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MATCHED PAIRS OF LIE GROUPS ASSOCIATED TO
SOLUTIONS OF THE YANG-BAXTER EQUATIONS

SHAHN MAJID

Two groups G, H are said to be a matched pair if they act on each
other and these actions, («, ), obey a certain compatibility condition.
In such a situation one may form a bicrossproduct group, denoted
Gp >, H. Also in this situation one may form a bicrossproduct
Hopf, Hopf-von Neumann or Kac algebra obtained by simultaneous
cross product and cross coproduct.

We show that every compact semi-simple simply-connected Lie
group G is a member of a matched pair, denoted (G, G*), in a natural
way.

As an example we construct the matched pair in detail in the case
(SU(2), SU(2)*) where

SU2)* = {(’Zc qu) : x € Rso, zeC}

is the simply-connected group of a Lie algebra su(2)*. Here su(2)* is
defined with respect to a standard canonical solution of the CYBE on
the complexification of su(2).

1. Introduction and preliminaries. The notion of a matched pair of
groups was studied in [18] and more recently in [12]. Two groups G,
H are a matched pair if they act on each other and these actions a, 8
obey the condition

(*) VX, y€G, Z .M EH, ayi(e)=e, Pz-i(e)=e,

ax—l(,?ﬁ) = ax—l(i”)aﬂy_l(x)-n(%),

Baz-1(xy) = Bo-1(X)Ba,_,(2)- (V)
where e denotes the relevant group identity. We have chosen here
conventions in which the natural objects are right actions a,-1, fo-1.
Right action conventions are the natural choice for actions on mani-
folds, cf. [7, Chapter 1, §4]. There are also equivalent versions of ()
suitable for left actions and for one left action and one right action
[12, Example 3.14]. In this case both [18] and [12] noted that one may
form a bicrossproduct group G < H defined by

(X, 2) - 0, ) = (B (x" )y, Lax()),
(x:"c-/)—l = (ﬂy(x)_laax_'(g_l))a
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and in the case when G and H are finite, a bicrossproduct Hopf algebra
k[G] = k(H). Here k is a field, k[G] the convolution algebra on
G and k(H) the function algebra on H. [18] was able to show, in
the context of algebraic groups, that a certain Hopf algebra of Taft
and Wilson was of this form. If G is Abelian and « trivial then the
bicrossproduct Hopf algebra k[G] > k(H) is isomorphic to k(G 1 H),
but the bicrossproduct makes sense even when G is non-Abelian, and
even when « is non-trivial. In this latter case the bicrossproduct Hopf
algebra is non-commutative and therefore cannot be the algebra of
functions on any space. This is the point of view relevant to non-
commutative geometry [3], [16]. New examples in this latter context
were given in [12]. These new examples were motivated from physical
considerations [13].

In order to generalize these results to the category of Lie groups,
to yield bicrossproduct Lie groups and (in principle) bicrossproduct
Hopf-von Neumann algebras, one must have examples of matched
pairs of Lie groups. This is particularly interesting because the cor-
responding Lie algebra version of the above Hopf algebras, in which
the role of k[G] is played by U(g), the universal enveloping algebra,
remains an open problem. This would therefore appear to be a con-
struction in which topology and algebra play an interdependent role.

Hopf algebras have been connected in a very different context with
the Yang-Baxter Equations (YBE). It turns out that this connection is
relevant also to the bicrossproduct construction, see [12, §4]. In [12,
Example 4.2] it is shown that at the Lie algebra level, a pair of finite-
dimensional Lie algebras of the form (g, g*) with the coadjoint actions
are a matched pair iff g is a Lie bialgebra in the sense introduced by
Drinfel’d [4] in connection with the Classical Yang-Baxter Equations
(CYBE). This will be developed further in §2 below. By exploiting this,
we are able in this paper to give a general constructive method that
canonically associates to a suitable Lie group G and a suitable solution
of the CYBE on its complexified Lie algebra, a certain Lie group, the
“Yang-Baxter-matching group”, denoted G*, forming a matched pair
(G, G*). (Previously, solutions of the CYBE have been connected to
the existence of a Poisson structure on G (and the product Poisson
structure on G x G) such that the group product is Poisson [4], but
this point of view will not be used here.) The method is carried out in
detail for the case G = SU(2) and the group actions computed explic-
itly. The main results are Theorem 4.2 and Theorem 4.3, along with
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Lemma 4.1 and Corollary 4.6. The corresponding Hopf-von Neumann
algebras will be presented in [14].

All Lie groups are assumed connected with their standard differen-
tial structure. &, & will always denote elements of a finite dimensional
Lie algebra g or its complexification gc, /, I’ of a finite dimensional
Lie algebra 4 or its complexification, x, y of Lie group G and .%, %/,
4 of aLie group H. Ly(y) = xy and R,(y) = yx denote left and right
group translations. (, ) denotes pairing of a space with its dual space
and an unused argument denotes an element of a dual space. We work
over R or C. The linear dual of g is denoted g*. This should not be
confused with g* which denotes a certain real form of g&. All maps
are required to be at least continuous.

