted by rλ.

2.10. LEMMA. Let γ e &{μ), f,ge^μ with /(/?) = g{p) (p e Sγ).
Then f=g.

Proof Let / e T. Then

= ί
JSy

= [ f(xt)dγ(x)
Jsγ

Sy

(Recall that Sγ is invariant.)
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2.11. DEFINITION. Let γ e &(μ) and / e C(Sγ). Then / is har-
monic on Sγ if there exists g G %?μ with g\ Sγ = f. (Notice that by 2.10
if such a g exists, it is unique.) The set of harmonic functions on Sγ

will be denoted by %$.

2.12. PROPOSITION. Let φ: C(Bλ) —> & be the map such that φ(f) =
fωλ (f e C{Bλ)) and R: & -+ C(Sλ) the restriction map. Then (i)
R o φ = r*, (ii) J?λ = im r\, (iii) r\ is an isometry, (iv) R restricted to
%?μ is an isometry into Jfλ.

Proof, (i) Let / G C{Bλ), g = φ(f)9 a(g) the affine extension of g
to JT{31) and p e Sλ. Then κ(p) e Bλ and by [D, 3.1.6],

f(κ(p)) = a(g)(κ(p)) = (g,λp) = (fλ,λδp) = (fλ\δp)

(ii) By [D, 2.1.22] φ is an isometry onto βfμ whence im r\ = R(%μ) =
^ by 2.12.

(iii) This follows from the fact that Kχ(Sχ) = Bχ.
(iv) Let / G ̂ . Then by [D, 2.1.22] there exists g e C(Bλ) with

φ(g) = f and \\g\\ = \\f\\. Then R(f) = R(φ(g)) = κ*(g)
whence \\R(f)\\ = \\κ*(g)\\ = \\g\\ =

2.13. REMARK 1. Proposition 2.12 shows that ^ is a uniformly
closed Γ-invariant subalgebra of C(Sλ) and that Bλ is obtained from
Sλ by identifying points with respect to the relation {(x,y)\x9y £ Sλ,
f(x) = f(y)(f E <%χ)}. Thus the harmonic functions on Sχ are a
subalgebra of C(Sχ) whereas in general %?μ = %χ is not a subalgebra of

2.14. PROPOSITION. Let R: 31 —• C(Sλ) be the restriction map.
Then R induces a homomorphism Rχ ofd\{β?μ) onto Jfχ and a l ( ^ ) =
βrR\Q)

Proof. By 2.12 Xχ is a uniformly closed Γ-invariant subalgebra of
C(βχ) whence R induces a homomorphism of R~ι(J?χ) onto ̂ . Since
R{%μ) — ̂  a l ( ^ ) c R~x{5?λ), and so R induces a homomorphism
Rλ of a l ( ^ ) o n t o ^ .

Now let / G a l ( ^ ) . Then i?A/ G 3ίλ and so there exists g G ̂  with
jRλ/ = /^g. Thus a l ( ^ ) = Xλ + ΛJ^O). That the sum is direct now
follows from 2.10.
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2.15. REMARKS. 1. Let γ e &(μ), f G a l(^) , and a(f) the affine
map on C(γT) induced by /. Then a{f)(yt) = (f,γt) = (fγ)(ή (t e
T). Thus a(f) o κγ = fγ. This shows that in general the isomorphism
κ*λ of C(γT) onto a l (^) takes the affine functions a(γT) = {*(/)!/ e
^ } onto the harmonic functions ^ .

2. In the case of λ we can say a little more. Thus let O{Bλ) = {f G
C(λT): f\ Bλ = 0}. Then it is easy to see that / e O(Bλ) if and only
if Rλ(f o κλ) = 0. Consequently the splitting a l (^) = ^μ®R~{(0)
induces the splitting C(λT) = a(λτ) Θ O(Bλ).

3. Let_^,Λ G 31 with Λl^ = 0. Then a(g + h) = a(g). Thus if
/ e C(λT) with / = a(g) + I with / e O(Bλ) then / = a{g + h) + /;
i.e. even though the decomposition of / in the form / = a(g) + / is
unique, the element g of & is not. One choice for g is / o κλ.

To see this observe that foκχ e a l (^) whence by 2.14 foκλ = h + u
where h e ^μ and u = 0 on 5 .̂ Then h = hλ = hλ + uλ = (fo κλ)λ.
0 = foκλ- (/oκ:̂ )/l = foκλ-a(foκλ)oKχ on 5^ by Remark 1 above.
Consequently f - a(f o κλ) = 0 on Bλ.

4. Let / G C(Bλ), gj G C(IT) and Λ G J such that g\Bλ = f,
1 G O(Bλ) a n d ̂  = a(h) + /. T h e n a { h ) \ B λ = g \ β λ = f. T h u s g i v e n
any continuous function / on the boundary there exists an "harmonic
function" a{h) with a(h)\ Bλ = /•

5. The isomorphism κ\ of C(λT) onto a l (^) also induces an iso-
morphism kχ of Jt{2l(%μ)) onto Jί{λT). Now λ may be viewed as
a measure on a l (^) by restrition and ω^ as a measure on ΛT since
Bχ c ΛΓ. It is natural to expect that kχ(λ) = ωλ. To see that this is in-
deed the case let / G C(λT). Then (/, ω^) = JB fdωλ = fs foκχ dλ =
(f,κλ(λ)). (Use 2.7.)

