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NOTE ON THE INEQUALITY OF THE ARITHMETIC
AND GEOMETRIC MEANS

HAO ZHI CHUAN

We show how to insert a continuum of additional terms (defined by
an integral and depending on an arbitrary positive parameter) between
the two sides of the generalized arithmetic-geometric mean inequality
with weights. Applications give an inequality involving positive defi-
nite matrices and also a refinement of the inequality connecting the
inscribed and circumscribed radii of a triangle.

We suppose throughout that
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Then we have the well-known inequality of the means (e.g. [2, #9 ])
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Proof. For x > 0, we replace α7 by x + a.j in (2); then
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In addition, by Holder's integral inequality for n functions [2, #188 ],
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Multiplying (4) and (5) through by p and raising both sides to the
power -\/p, we obtain respectively the right and left sides of (3). D

REMARKS, (a) As examination of the proof of Theorem 1 shows,
there is strict inequality in each part of (3) unless α7 = a\ (j =

(b) If qx = - - - = qn = \jn in (3) then, for any p > 0,
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Suppose α( > 0 (z = 1 , . . . , m 7 = 1 , . . . , n) then ([2, #11 ])
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If we then use αy := X)^! α/7 in (3) and combine (6) with the left
side of (3), we obtain the apparently more general result (reducing to
(3) for m = 1):

COROLLARY 1.1. Let α/7 > 0 (/ = 1, . . . , m j = 1, . . . , n), p >

0. Then
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If A is a real positive definite n x n matrix (namely the quadratic
form vAυ is positive for all non-trivial n-vectors υ ) then it is well
known that the eigenvalues aj (j = 1, . . . , « ) are all positive. In-
deed, since the a,j are the solutions of the polynomial equation
\λl - A\ := det(/l/ - A) = 0, we clearly also have

n

\xl + A\ = Y[ (x + dj) for any x eR.

From this equation (x = 0) and the definition of the trace, we there-
fore have

7 = 1

Using these aj in (6), we then obtain
7=1

C O R O L L A R Y 1.2. Let A be a real positive definite nxn matrix and
p>0. Then
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There is an analogue of this result similar to Corollary 1.1; replace
A by Σ!JL\Ai in Corollary 1.2 and use Minkowski's inequality for
positive definite n x n matrices (e.g. [1, p. 70, Theorem 15]), that

Σ*
1=1

(this is really (7) in disguise, with q\ = = qn = 1/n). We obtain
immediately

COROLLARY 1.3. Let Ai (i = 1, . . . , m) be real positive definite
nxn matrices, and p > 0. Then
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(10) dx

As a further application of Theorem 1, we show how to insert addi-
tional terms between the two sides of Euler's inequality 2r < R (e.g.
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see [3, p. 79] or [4, v.2: §17.3, p. 161]) connecting the circumscribed
radius R and the inscribed radius r of a triangle. If the triangle has
angles A, B, C with sides a, b, c opposite these angles, and area Δ,
then, using the sine rule,

a + b + c >a+b+c
κ J 2(sin^ + s in^ + sinC) "

A l s o
2r(a + b + c) = 4Δ < Vϊ(abc)2'3

(see [4, v.2: §17.3, pp. 161, 372]) and so, by the arithmetic-geometric
mean inequality,

Now, by (11), (12) and (6), we have:

COROLLARY 1.4. Ifa,b,c are the sides of a triangle, with inscribed

radius r and circumscribed radius R, then, for any p > 0,

(13) 2rV3 < (abc)V3 < J(a, b, c p) <Ua

where

-l/p

[(x+a)(x + b)(x ( 1 ) / 3 |

There is strict inequality throughout (13) unless a — b = c.

I wish to thank D. Russell for assistance in English language pre-
sentation and for improvements of some details in the results.
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