2. Canonical solution of the CYBE on g, the construction of # = g*
and Lie algebra actions, o and . Let g be a finite dimensional Lie
algebra. Drinfel'd [4] and co-workers showed that if r: g* — g isa
linear map and a: g ® g* — g* is defined by dualizing the Lie bracket
on g, {ag(1),&") = (,[&,¢&]) forall &,&' € g, [ € g* (i.e., the coadjoint
action of g on g*), then the bracket on 42 = g* defined by [/,/'] =
a,y(I') + iy (1) is a Lie algebra structure if r([ , 1) - [r( ),r()] €
g ® g ® g is invariant under the adjoint action of g and if r = —r*
is skew-adjoint (i.e. (r(/),!') = —(l,r(l")) for all /,!' € g*). Moreover,
in this case we showed in [12, §4] that if f: h ® g — g is defined
by dualizing this Lie bracket, (f;(&), ') = (&, [/, 1) (i.e., the coadjoint
action of g* on g), then (g, 4, a, B) are a matched pair of Lie algebras.
This means that « is a linear representation of g on 4 and 8 is a linear
representation of 4 on g and these obey the compatibility condition

(*x) Vé,E e gl €h,
ae([1,1']) = [oe(D), ']+ [1, (I + a_pg e (I') — a_p, (D),
Bi(I&, ') = [B1(&), &1+ &, BiEN + B-oet)(&) = Bo ) (&)-

The case ([, 1) — [r( ), r( )] vanishing is known as the CYBE and
when g is simple with inverse Killing form K~!: g* — g then the case

r(C, D=1, rO1=1K~'(),K~'()]

is known as the Modified CYBE [17, Eqn. (12)]. (A suitable factor
can also be included on the right hand side, but this can be absorbed
in a rescaling of r as observed in [17].) In a general setting, many
solutions of the CYBE and MCYBE are known [1]. According to [6,
Prop. 2.1], the MCYBE has at least one non-trivial solution that holds
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for all simple complex Lie algebras. If {1} is an ordered root system
for g with Chevalley-Weyl root vectors {E,} then this solution is

() r=3" E; ® (E_;, ) sgn(4)

+ K1t
K(E;,E_))

A

At present, ¢ = 0.

When g is a real Lie algebra, one may first solve the MCYBE as
above for gc the complexified Lie algebra and then attempt restric-
tion of the resulting g¢ to a suitable real form, which we denote g*,
in such a way that g and # = g* are a matched pair of real Lie al-
gebras. Because K is ad-invariant and symmetric, the addition of the
tK~! term shown does not change the bracket on g¢ or h as defined
above, but results in ([, 1) = [7( ), r( )] = (1 = 2)[K~'(),K~1()] so
that the case t = 1 (or —1) provides a useful homomorphism of 4 to
gc. Under favorable circumstances, this is an embedding so that both
g, h can be viewed as subalgebras of gc.

ProPOSITION 2.1. Let g be a compact real simple Lie algebra with
complexification gc. Choose a Cartan subalgebra and root vectors
{H,, E;} such that g is the compact real form of gc defined in [5, Chap-
ter 111, Thm. 6.3), and let r be the solution, equation (1), of the MCYBE
on gc in this basis, so that gt is a Lie algebra. Define

g =1K(g,)

where K denotes the Killing form on gc. Then g* is a real form of g¢
and the mutual co-adjoint actions of the matched pair (gc, g¢) restrict
to a matched pair (g, g*). Furthermore, r: g — gc att = 1 is an
inclusion.

Proof. Let {H,, E,} be a Chevalley-Weyl basis of gc normalized so
that K(E;,E_;) = 1 and K(H, H;) = A(H) for H in the Cartan sub-
algebra and root 4 [5, Chapter III, Thm. 5.6]. Let u be the compact
real form defined in [S, Chapter III, Thm. 6.3]. Then there is an
inner automorphism y of g¢ (connected to the identity) such that g =
w(u) [S, Chapter III, Cor. 7.3]). Hence applying y to the generators
{H;,E;} we obtain a new basis with the same normalization such
that the compact real form constructed in this basis is just g. Hence
without loss of generality we assume now u = g, i.e. explicitly

g = spang{X}, ¥}, Z;},
where X, =FE, - E_;, Y,=1E,+E_;), Z,=1H,.
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According to our definition, g* is then the real span of X, =1K(X;, ),
Y, =1K(Y), ), Z, =1K(Z;, ) and we compute

r(X,) =sgn(A)Y, +1tX;, r(Y,;)=—-sgn(A)X,+1tY,, r(Z,) =1tZ;,

so that r is an inclusion at ¢ = 1. To compute the Lie algebra structure
it is convenient to work with ¢ = 0. In that case r(/) lies in g for all
legr. Forallé € g, & € gc, and I' = 1K(&', ) € g* where & € g,
we have (ax(I),&") = 1K(&,[£",&]) = 1K([¢,¢],£") by ad-invariance
of K, so that the co-adjoint action « restricts to an action of g on g*.
Hence the bracket [/, /'] = a,q)(!') — a,q)(]) also restricts to g* (here
r is skew at ¢t = 0). Like-wise, in terms of o, /() = roag(I) +[r(l),¢]
also restricts. This completes the proof. (It is also necessary to verify
that equation (1) at ¢ = 0 does indeed solve the MCYBE on g¢c as
stated in [6, Prop. 2.1]. The first step is the re-arrangement

<13 r([l,’ l”]) - [r(l,)a r(l”)])

= - <l RI'®!",Y " sgn(A)sgn(u)((E, E\J®E_,® E_, + E,
A

QE_LEN®E 4, +ERE,® [E_,l,E_,,])>

and then split the sum into those terms which are the tensor product
of three roots and the remainder. The former can be written as the
sum over three roots A, u, v such that A+ u+v = 0. Hence [5, Chapter
ITI, Lem. 5.1] applies and leads to this portion of the sum totaling to
2riutv=0E1 ® Ey ® Ey Ny . The rest is straightforward.)