The aim of the following is to compare the construction of the
Poisson flow above with the one given originally by Furstenberg [Fl].
(See also [A] and [G].)

2.16. REMARKS. 1. The Poisson flow constructed by Furstenberg is
obtained by showing: (i) fp = limπ^oo///'2 exists for all / G
(ii) / = {f\fp = 0} is an ideal in al(J^) and (iii) a l (^) =
The resulting isomorphism of ^ with a l ^ ) / ^ allows one to define
a product / * g = {fg)ρ on %?μ and a measure ωp(f) = f(e) (/ G ^μ)
such that (Bp, T,ωp) is the Poisson flow associated with μ where Bp

is the Gelfand space of the Banach algebra [%?μ, *). Moreover the map
φp: C(BP) -> ( ^ 5 *) such that φp(f) = fωp (f G C(BP)) is an algebra
isomorphism.
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2. By Proposition 2.12, Rλ is an isometry of %?μ onto the uni-
formly closed Γ-invariant subalgebra J?χ of C(Sχ). Hence the equation
Rλ(fAg) = Rλ(f)Rλ(g) (f9g e <%μ) defines a multiplication Λ on ^
which makes it into a commutative Banach algebra.

Now let f9g e C(Bλ). Then again by 2.12, R(fωλ)R(gωλ) =
{f°rλ)(g°rλ) = fgorλ = R{(fg)ωλ). Hence fωλAgωλ = (fg)ωλ and
so the map ψχ\ C(Bλ) —• (^,Λ) such that φχ(f) = fcoχ is an algebra
isomorphism.

3. Since all Poisson flows are isomorphic there exists an isomor-
phism ψ: C{Bp) -> C{Bλ) such that fωλ = (/o ψ)ωp (feC(Bλ)).

Let f,geC(Bλ). Then

fωλ * £ω λ = (/o ψ)ωp * (g o ̂ )ω^ = ((/o

V^)^ = (fg)coλ = fωλAgωλ.

Thus the two multiplications *, Λ on JPμ are the same.
4. Let f9geβrμ. Then fg = h+l whereΛ € ^ and/| S λ = 0. (2.17).

This implies that h = hλ = (fg)λ - Iλ = (fg)λ from which it follows
that Rλ(fg) = Rλ((fg)λ) + Rλ(l) = Rλ{{fg)λ). Hence fhg =

5. Combining 1, 3, and 4 we see that (fg)λ = {fg)ρ (f,g e
Now let f \ , . . . , fn G ̂  with n > 3 and assume that F/> = F/l where

A f n i
LetF = h + l with Λ G &μ and /| 5 l = 0. The h = hλ = hλ + lλ =

Fλ = Fp = hp + Ip = h + Ip whence Ip = 0. Since p~ι(0) is an ideal
(lfn)ρ = 0. Moreover l\Sλ = 0 implies that (//Ji)A = 0. Consequently
(A~ fn)p = (FΛ)^ = (*/*)/> + (//«)/> = (AΛ)P = (hfn)λ (by 4
above) = ( A / + / / Λ μ = ( F / Λ μ = (Λ • / Λ μ .

Finally since p and A are linear, fλ = fp = l im^oo/μ" (/ G

_

6. Let K:̂ : Jί(\3l\) —• J?(λT) be the map induced by /ĉ , and
(^j;)) -> ̂ f(IΓ) the isomorphism induced by κ:|: C(IΓ) ->

Then kχ = φ or where r: Jt{3l) —• ^f(al(^)) is the restriction map.
Hence lim/cA(//w) = p(limr(μ")) = P(^) = ̂  by 5 of 2.15.

7. In the various papers cited above it is assumed that T is second
countable. This is probably not necessary but we don't insist for the
following proposition will be used only for such T.

2.17. PROPOSITION. Let T be second countable. Then there exists
γ G &(μ) such that γ G K = cfw{μn\n = 1,...} c Jί{β) and κγ(Sγ) =
By.
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Proof. Let λ G &{μ) with κλ{Sλ) = Bλ and kλ: Jt{\Sl\) -> Jt(λT)
induced by κλ. Then by 6 of 2.16, K n k^ι(ωλ) is nonvacuous. Since
it is also compact, convex, and invariant under μ, there exists γ G
K Π k^ι(ωλ) with γμ = γ and thus γ2 = γ since γ e K. This implies
that γ G i?(μ) with κ^(*Sy) = suppω^ = 2^, whence κγ(Sγ) = Bγ as in
the proof of 2.8.

3.0. Some basic results. Our aim in most instances is to show
that under certain conditions the constants are the only μ-harmonic
functions, i.e. ̂  = R. This is equivalent to showing that the Poisson
flow (B, T) is a point or that T acts trivially on B.

In this section we prove some basic results which will be applied
later to show that ^μ — R. They are of the form of conditions on
t G T and x G B which guarantee that xt = x.

3.1. Standing notation. Throughout this section μ will denote a
fixed element of Jt(T)9 (X, T) a flow and ω e Jt{X) with ωμ = ω.