Hence (g, g*) defined with respect to equation (1) is a matched pair
of real Lie algebras. The next lemmas compute the necessary details
for g = su(2) which will be needed in the sequel.

LEMMA 2.2. (The example of g = su(2).) Let {e; = —z%a,-; I =
1,2, 3} be a basis of su(2) where

0 1 0 -1 10
=1 0) ==(00) »=( 2)

are the Pauli spin matrices. Using this basis we shall always identify
su(2) = R3 with Lie algebra structure given by the R3 vector product,
[€,E = & x &' For the space h = su(2)* we take basis {f; = —2i1w'}
where {w'} denotes the dual basis to the {e;}. The basis { f;} will always
be used to identify h = R3 also. Let the root system for su(2) be defined
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with choice of Cartan sub-algebra spanned by {es;}; then the bracket on
h defined by the associated solution of the MCYBE is

[,LIl=e3x (Ix1I)
and the actions a, B are

a()=¢x1, Bi(&) =1x (S xe3).

Proof. The Killing form in this basis is K(&,&') = —2& - & in terms
of the Euclidean R3 inner product. There are just two roots of sl(2, C)
which up to normalization are g1 = %(al F 103) and hence

r=3Yo,®0.-0_-®0;)+tK ' =1(101®0—10,®0y) + K.

Hence complexifying and using the bases {e;} and {f;} stated to iden-
tify gc and g¢ with C* we have

r(l)= -1 xe3+t1l.

Now ag(l)i = 32k lkekij€j = (£ x [); where ¢ is the totally antisym-
metric tensor with €53 = 1. Hence the bracket on g¢ is

[LIN=(=lxes+tl)xl'+('"xes+til')xl=e3x (I xI)

independent of ¢. Dualizing this gives §. The structure constants in
this basis are real; hence limiting /, /' to real values in this basis defines
the real Lie algebra 4 = g*, isomorphic as a vector space to the real
dual of g, and we also see that a and f restrict to give the matched

pair (g, g*).

LEMMA 2.3. (Description of H = SU(2)*.) (i) The simply-connected
group H of the Lie algebra h = su(2)* is the subgroup of GL(3,R) of
the form

1+ L; 0 0
Z = 0 1+L; 0);L3e(-1,00),L;,L€R};.

-L, -L, 1
The map r exponentiates to a faithful representation of H as the sub-
group of SL(2,C) defined by matrices

_ 1+Ly 0
{r(3)=(L3+1) 1/2(L1+1L32 1>;L3e(—1,oo),L1+szeC}.

Either of these identifies the solvable group H with a subspace of R3,
namely 3-tuples of the form (Ly, L,, L3) equipped with a non-standard
product structure, L - L' = L(Ly + 1) + L'.
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(ii) In the representation r(H), the Lie algebra basis vectors of Lem-
ma 2.2 are represented in sl(2,C) by

w=(3 5) =3 9) w=(3 7).

_ l 0) eb -1
r(expl) = e7b/? (1+(11+3112 0) ET)

(iii) The linear representations o and 8 of g on h and of h on g
respectively exponentiate to linear representations of G on h and of H
on g, according to

ax(l) =Rotx(l), Bz(S) =Z¢.

Here Rot: G — SO(3) and &% is in the defining representation as a
subgroup of GL(3,R), and I, & are viewed in R3 as given in Lemma
2.2.

and

Proof. We start with part (iii). The exponentiation to a,(/) = Rot
is well known. The Lie algebra action f;(£) given in Lemma 2.2 con-
stitutes a matrix representation of the Lie algebra /# as matrices of the

form
5 0 0
{(1)=(0 I O)}
-, -, 0

By induction one may compute higher powers of such matrices. In
this way one obtains

L0 0\ ., _
e(’)=l+(0 I3 O)e L

1, L o) B

This constructs the group H as a group of matrix transformations
exponentiating the Lie algebra action £;(&). Next, using the expression
for r given in the proof of Lemma 2.2, with ¢ = 1, one has r(f;) = 1e3
and similarly for the others. Exponentiating this matrix representation
along the lines above completes part (i) and part (ii).

Note that the basis {e;} for su(2) defined by the Pauli spin matri-
ces in Lemma 2.2 is particularly convenient for exponentiating to an
element of SU(2) and for applications in physics. The correspond-
ing element of SO(3) is easily obtained as follows. If x € SU(2) and
(&1,&2,E3) € R3 is viewed in su(2) as & = Y ¢e;, the corresponding
action of Rot, on R3 is given by & — x&éx~!. The identification of
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su(2)* with (/;,1,/3) € R3 is chosen so that the action o on su(2)* is
such a rotation of R3. The physical significance of this is discussed
briefly at the end of §4.

3. Exponentiation to Lie algebra actions of /2 on G and of g on H. In
this section we shall compute non-linear actions of 2 on G and of g
on H induced by matched Lie algebra actions «, f. Indeed, if the
corresponding vector fields [7, Chapter I, Prop. 4.1] {a;;¢ € g} on H
and {b;;/ € h} on G are to later exponentiate to actions of G on H and
H on G yielding a matched pair, then they must each obey an equation
obtained by suitably differentiating (x). This equation, equation (2)
for the {4;}, and a similar one for the {a;}, determines these vector
fields completely in terms of the Lie algebra actions « and f. This is
shown in the following theorem.