3.2. PROPOSITION. Let λ G Jt{T) and f a bounded Borel function
on X. Then (i)

(/, ωλ) = if f(xt) dω{x) dλ{t) = if f(xt) dλ[t) dω(x)
JJTXX JJXXT

and (ii)

ω(A)= f ω(AΓι)dμ(t)
JT

for all Borel subsets A ofX.

Proof. Statement (i) follows from Fubini's theorem and the remarks
made in 1.2.

(ii) This follows from (i) with / = χA.

3.3. COROLLARY. Let A be a Borel subset of X with co(A) = 1
and H = {t e T\ω{AΓx) = 1}. Then (i) μ(H) = 1, (ii) the map
s —• ω(As~ι): T —• R continuous at t e suppμ implies that t G H.

Proof, (i) Let Hn = {t\ω{AΓ{) > 1 - i } . Then

= / ω(AΓι)dμ(t)+ f ω{AΓι)dμ(t)
Jτ\Hn

> μ(Hn) + ( l - 1 ^ (1 - μ{Hn)) = 1 - I +

whence //(//«) > 1 and the result follows.
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(ii) Assume ω(AΓι) < a < 1. Then there exists a neighborhood U
of t with ω(As~x) < a (s G U) whence

ω(A)= ί ω(Ar-ι)dμ(r)+ [ ω{Ar~x)dμ{r)
Ju Jτ\u

< aμ(U) + 1 - μ(U) < 1

since μ(U) > 0. The proof is completed.

3.4. COROLLARY. Let X be metrizable x e X, and (tn) a sequence
in T such that ωtn —> δx and K = {t E T\ωttn -> δx}. Then μ(K) = 1.

Proof. There exists a Borel subset A of X with ω(A) = 1 and ytn -+
x (y E A) [A, 1.2]. Let t E T with ω(AΓι) = 1. Let y e AΓι. Then
yt e A and yttn —• x. Thus y(ttn) -+ x (y e At~x) from which it
follows readily that ωttn —* 5X. The result now follows from 3.3.

3.5. DEFINITION. Let t E T. Then ω is regular at t if there exists
δ > 0 such that C closed with ω(C) > 1 - δ implies that C Π Cs Φ 0
for all s in some neighborhood Uc of £.

3.6. THEOREM. Let (rn), (sn), (tn) be sequences in T such that tnsn —
?ntn for all n, (sn), (rn) converge to s,r E T respectively, ω regular at r,
and xtn -> b (x E A) with ω(A) = 1. Then bs = b.

Proof. Let δ be as in 3.5 guaranteed by the regularity of ω at r. By
EgorofFs theorem there exists a subset C of A such that ω(C) > 1 — δ
and the functions x —> xtn: X —> X converge uniformly on C to the
constant function x —> b: X —• X.

Now let F be a neighborhood of 6. Then there exist neighborhoods
^ of s and E/ of ft such that U c V and xt e Vs (x e U, t e W).

There exists TV such that ytn E U, Sn e W and r̂  e Uc {y E C,
n > N) where Uc is the neighborhood of r guaranteed by 3.5.

Since C Π CrN φ 0, C Π Cr" 1 ^ 0 . Let x^ E C with x^r^ G
C. Then on the one hand XN^N^N £ ί̂  and on the other
xNtNsN G UsN c Vs. Thus V Π Vs Φ 0. The proof is completed.

The aim of the next few results is to determine some conditions
which will ensure regularity.
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3.7. PROPOSITION. Lett e supp μ be such that the maps —• ω(As~ι):
T —> R is continuous at t for all Borel subsets A of X. Then (i) there
exists δ > 0 such that ω(C) > 1 - δ implies ω(Ct~ι) > δ for all Borel
subsets C of X and (ii) ω is regular at t.

Proof. Assume (i) false. Then there exist a sequence of Borel sets
( C ) with ω ( C ) > 1 - 2 " ^ + 1 ) and ω{Cnt) < 2~^ι\ w = 1,.... Set
Kn =\J{Q\l < i < n}, K = {J{Kn\n = I , . . . } . T h e n

ω{Knt) <

whence ω(Kt) = \imn-+oo ω(Knt) < j . However ω(J£) > ω(Kn) >

ω(Cn) > 1 - 2"^+ 1) implies that ω(AΓ) = 1 and this contradicts 3.3.
(ii) Let δ be as in (i) and C a closed subset with ω(C) > 1 - δ.

Then ω(CΓι) > δ whence there exists a neighborhood UQ of t such
that ω(Cs~ι) > δ (s e Uc). Hence CΓ)Cs~ι φ(ZφCΐ\Cs (s e Uc).

3.8. DEFINITION [A, pg. 21]. The measure μ is spread out (etalee)
if either of the following equivalent conditions is satisfied: (i) there
exists an integer n such that μn is not singular with respect to a Haar
measure m on T, (ii) the set Σμ is not empty where Σμ is the set
of elements t of T for which there exists an integer p such that μp

dominates a multiple of m on some neighborhood of t.

3.9. REMARK. In Proposition 1.6 of [A] Azencott shows that every
bounded measurable //-harmonic function is continuous if μ is spread
out. Thus in this case ω is regular at t for every t in the support of μ.