THEOREM 3.1. Let (h, g, a, B) be a matched pair of Lie algebras. Let
G, H denote the respective simply-connected groups of g, h. We denote
also by o (resp. B) the exponentiation of the linear Lie algebra action
to a linear action of G on h (resp. H on g). Then there exists a unique
smooth action b of h on G such that

(2) bi(xy) = Ry-by(x) + Lxbo _,(¥), bi(€)=0

where b, € TG is the vector field corresponding to action by | € h, e
denotes the group identity and Ry, and L, denote right and left transla-
tions in G. (Similarly there exists a unique action a of g on H obeying
an analogous equation.)

Indeed, given linear actions o on h and B on g the vector fields
{b;: | € h} are the unique smooth solutions of

(kx%)  dbjo Lx-& = (d(Ruby(X))E + Lx-Bo_,1)(§),  bi(e) =0.

(xx) for Bi([€,&') is the integrability condition for this. (xx) for az([1,1'])
is the additional condition that the solutions {b;} are an action of h on
all of G, i.e.

(b1, b1 ] = =by )
where the bracket on the left hand side is the Lie bracket in TG. (Sim-
ilarly for {a;: ¢ € g}.)

Proof. Differentiate (x) with respect to . at the identity e. This
gives the necessary equation (2) where b;(X) =ger %|oﬂexp 14(x) and
where we identify T,H = h. Differentiate this with respect to y at
y = e to give (x*%). Ly.& is the left-invariant vector field generated
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by & € T,G = g evaluated at x and a,(/) is the exponential of the
linear action a;(/). Differentiating again with respect to x and writ-
ing the commutator of two left-invariant vector fields in terms of the
Lie bracket on g, one has on evaluating at x = e, the integrability
condition (xx) for the derivatives {f;} of the {b;} at x = e. Here we
identified g = 7,G.

Conversely, write b;(x) = Ry-(B,(x)), where B;: G — g. The equa-
tion (+**) in terms of B, is

dB; = Adyx- B, _,1)(®) = w,.

Here w is the g-valued 1-form (Maurer-Cartan form on G) defined
by (w(x),Ly-&) = & for all x € G, £ € g. Because G is (connected)
simply-connected, the equation has a twice-differentiable solution iff
the right hand side, wj, is closed, and the solution is uniquely deter-
mined by B;(e). In fact, since w; is smooth, the solution when it exists
is smooth. Computing the exterior differential of wj,

dw; = Adx- ﬂax—l(l)(dw) +Adx-[0, Bo ) (@)]
+Ady- Bo_ . (1)(@)

since a,-1(/) refers to the action exponentiating the linear action a.
In this expression the exterior multiplication of g-valued one-forms is
assumed. Using the equations of Maurer and Cartan, dw = —%[w, ]
we see that dw; = 0 for all x € G, [ € h iff (x+) holds for S, for all
I = a,-1(l). Hence (x*x) has a unique solution iff (xx) holds for g;
for all / € h. For the resulting b, obeying (x+x) one may compute that
S(») = bi(xy) = Ry-by(x) — Lx-b,__,1)(v) as a function of y for each
fixed x, obeys df o Ly-& = d(R.f(y)) o&; hence f(¥) = Ry- f(e) and
so vanishes.

Note that the proof just given can be restated more concisely as
follows: Let a* denote the action of g on A* adjoint to a. Then
o* ® ad is an action of g on A* ® g. The equation (x*) for B;([,&'])
can then be stated concisely as f € Z(i@ad(g, h*®g) (i.e. a 1-cocycle).
Because G is (connected) simply-connected, this exponentiates to a 1-
cocycle on the group, namely, B € Z,.g44(G, h* ® g), cf. equation (2).
To actually compute the {B;}, one must solve a differential equation,
as described in detail above.

For the final part of the theorem we write b;(x) = Ly-(B;(x)), and
compute

(61, br)(x) = Lx+ o _, (1) (Bi(X)) = Lx+ Bo__, (1y(B:(x))
+ Lx-[By:(x), B/(x)].
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For this to equal —Ly-By;;1(x) one needs at the identity x = e that
B;(&) is a Lie algebra map. Assuming this and differentiating L, -, of
the above expression with respect to x one has, using (kxx),

Bie -1 0 an(&)
+ Ba_sa,_y(Br (X)) +Ba__, ) ([Bi(x), €N +[By (x),&1+Ba @ (&), Bi(x)] = = I'.

Meanwhile the differential of — By ;(x) is, using (**#) and the as-
sumption that f;(£) is an action,

[Ba_(1)(Bi(%)), €1 = [Ba_, (1y(B1:(x)); &1 = B _, (11,7 (€)
+[[Bl’ (X), B[(X)], é]'
On substituting (**) and Lemma 3.2 directly below, one finds that
these two expressions are equal, i.e. [b;,b;/] + by 1 has zero differen-
tial with respect to x. Thus, since it vanishes at x = e, it vanishes

everywhere. The next lemma therefore completes the proof of the
theorem.

LEMMA 3.2. Let (g,h,a, B) be a matched pair of Lie algebras as in
Theorem 3.1 and let {b;} be the resulting global solution of (xxx). Then

ax([,1']) = [ax(D), ax(I)] + ape-n(ax(l') — ap, x-1)(ax(]))
where b;(x) = Ly-(Bj(x)).

Proof. Since a, (/) is the exponentiation of the linear action « of g
on A, the differential of

f(x) = ax(l1,1) = ([ax (1), ax ()] + ap,(x-1) (ax(I")) — ap, (x-1y(ax(])))
is
df o Ly-& = e ([, 1']) = [ag(ax()), ax(I")] = [ax(]), oz (ox(I))]
— ap - (ee(ax(I)) = o B (x-1)1+ @) (@x ()
+ap, (x-1y(ee(ax()) + o B (x4 8o (&) (@x (1))-
By (##) for ag, this reduces to ax(f(x)). Therefore f(x) = ax(f(e))
and therefore vanishes. This completes the proof of the lemma, and
hence of Theorem 3.1.

It is therefore necessary to solve the differential system (xxx*). This
can be done either by analytic means or by algebraic methods.
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LeMMA 3.3. (Example of h = su(2)*, G = SU(2).) Using the nota-
tion and initial data { §;(£)} of Lemmas 2.2 and 2.3, the unique solution
of (xx*) on G = SU(2) is

bi(x) = Ry~ (I x (ax(e3) — e3)).

Proof. An explicit integral formula for the {;} (resp. {a;}) will
arise in the course of proving Theorem 4.2 below. Therefore we shall
content ourselves here with merely verifying the solution. For co-
ordinates on SU(2) we take an embedding in Euclidean space given
by a linear representation, the defining one,

e (B2,
X3 X4
This identifies the fibers of the tangent space also with M (2,C) by
&(x) = £i8/dx] for a vector field {. In particular, g C M(2,C) and
L,.¢& = x¢, Ry.& = &x as matrices. Write b;(x) = Ly-Bj(x) where
B;: G — T,G. Then (*xx) reads
a
dt
where a,-i(/) = x~!/x when / € R3 is viewed in su(2) (both g = su(2)
and & = su(2)* are identified with this R? as given in Lemma 2.2).
Using the formula (x¢)%(8/0x})x~! = —£x~! one can easily verify
the solution stated, namely B;(x) = x ™[/, xe3x~! — e3]x, as

dBj o x¢ = —[&, Bj(x)] + x7'[1, x[¢, e3]x ']

OBz(X(l + 1)) = [By(x),€1+ [x7Ix, [¢, e3]]

LEMMA 3.4. (Example of g = su(2), H = SU(2)*.) Using the nota-
tion and initial data {a: (1)} of Lemmas 2.2 and 2.3, the unique solution
of the equation corresponding to (x*%) for {a;} is

L 1 L-L
ag(.,fi”)-Ry~ (éXz—:;—_’-—l-iéxe:;m).

Proof. For co-ordinates on H we take the defining matrix repre-
sentation given in Lemma 2.3. For brevity we identify with matrix
& € H, the 3-tuple L € R3 as given. Writing a:(#) = Lg-A:(Z),
where A;: H — T.H, the equation corresponding to (***) becomes

d Lx(éxe3)>xll

7|, R E A+ ) = (42, 11+ (“ Ly+1
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on substituting the desired ag__, ¢ (/') from Lemmas 2.2 and 2.3. Dif-
ferentiating the solution stated recovers this. Some useful formulae
here are

4
dil,

where L(¢) is the 3-tuple corresponding to #(1 + t!') and where
—L/(L3 + 1) is the 3-tuple corresponding to .#~!.

Ly _

, d
L(t)=L13+l,, (L3+1)Eo—m-__

4. Exponentiation to a matched pair (G, H). In this section we ex-
ponentiate the actions of 2 on G and g on H to global actions of
H on G and G on H respectively. If {b;} are the vector fields on G
corresponding to the action of / then the global action, denoted f, is
required to obey

(% * %) d(B(x)) o Rzl =bp(B(x)),  Be(x)=x.

If such global actions integrating the {a} and {b} exist then they are
unique. The following theorems show that if one of G or H is compact
(more generally, if the corresponding vector fields are complete) then
both the global actions exist and (G, H) are indeed a matched pair of
groups. The first lemma shows that it is only necessary to construct
one of these actions in order to recover the other.

LEMMA 4.1. Let (g,h,a, B) be a matched pair of Lie algebras and
(G, H) the simply-connected groups of (g,h). Let {a:}, {b;} denote
the global vector fields corresponding to the induced Lie algebra actions
of g on H and h on G respectively. Let w denote the left-invariant
Maurer-Cartan form on H.

() If B is an action of H on G integrating {b} and the family of
h-valued one-forms

Ox(g) = aﬁg_l(x—l)—l(w)

are viewed in the standard way as connections on H x H — H, then
the expression

24
() = Pel. &
is well defined and obeys (x) for ax(Z#). Here Pefey % denotes parallel

transport by 6 along any piecewise differentiable curve starting at the
identity e and ending at % .
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(i) If B obeys (+) for B (xy) then & is an action integrating {a} and
hence (G, H, &, f8) is a matched pair of Lie groups.

Proof. (1) H x H may be regarded as a principal H-bundle over
H. With the standard direct product trivialization, i.e. global section
o: H — H x {e}, the connections on H x H may be identified with
the h-valued one-forms on H obtained by pull-back by ¢ [7, Chapter
I1, Lem. 2.2]. We show first that as such, the connections {0, : x € G}
have zero curvature (i.e. obey the Maurer-Cartan equations):

1
do, = Qg (x—1)-1 ("E[w, w]) + an(ﬁy_|(x—'))(aﬁy_l(x—')—'(w))

1
= - E[Hxa ex]

by Lemma 3.2. This is the geometrical picture of Lemma 3.2 and will
prove useful in what follows.