3.10. Review. We now deduce other results similar to 3.6 but before
doing so we review some measure theory. Let X be a locally compact
space, Meas(X) the set of measures on C, 3£{X) — (/ e C(X): supp/
compact}, and a j e Meas(X). Then j|α|| = sup{(/,α)|/ e K(X),
11/11 = 1}, a < β if (f9a) < (f,β) (feJT(X) with 0 < /) and aΛβ =
infimum of a and β.

When X is compact, Jt{X) = {a e Meas(X): | |α| | - 1}.

The proof of the following proposition is straightforward and will
be omitted.

3.11. PROPOSITION. Let (X,T) be a flow, γ e Jΐ(X) and a,β e
J?{βT). Then (i) α > β implies γa > yβ, (ii) yαΛy^ > γ(aAβ), (iii)
\\γaAγβ\\>
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3.12. PROPOSITION. Let λ,η,p e Jt{X) and {λa), (ηa) be nets in

Jί{X) such that λa -+ λ, ηa -> η and λa/\ηa-+ p. Then λAη> p.

Proof. Let 0 < / e C(X) and ε > 0. Since

λ Λ η(f) = inf{λ(g) + η(h)\O < g, he C(X)\ g + A = /}

[Bl] there exist g, h e C(X) with 0 < g, h\ g + h = / and λ Λ η(f) >

There exists a such that λa Λ ηa(h) > p(h) - ε, λa(g) < λ(g) + ε, and
ηa(h) < η(h)+e, whence λΛη(f) > λa(g) + ηQ(h)-3e > λaΛηa{h)-3ε
> p(h) - 4ε.

3.13. COROLLARY. Letλ,ηeJt(X). Then the map (t,s) -+\\λtAηs\\:
T x T -^R is upper semicontinuous.

Proof. This follows from 3.12 and the fact that ||A|| = λ{\) (λ e

3.14. THEOREM. Let r e T and (ta\a e I) a net in T with ωta —•
x e X. Then xr = x if either (i) there exists s eT with ωsta —> x and
taXsta -* r or (ii) there exist ra e T (a e I) and 0 < C 6 R such that
ra^re T and\\ωΛωtarat-

ι\\ > C for all a.

Proof, (i) This follows immediately from the continuity of the map
(η, t)->ηt: Jt{X) x T -* Jί{X).

(ii) Since ωta -> δx, ωtara —> δxr and | |ωία Λ cotara\\ =
||ω Λ ωtarat-

χ\\ > C for all α, \\δx Λ δxr\\ > C by 3.13. This implies
that x = xr.

3.15. REMARKS. 1. Let X be metrizable and (tn) a sequence in
T with ωtn —• x G X. Then there exists A c X such that ω(A) =
1 and yίΛ -> x (y e A). Now let 5 e Γ with ω(As~ι) Φ 0 and
t~ιstn -+ r e T. Then there exists y e i n As~ι whence ytn -* x and
ysί/, -> x. Consequently xr = (lim>;^)lim(ί~15ί/2) = limj;^^ = x.
Thus when JΓ is metrizable (i) can be strengthened. Moreover in this
case μl s Ί ω ^ " 1 ) = 1} = 1.

2. Let t,s eT. Then one way to ensure that ||ωίΛGλs|| > C is to find
measures λ, p e Jί{βT) such that ωλ = ω = ωp and \\λt Λ ps\\ > C,
for by 3.11 ||ωίΛGw|| = \\ωλt Λωps\\ > \\λtΛρs\\ > C.

The following result due to Furstenberg [F2] (see above [A, p. 76])
is thus relevant for our considerations.
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3.16. LEMMA. Let tχ,t2 £ Σμ. Then there exist U open, ε > 0

and θ G cnv{μn\n = 1,...} such that t\,t2 e U and r,s e T with

Urn Us φ0 implies \\θr Aθs\\> ε.

Proof. There exist open relatively compact neighborhoods V\ and
V2 of t\ and t2 respectively, integers p,q and au a2 positive elements
of R such that χψχμ

p > aavm and χΈlμ
q > a2χΈlm.

Now set U = V\ U V2 and a = m i n ^ , ^ ) . Then

Consequently by [A, Lemma IV.3 p. 76] there exists ε > 0 such that
r9s e T with UrΠUs φ 0 implies \\η2rΛη2s\\ > e where η = (μp+μ<*)/2
whence U, ε, and θ = η2 = \{μ2p + μp+q + μ2q) satisfy the requirements
of 3.5.

3.17. Standing notation. For the remainder of this section we again
adopt the notation of 2.5, with μ e Jt(T) and v e &{μ). (The
subscript v will be dropped.)

In addition (X, T) will now denote an arbitrary factor of (2?, T) and
ω the measure induced by the one on B.

3.18. THEOREM. Let p e S, (ία), (sα) neίs m T such that ta -> p,
5r, -• 5 G T, and tasat~

{ -+ t e Σ~ιΣμ. Then (i) ωp e X and (ii)
(ωp)s = (ωp).

Proof. Statement (i) follows from 2.17.
To see (ii) let t = t\xt2 with t\, t2 e Σμ and C/, θ, ε as in 3.16. Since

t\t = ̂ > UtΠU Φ 0 whence there exists αo s u ^ h that Utasat~
ιΓ\U Φ 0

(a > αo). Hence H^A^^^/" 11| > ε > 0 (α > αo) and (ii) follows from
3.15 and 3.14.

3.19. COROLLARY. Let h e T be such that given p e S there exist
a net (tn) in T and t e Σ~ιΣμ with taht~ι -> t and ta -> p. Then (i)
xh = x (x e B) and (ii) hf = f (f e

Proof. Statement (i) follows from 3.18 with X = B and the fact that
X = {ωp\p e S}.

The second part of 3.19 follows immediately from the first.

3.20. REMARKS. 1. An element h in T with hf = f (/ e Wμ) is
what Azencott [A, p. 7] calls a //-period. Corollary 3.19 is intimately
related to Theorem IV. 1 of [A].
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Another result along these lines is the following which relies on 3.6
rather than 3.18.

3.21. THEOREM. Let T be second countable, μ spread out and h G T
be such that given p e S there exists a net (ta) in T and t G suppμ
with ta -> p and tnht~l -> t. Then hf = f (f e

Proof. It suffices to show that xh = x (x G B) and since T is second
countable we may restrict ourselves to a metric factor X of B.

Now let x G X. Then there exists a sequence (tn) in T such that
ωtn —• x and ^A/"1 -» r for some r G suppμ. Set ^ = A, rπ = tnht~\
n = 1, Then ίΛ.sΛ = rΛίΛ, sn -^ h, rn -^ r and by 3.7 ω is regular
at r. Since ωίΛ -> x, there exists a subset 4̂ of X with ω(^) = 1 and
ytn —y x (y G ̂ 4). Consequently xA = x by 3.6.

4.0. Actions of subgroups on the Poisson space. In this section we
study the action of a subgroup K of T on the space Bv when the only
A^-invariant harmonic funtions are the constants. The idea is to reduce
the study of the Poisson flow {B, T) to the flow (B, K).

4.1. NOTATION. In this section μ will denote an element of.
with suppμ = T and v a fixed element of J?(μ). The notation of 1.3
will be used except that the subscript ' V will be omitted.

Again (X, T) will denote a homomorphic image of B and ω G .
with ωv — ω.

Let H c T. Then 31 n will denote the right uniformly continuous
and 33H the bounded Borel functions / on T such that hf — f (A G H),
and 3&μ the bounded Borel functions g on T such that gμ = g.

4.2. PROPOSITION. Let K be a subgroup ofT and U a non-vacuous
open subset of B. Then ω(UK) = 1 if either (i) 3§κr\3§μ = R, (ii)
&lK Π^μ = R and μ spread out, or (iii) 31 K Π 38μ = R αA2ί/ ̂ Γ compact.

Proof, (i) Set C =UK and assume that ω(C) < 1. Let / G
with 0 < / < / c , 11/11 = 1. Then fω(ή < χcω(t) = ω(Crι) = Ω(C)
since χcco G ̂  Π ^ . Thus | | /ω | | < ω(C) < 1 and this contradicts
the fact that g —• ^ ω : C(X) -^ ^ is an isometry.

(ii) In this case χcco e 3%κ [Λ3§μ and the proof proceeds as in (i).
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(iii) Again let / and C be as in (i) and let

g(x) = sup{f(xk)\keK}.

Then g is a ΛΓ-invariant continuous function on X with \\g\\ = 1 and
g < Xc> whence gω e 31% Π&μ with \\gω\\ < 1. The proof is com-
pleted.

4.3. REMARKS. 1. Since suppω = X, UK = X under any of the
conditions of 4.2.

2. The group T satisfies (i) of 4.2 whence (B, T) is topologically
transitive i.e. UT = B for all non-vacuous open subsets of B.

3. Let X be a metric fator of B, a>χ the measure induced on X by ω,
(Ui\i = 1,...) a countable base for the topology on X and K as in 4.2.
Then E = f|/^i U(K is a residual subset of X such that tύχ(E) = 1
and ~xK = X (x e E).

4. Let K be as in (iii) of 4.2. JΊien xK = B (xeB). (This follows
from 4.2 and the fact that B = UK — UK for every neighborhood U
of x.)

4.4. PROPOSITION. Let (X, T) be a metric factor of (B, T), K a
compact second countable normal subgroup of T with &κ n %μ = R,
and μ spread out Then X is a point.

Proof. Let η be the measure on X induced by ω and (tn) a sequence
in T such that xtn -> z e X (x e A) with f/(Λ) = 1.

Let k e K and set rn = tnkt~x. Then rn e K for all n and we may
assume that rn -+ r eK.

Now rnίrt = ίnfc for all n, and >/ is regular at r by 3.9. Consequently
zk = z by 3.6. Thus X = z # = z by 4.3.

4.5. PROPOSITION. Let (X, T) be a metric factor of (B, T), K a
compact normal subgroup ofT with ̂ κΠ^μ = R, and {ad# r\r eT} a
relatively compact subset of the group of automorphisms ofK. Then X
is a point (Here ad# t: K —• K is the map such that (ad# t)(k) = tkt~ι

(keK).)

Proof Let a e X and φ: K —• X the map such that p(/r) = ak
(k eT). Then #> is an open surjective map (4.3).