Now in the presence of any connection, each piecewise differentiable
curve {y(¢): t € [0, 1]} in the base H lifts to a curve in the total space
H x H, uniquely determined by its starting point in the fiber above
7(0) [7, Chapter II, Prop. 3.1]. The operation of parallel transport
along y is defined as the map from the fiber above y(0) to the fiber
above y(1) that maps the starting point to the endpoint. Since this
map commutes with right-translations of the fibers, and the fibers are
all identified by o, we may consider the map as left translation by an
element of H, i.e.

ped e n

is defined. It is independent of the path of integration since the cur-
vature of each 6, vanishes and by assumption 7;(H) = 0, so that
the holonomy group is trivial (cf. [7, Chapter 1I, Cor. 9.2]). From
this point of view, &, (%) is the global section é,: % — (&, ax(Z))
defined in this case by the flat connection 6.

y(t)e
From a more pedestrian point of view, a,(t) = Pefe 0 along a
given differentiable curve y denotes the unique solution in H of the
differential equation

B Luge a0 = (06001.2). a0 =e

That these exist and in our case depend only on the current end-
point &, (t) = a,(p(2)), follows from standard results about holonomy
groups, as quoted.
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(2) Next we compute

G ) = Pede (A

where .#’ runs along the path of integration and .#'~! d.#’ denotes
the Maurer-Cartan form at .#’. Choose the path of integration to
pass through .#. At this point let " = #~1.#'. Then " 1d.%" =
Z'-1d#" and after changing variables in the integration (i.e. in the
defining differential equation) we have

Y 4
as

d-x(“(f%) = dx(g)Pef; ﬂ(,sf"j”)—l(x_l)
= &X(g)&ﬁg—l(x—l)—l(/%)

—I(-Cf”_l dyu)

since f is supposed an ac}ion. This completes part (i) of the lemma.
(3) Next suppose that # obeys (). For each x let

f(,‘Z) = Gx-1(ax(Z)).
Then
d

df oLyl = <

a1, dx_l(dx(y)dﬁy_l(x_.)_l(exp tl'))

d| . .
= f(&) 7 a,;,&x(y)_l(x)_l(aﬁy_l(x_l)_l(exptl’))

by step (2). But @, () linearizes to ax about ¥ = e and the latter is
an action while the product ,Bg_l(x‘l)/f&x( #)-1(x) = e by (); hence
the right hand side is just d(R. f(¥))!'. Hence f(Z) = f(e)¥ = Z.
Thus

ax-1(ax(Z)) = 2.

(4) In fact & is an action. For, because &, is a bijection, in particu-
lar one may change variables in the path .2’ defining éy, (%) to & =
ay(Z"). By step (2) we have ¥"-1d¥" = aﬁy,_.(y—l)—'("?’_l dz".
This change results in the expression for ax(a,(-#)). (This part also
follows from the next theorem.) This completes the proof of the
lemma. In fact the hypotheses of part (ii) of the lemma can follow

automatically from part (i) leading to the next theorem.

THEOREM 4.2. Let (g,h,a, ) be a matched pair of Lie algebras
and G, H the simply-connected groups of g, h. If G is compact then
(G,H,a&, B) is a matched pair of Lie groups, where the actions &, B are
uniquely determined by a, f.
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Proof. (1) If the vector fields {b;: / € h} are all complete, for ex-
ample if G is compact [7, Chapter I, Prop. 1.6], then the Lie algebra
action b of 4 on G defines a local homomorphism

B: H — Diff(G)

(a local homomorphism is a map from a neighborhood of the identity
which respects the product of &, .# whenever &, #, £# are in the
neighborhood). This is because every generator of a one-parameter
family in H maps to a generator of a one-parameter family of dif-
feomorphisms and the generating vector fields {b,} are an involutive
distribution (cf. [7, Prop. 1.2]; more specifically, as in Theorem 3.1
we have [b),b;] = —by; ;). Now every local homomorphism from a
simply-connected topological group H to a topological group extends
to all of H [2, Chapter II, §vii, Thm. 3]. Thus § is defined as an action
of H on G and integrates b. Further details of this step can be found
in [15, Chapter 3, §6, Cor. 2]. This f is uniquely determined by {b}
since in local co-ordinates in a neighborhood of (e, x) in H X G, (**%x)
has a unique local solution so that the local homomorphism above is
unique. The extension given to all of H is then unique by [2, Chapter
II, §vii, Thm. 2].

(2) Because S is an action, part (i) of Lemma 4.1 applies, i.e. & is
well-defined. Let

Ye(x;8) = Ba__,(z-1-1(&),
(2,08 = Ly, s Belx(expi8)) - v (x:9).

We shall show that G vanishes. Thus we compute

dG(Z,x;E) o Rp-l' = — [Br (B2 (X)), G(Z, X;&) + Wz (x;€)]
+dB (B2 (X))(G(Z, x;¢) + Wz (x;E))
= Bo__. (-1 (Ba,_,(z-1)-1(£))

where b;.(x) = Ly-(B;/(x)) and where (0, Lo-l') = 6,(%; ') was used
according to equation (3). Substituting the equation (xx %) for d B, we
obtain

dG(Z,x;8) o Ra-l' = By _,(#-11/(G(Z, x;¢)).

Hence because G(e, x;¢) = 0 and G obeys a first order linear equation,
we have that G vanishes identically.