Now let A, (tn), and b be as in the proof of 3.6, and a an auto-
morphism of K adherent to the sequence ad^ί" 1 . Then φ~ι(A) is
a dense subset of K and k e φ~ι(A) implies that b = limaktn =
\imatn adz t~ι(k) = bα(k). Since ^ - 1 ( ^ ) is dense, this implies that
b = bh (h e K). The proof is completed.



POISSON FLOW ASSOCIATED WITH A MEASURE 97

The following is surely well known. We include a proof for lack of
a reference.

4.6. LEMMA. Let K be a compact analytic Lie group. Then the
identity component auto(AΓ) of the group of automorphisms, aut(ΛΓ) of
K is compact

Proof. It follows from [H] that K is isomorphic to (Rπ x G)/H
where G is a simply connected compact semi-simple group and H is
a discrete group containing ln x e. Hence aut(^Γ) = aut(R" xG,H) =
{u e aut(R x G)\u(H) = H} [B2].

Let u G auto(ΛT), π, /c the canonical maps of Rn x G onto Rπ and
G respectively. Since Rn has no non-trivial compact subgroups the
homomorphism g —• π(w(0, g)): (? —* RΠ must be the trivial one.
Also (7 semisimple implies that the homomorphism r —• κ;(w(r,£)) is
trivial.

Since u is homotopic to the identity, H is discrete and u{H) = //,
tt(A) = h (h G /ί). In particular w(z,e) = (z,^) (z G Zw) whence
«(r,e|= (r,^) (reUn). Hmceu(ryg) = u(r,e) u{0,g) = (r9e)(09ΰ(g))
= (r,u(g)) where w is the automorphism of G given by g —> /cw(0, ^ ) .
Thus auto(^Γ) is isomorphic to auto(G) which is compact [H].

4.7. PROPOSITION. Let T be connected and K a compact normal
subgroup ofT such that 3ίκ Π ^ = R. Then J^μ = R.

Proof. It suffices of course to show that the Poisson flow (B, T) is
trivial. Since (B, T) is topologically transitive, we need only show that
T acts trivially on B.

Let U be a neighborhood of the identity of Γ. Then there exists a
compact normal subgroup L of T such that L c U and Γ/L is a Lie
group [M Z ]. Then T/L acts on i?/L which is then an image of the
Poisson flow associated with the measure induced by μ on T/L. Thus
we may assume that T is a Lie group.

It follows readily from 2 of 4.3 that B is connected. Also K acts
transitively on B by 3 of 4.3. Since K/Ko is finite, this implies that
the component of the identity, KQ of K acts transitively on K. Hence

Finally ad#0(Γ) is contained in auto(^o) a n d so is relatively compact
by 4.6. Proposition 4.7 now follows from 4.5.
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5.0. The solvable group case. In this section we show that when T
is a solvable second countable connected group and M is spread out
with μ = μ~\ %rμ = R (see [B.R.]).

Let φ: T -> T be such that φ{t) = Γ1 (t e T) and / e 31. Then in
general foφ£&. Thus in order to take advantage of the assumption
μ = μ o φ we must work with a larger algebra than 3ty one on which
μ is defined and which is invariant under φ. In this section we use
Q(Γ), the algebra of bounded continuous functions on T.

The group T acts on the Gelfand space \Cb{T)\ of Q(Γ), but the
map (x, t) -> xt: \Cb(T)\ x (T,f) -> \Cb(T)\ is in general not contin-
uous. However this is unnecessary for our purposes.

5.1. Standing notation. In this section T will denote a connected
Lie group, μ a spread out probability measure on T with μ = μ~ι (i.e.
μ(A) = //(^ί"1) for all Borel subsets of T) and v e cnv(μw|fl = 1,...)
with v e &{μ) and κμ(Sμ) = ̂ . (Such exists by 2.17.).

Again the notation of § 1 will be used with the subscript v omitted.
Since T is second countable, the flow (B, T) is the inverse limit of

its metric factors. In this section (X, T) will denote an arbitrary one
of these, Kχ or simply K the canonical map of S onto X and a>χ or
simply ω, the measure on X induced by v.

Finally φ: βT —> βT will denote the continuous extension to βT
of the map t -> Γι: T -> T c jί Γ, and Q(Γ) = {/ E C(j8Γ): / | τ is
continuous}. We shall also denote the affine extension of φ to ^£(βT)
by φ.

5.2. Remarks. 1. Q(Γ) is a uniformly closed Γ-invariant subalge-
bra of C(βT) which may be identified with the algebra of bounded
continuous funtions on T.

2. a c Q(Γ).
3.foφe Cb{T) and //(/) = μ(f φ) (f e Cb(T)).

5.3. LEMMA, (i) There exists γ e cΰv{μn\n = 1,...} c.Jt(Cb(T))
such that γ2 = γ = φ(γ) and γμ = γ. (ii) (/, γ) = (/, v) (f e,

Proof. Let K = cw/{μn\n = 1,...} c J?(Cb(T))9 r the restriction
mapping of Jt(Cb(T)) onto Jΐ{β) and L = r(K). Then clearly L =
cnv{μn\n = 1,... } c Λf («$?) whence v e L.

Now aμ e K (a e K) whence aβ e K (a,β e K). Consequently
C = r~x(i/) ΠK is a non-empty convex compact subset of K such that
C2 c C and Cμ c C. This in turn implies that A = {a e C\aμ = a}
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is a non-empty compact convex subset of C with A2 = A. Hence there
exists y2 = y G A,

To see that φ(γ) = γ observe that φ(δtδs) = φ(ts) = s~ιt~ι =
φ(δs)φ(δt) (s9t G T). Since φ is linear this implies that φ(aβ) =
φ\β)φ{a) (a, β G cnv(Γ) c Jt{Cb{T))) and by continuity of φ and
the maps p -^ pa: ^(Cb) —> Λf (Q) and p -^ ap: Jt(Cb) —• Jf{C^)
(α G ̂ ( Γ ) ) that $?(μ") = μΛ for all n. Hence p(y) = y. The proof is
completed.

5.4. Standing notation. For the remainder of this section K will
denote a closed subgroup of T with ^ n ̂  = R.

5.5. LEMMA. Lei E = {x e X\xK = X}. ΓΛ n̂ there exists a
sequence (tn) in T such that ωtn —• X\ e E and ωt~ι -+ xi^E.

Proof. Let y be as in 5.3, Σ = supp y, and η the canonical map of Σ
onto S = supp.

By 2 of 4.3 ω(E) = 1 whence y(F) = 1 where F = η-\κ-\E)).
Now let ψ: | Q ( Γ ) | -> | Q ( Γ ) | be the map induced by #>. Since

φ(y) = y, ^(Σ) = Σ and γ(ψ(F)) = 1. Hence there exists p G βT such
that π(p) G F and π(φ(p)) = ψ{n{p)) G F, and so ωp, ωφ(p) G £
(where π: (β(T9e) -• (|Q(Γ)|,e) is the natural map).

When p is viewed as an ultra filter on T, φ(p) = {U~ι\U ep} and
ωp = limp ω/, ωφ(p) = HτRφ(p) cot.

Let FΠ (Wn) be a neighborhood base for ωp and ωφ(p) respectively
and choose Un e p such that ωt e Vn and ωs G Ŵ  for all n, t G Un,
seϋ-1.

Finally choose tn G Un n = 1, Then ί"1 G C/"1 so that ω ^ ~^
, cot'1 ->ωφ{p).

5.6. LEMMA. L /̂ K be normal H the identity component of the
center ofK, and assume HQ Φ {e}. Then there exists h G H with hφ e
and xh = x (x e X).

Proof. Assume 5.6 false and let (tn) be a sequence in T such that
ωtn —• X\, ωt~ι -+ x2 and X\K — X — x2K.

Since K < T, aάtn{H) = H = eidt~ι(H). Let JIT be the set of
open connected neighborhoods of the identity in //, V, W G Jf, and
^(K, W) = {n\t~ι Vtn ΠW'Φ 0}. _

We claim that n G AiV^) implies that t~ιVtn n (W^\ίF) ^ 0. To
see this assume /~ι VtnΠ(TF\H^) = 0. Then ί~! VtnnW =t~ιVtnnW
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is both open and closed in t~xVtn. Since t~xVtn is connected and
e G t~x Vtn Π W, t~x Vtn = t~x Vtn Π W c W a contradiction.

Now fix W G JV. We claim that there exist V G JV and an integer N
with ί~1 Vtn c W for all n > N. Otherwise by the preceding remark
there would be a subsequence (ίΠ|) of (ίπ) and a sequence (r, ) —• e
with 5/ = t~xYitnι G W\W for all /. We may assume s/? -> s G W\W.
Then /•/*„, = ίrtι5/, r/ -* e, Si -+ s Φ e whence by 3.6 X\S = x1# (Recall
that μ spread out with supp μ — T implies that every element of T is
regular with respect to ω.) Then X\k = x\sk = x\ks (k e K) and so
xs = x {x G X), a fact which contradicts our original assumption that
5.6 was false.

A similar argument replacing the sequence (tn) by the sequence (t~x)
shows that given W G JV there exist an integer N and V G JV with
tnVt-χ C ̂ f o r a l l r t > i V . _

Finally choose V, W as above with W compact and let e Φ r G V.
Then we may assume sn = tnrt~x —• s G JΓ. Again by 3.6 X\S = Xi
and so xs = x (x G X). Moreover the preceding paragraphs show that
s Φ e, which again contradicts our original assumption. The proof is
completed.

5.7. PROPOSITION. Let K be normal and H the identity component
of the center ofK. Then H acts trivially on X.

Proof. Let G = {t e T\xt = x (x e X)}. Then G is a closed normal
subgroup of T.

Let π: T —• T/G be the canonical map. Then μπ~ι is a spread
out measure on T/G with (μπ~x)~x = μπ~x, T/G acts on X and
(X, Γ/(7) is a metric factor of the Poisson flow associated with μπ~x.
Consequently the results of this section apply with T, K, μ replaced
by T/G, n(K), μπ~x respectively.

Now π(H) is contained in the identity component of the center of
π(K) so that the latter would not be trivial if H were not contained
in G. But this would contradict 5.6.

5.8. THEOREM. Let T be a connected solvable Lie group, p a spread
out measure on T such that p = p~x and the subgroup generated by
the support of p equals T. Then β?p = R.