(3) Next we compute d(a(Z))oRy-& = @z(Gx(-Z)). In the definition
of & let the path .#'(¢) be .#'(0) = e, £'(1) = 2. For clarity we also
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denote left and right translations by juxtaposition. Then
az(ax(2))
! ~ 7] d 1/ 4\ ! -1 ot fy; 0x
= 0 dt ey (Z'(1)) s Oe(expsé)x(g (1); ()" Z(t))Pel=o

4
- / Gx( Py, (x-0) (0x)ax (Z) " 6x ()
e
(&)
= (/ Ady// * aﬂy”_l(é)(,i””_ld,?")) dx(a(/)
e

using step (2) and that a is an action, and then changing variables in
the integral to &” = a,("'). Here the associated change in integration
measure is 2"~ 1d.?" = aﬁyl_l(y_,)_,(_‘?"ld,?’) (since a: h — h is
an action, this is non-singular.)

Setting x = e, and differentiating with respect to . we see that
a; obeys the equation corresponding to (x*) for a; hence by the
uniqueness in Theorem 3.1 we have that a = a. Hence & integrates a
in the equation corresponding to (* x xx). Since & is globally defined,
the vector fields {a;} are therefore complete. Hence a defines a local
homomorphism which is & from G to Diff(H). Hence as in step (1),
& extends to all of G, i.e. is an action, integrating a.

(4) By Lemma 4.1(ii) applied to the action &, we have that

B (x) = Pel: v

where ¥+ = ¥ (w) and w is the left invariant Maurer-Cartan form
on G. This is because by the lemma the right hand side is an action in-
tegrating b and is therefore equal to § by uniqueness of f in step (1).
But this exhibits § as obeying (*) by Lemma 4.1(i). Thus (G, H, &, §)
is a matched pair integrating (a, b). These were in turn uniquely de-
termined by («, ). This concludes the proof of the theorem.

Note that compactness is sufficient but not necessary—we have just
proven that whenever one of the induced Lie algebra actions {a} or
{b} exponentiates to a global action then so does the other, and the
result is indeed a matched pair. We now compute as an example the
case G = SU(2), H = SU(2)~.

THEOREM 4.3. (A solution of the compatability conditions (x) for
G =SU(2) and H = SU(2)*.) The Lie algebra actions of Lemma 2.2
exponentiate via Lemmas 3.3 and 3.4 to actions of G on H and of H
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on G given explicitly by
(1)
r(&L)x (8 (1)) +r(Z)"tx (é 8)

r(&)x <8 ?) ,

where r—t is the conjugate gradient representation of the r given in
Lemma 2.3, and | |, denotes the matrix norm in SL(2,C). Note that
P: SL(2,C) — SU(2) defined by

- o 1) (o o)
(o 1)

is a projection map. In terms of it, fo(x) = P(r(Z)x).

(ii)
o 1LL 1 L-L
ax(i”)— 5m€3+R0tx (L—-2—L3+le3)

where H is identified with a subspace of R3 and Rot is the rotation
of R3, as given in Lemma 2.3. Thus & is a rotation of the 3-plane
{L € R3; Ly > —1} about a point dependent on the argument. These
actions render (SU(2),SU(2)*) a matched pair.

Bo(x) =

2

Proof. (i) In our standard matrix co-ordinates for SL(2,C), x =
(%1 %2), we have to solve X = [/, xe3x~! — e3]x where

X3 Xa
] = —ll 13 ll - 112
- 2\ +1, —13

is the vector / viewed in su(2). Writing / = /; + 1, € C the equation
becomes

_ 1 (7()(3)(4)(1 - ZXng) + ixlz)Q - 213X1.X2X3 7(—)62)(3)64) + ixlxzz - 213)(1)(2)(4 )
= 5 2 = .

I(x1x2%3) — 7x32x4 — 2l3x1x3x4 [(2x3x3 — x1x0%x4) + 7(—x3x42) — 2l3x3x4%)
From this one may compute
. . )
XoX4 — XaXp = I3(—X2X4) + Ix3,
. . ¥ 2 . .
x3X; — x1X3 = l3(—x1x3) — x5, X3% —x2%3=0.

(Since we are interested in the case x € SU(2), which is preserved
by the differential equation, we know that x; = X, x, = —X3.) For
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x € SU(2), if x3(0) = 0 or x,(0) = 0 then both vanish and hence by
inspection X = 0 so x = x(0). Otherwise we therefore have

xs _ xa(0) i _ ie"”’ -1 x3_ x3(0)
x3  x(0) L 7 x2 x(0)

Evaluating at ¢ = 1 and recalling that .¥ = exp/ is described by the
3-tuple L = I(e’ — 1)/15, we solve for —x;x3 = |x3|? to obtain x3 and
hence the other components. The result for initial data x is

(Xl — (L) —1Ly)x3 Xa(L3+ 1) )
3 ((Xl xz)) _ x3(L3+ 1) X4+ (L +1L7)x;
T\ x VIRP(Ls + 12+ x4 + (L + L)X

This can be written in the form stated in the theorem. The map P
conveniently maps x € SL(2,C) to

(%, 3)
—X7 X4
——"_=cS
VXl + |xal?

This completes the derivation of part (i).
(i1) In our standard co-ordinates we have to solve

_1L-L,
2L, +1°

First note that then L-L = 2L-L = (¢ x L) -e3L - L/(L; + 1) while
Ly =e3- (¢ x L). Hence the expression L-L/(L; + 1) is an invariant
of the motion, hence is equal to the initial value. Substituting this in
the equation to be solved immediately gives the solution. L - £ is also
an invariant.

(One may also check directly that these expressions are indeed ac-
tions. It is rather hard to check directly that they fulfill () as they must
by construction. However, this too has been verified by extensive com-
putations using the symbol manipulation package SMP.) These actions
are not free.

U(2).

L:éx(L

PROPOSITION 4.4. (i) The fixed points of the action B of H on G are
the diagonal subgroup {( "('f 6910); 6 [0, 2x]}.

(ii) The fixed points in H of the action Gy x of the subgroup of G
generated by & are the line {L;; 1 € R} in R3 defined by (-1, ) along
the es-axis in the case & «x e3 and otherwise by

L&) = (251, géz,z ~ 1)
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z=\/%+l€3+\/%+lé3+lzé-é.

The line passes through the origin where its tangent is &. The orbits of
the action are nonconcentric nested spheres in R3 of center (0,0,h): h >
0 and radius \/h(h + 2). Thus the action of SU(2) on H is qualitatively
a non-linear distortion of the standard rotation of R® with L, (&) playing
the role of axis of rotation.

where

Proof. (i) is evident from the co-ordinate expression for S+ (x) given
in the proof of Theorem 4.3. For (ii) we seek L in the subspace of
R3; L3 > —1 such that L(L3 + 1) — L - Le; = A¢ for some A € R.
Writing z = L3 + 1 the equation for L;, L, is as shown and in the e3
component it is z2(z% — 1) — 22243 = A2(&2 + &3).

In conclusion, putting together §§2-4 of this paper we have two
corollaries of Theorem 4.2 and its proof.

COROLLARY 4.5. Let G be a semi-simple simply-connected Lie group.
Let r be a solution of the MCYBE on gc the complexification of g the
Lie algebra of G such that there is a real form g* of g& and such that
the mutual co-adjoint actions of gc and g¢ restrict to g and g*. If the
vector fields of g* acting on G are complete then (G,G*) is a matched
pair. Here G* is the simply-connected group of g*.

We saw in Proposition 2.1 that when G is compact, a suitable r
and g* exist. We also note some elementary properties of the G* that
results for this particular r:

COROLLARY 4.6. Let G be a compact semi-simple simply-connected
Lie group. Then there exists a simply-connected Lie group G* of the
same dimension as G, such that (G, G*) is a matched pair.

ProOPOSITION 4.7. Let G be a compact semisimple Lie group and G*
the matching group defined with respect to the solution of the MCYBE
stated in equation (1). Then G* is non-compact and solvable.

Proof. This is an elementary computation from the definitions of the
bracket in g* and g¢ defined by the solution of the MCYBE stated in
equation (1). Details are omitted in view of the following connection
with the Iwasawa decomposition (see the note added at the end of
the paper). The bicrossproduct group G < G* for this solution of
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the MCYBE can be identified with the simply-connected group of gc
considered as a Lie algebra over R. The groups G and G* can then
be identified respectively with the compact and solvable groups in the
Iwasawa decomposition of this.

Note that one may also expect that a Lie algebra matched pair expo-
nentiates to a matched pair of groups in somewhat greater generality
than that stated in Corollary 4.5. The question of exponentiation of
Lie algebra actions on manifolds was studied in [15, Chapter 3 and 4],
where somewhat weaker conditions than compactness are formulated.
As remarked after the proof of Theorem 4.2, any time one of the Lie
algebra actions exponentiates we have a matched pair.

As an example we carried out the construction in detail in the case
G = SU(2). The problem is interesting also in the non-simple and non-
compact case. An example is the case G = R, H = R studied in [12,
Lemma 2.6] where (x) was solved completely. For even in this case
the solutions did exist, on a restricted domain, yielding bicrossprod-
uct semigroups R > Rs(. Further work will include attempting the
construction for each of the classical Lie groups (not just the com-
pact ones) and giving details of the associated bicrossproduct Hopf-
von Neumann algebras. These latter are interesting from the point of
view of non-commutative geometry and also from an interpretation
as the algebra of observables of a quantum system [13].

Note that in this physical picture the generator of translations in
a space is called momentum, for example “angular momentum” in
reference to the action of SU(2) on R3. What the construction of
a matched pair achieves is to modify the action of the momentum
group in such a way that the space that was acted upon can act back
on the space that was originally acting, in keeping with an interesting
physical principle of the German philosopher E. Mach [10, Chapter
2. v-vii]. Mach sought to generalize Newton’s third law in mechanics
(“every action has an equal and opposite reaction”) to a fundamental
philosophical principle of reciprocity in the actions of particles on the
motion of other particles, and vice versa. (These ideas led directly to
Einstein’s formulation of gravity.) It is only in modern times, with
the advent of quantum mechanics, that particle motion is expressed
in the simplest cases through group theory and algebra. Indeed, the
author’s original motivation for the present paper comes as part of
an attempt [13] [14] to update Mach’s ideas in a quantum mechanical
setting, see [12, §1.1] for a discussion. This physical motivation for
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bicrossproducts is in addition to the independent physical motivations
underlying [4] [17] [1] [6].

Note added. After this work was submitted for publication, there
appeared a new preprint [9] in which the basic properties of matched
pairs of groups and some of the results here, are developed indepen-
dently. I would like to thank M. A. Rieffel for sending me a copy of
this. M. A. Rieffel also alerted us both to reference [11] where some
basic properties of matched pairs of groups were noted somewhat pre-
viously. Corollary 4.6 and Proposition 4.7, obtained as an application
of our constructive method in the case of the specific solution (1) of
the CYBE, are deduced from the Iwasawa decomposition in the ap-
proach of [11] and [9]. Part of Theorem 3.1 also appears to have been
obtained independently in the preprint [8].
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