Proof. Set μ = £^°=1 2~np. Then μ = μ~ι, supp// = T, and &p c
^ . Thus it suffices to prove that %?μ — R where μ is as before.



POISSON FLOW ASSOCIATED WITH A MEASURE 101

Theorem 5.8 is clear if dim T = 0. Let n > 1 and assume 5.8 for
all positive integers less than n. Set N = [Γ, T]. Then TV is a closed
normal subgroup of T with dim JV < n.

If dim N = 0, T is abelian and the result is well known in that case.
Now assume dim TV > 0. Then dimT/N < n and so &μn-\ = R

where π: T —• T/N is the canonical map. Since every element of
&Nn^μ induces an element of <^π-i, J J V Π ^ = R.

Let H be the identity component of the center of the nilpotent group
N. Then dim// > 1 and by 5.7 H acts trivially on every metric factor
of B and since (B, T) is the inverse limit of its metric factors, H acts
trivially on B. Then (B, T) = (B, T/H) is a factor of the Poisson flow
of the measure induced by μ on T/H and the latter is trivial since
dim T/H < n. The proof is completed.

6.0. The semi-simple case. In this section we use the methods
developed in this paper to prove Furstenberg's result [F2]: let T =
KAN be the Iwasawa decomposition of the semi-simple Lie group T
with finite center and no compact factors; then K acts transitively
on the Poisson space of μ for every supported spread out measure μ
on T.

6.1. Notation and review. In this section we retain the notation of
5.1 with the assumption that T is an analytic semi-simple Lie group
with finite center and no compact factors.

Let t be the Lie algebra of T, t = k + p a Cartan decomposition of
t, a a maximal abelian subspace of p and Δ the roots of the pair (t, a).
Order Δ and let Δ+ be the positive elements of Δ.

For λ e A set tλ = {Y e t\[H, Y] = λ(Y), H e a} and define the Lie
subalgebras n* by n* = Σ±λeA+ tλ and let K, A, N^1 be the analytic
subgroups of T corresponding to k, a, n^1 respectively.

Let a+ = {H e &\λ(H) > 0, λ e Δ+} and A+ the corresponding
analytic subgroup of T.

Then K is compact, KA+K = T = KAN+ = KAN'.

6.2. LEMMA. There exist sequences (kn) in K and (an) in A+ such
that ωknan —• XQ G X, with x0T = X.

Proof. Let (tn) be a sequence in T with ωtn —• x G X and with
3cΓ = X, such exist by 4.3. Write tn = knanln with (feΛ), (/„) c K and
(ΛΛ) C ^4+. We may assume ln -+ I e K and ωknan —• /> G
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Then ωtn = ωknanln —• /?/, whence \imωknan = p — xl~x e X. Set
xo = xl~x. Then 5^T = xl~xT = ~xT = X.

6.3. Standing notation. For the rest of this section (an)9 (kn) will
denote fixed sequences in A+ and K respectively such that ωknan —•
Xo G X with 3CQT = X. We shall also assume that kn -+ k e K.

Our aim is to show that x$K = X.

6.4. LEMMA. Let a e A. Then x$a = xO

Proof. Since ^ is abelian, knana = knaan — knak~ιknan. Now
knak~ι —• kak~ι whence XQ^ = -̂ o (aPPty 3.6 to the sequences (tn) =
(knan\{sn) = (fl),(rπ) = (knak-1)).

The proof of the next lemma is standard and will be omitted.

6.5. LEMMA. Let Y, H e t with [H, Y] = λY for some λeR. Then
(exp//)(expr)(exp(-/7)) = txp(eλY).

6.6. LEMMA. Let -λ e Δ+, Ye tA, and t = exp Y.

Then xot = XQ.

Proof. Let an — txpHn with Hn G a+ for all n. Then anta~x =
exρ(eλ(//w)7) and since λ(//«) < 0 we may assume that the sequence

eλ(Hn) converges. Hence the sequence rn = anta~ι converges to r e T.
Finally knant = knrnan = knrnk~ιknan and so again x$t = XQ by 3.6
since knrnk~x —• krk~x e T.

6.7. LEMMA. The group K acts transitively on X\ indeed x$K = X.

Proof. Let H = {t e Γ|x0^ = ̂ o} Then H is a closed subgroup of
T which contains Λ by 6.4. By 6.6 exp Y e HY, for all Y e tλ and
- 1 G Δ+. Hence the Lie algebra of H contains that of N~ and so
N-cH.

Finally X = x0T = x0N~AK = x 0 ^ = * o ^ .

6. THEOREM (Furstenberg [F2]). (i) 77z£ ̂ row/? fc αc/51 transitively on
B, (ii)

Proof. Let δ e 5 and assume c £ bK. Then cίΓ n bK = 0 and there
exists / G C(5) with f(x) = 0 (x e bK) and f(x) = I (x e cK).
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Set R = {(x,y)\f(xt) = f{yt) (t e T)}. Then R is a closed invariant
equivalence relation on B and (X, T) = (B/R9 T) is a metric factor of
B since T is 2nd countable.

Let π: B —• X be the canonical map. Then f(c) Φ f(bk) shows that
π(c) Φ π(b)k (k e K). Thus K does not act transitively on X, a fact
which contradicts 6.7.

(ii) This follows immediately from (i).
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