NOTE ON THE INEQUALITY OF THE ARITHMETIC AND GEOMETRIC MEANS

Hao Zhi Chuan

We show how to insert a continuum of additional terms (defined by an integral and depending on an arbitrary positive parameter) between the two sides of the generalized arithmetic-geometric mean inequality with weights. Applications give an inequality involving positive definite matrices and also a refinement of the inequality connecting the inscribed and circumscribed radii of a triangle.

We suppose throughout that
(1) $n \in \mathbb{N}$ and $a_{j}>0, \quad q_{j}>0(j=1, \ldots, n), \quad q_{1}+\cdots+q_{n}=1$.

Then we have the well-known inequality of the means (e.g. [2, \#9])

$$
\begin{equation*}
\prod_{j=1}^{n} a_{j}^{q_{j}} \leq \sum_{j=1}^{n} q_{j} a_{j}, \tag{2}
\end{equation*}
$$

with equality if and only if $a_{j}=a_{1}(j=1, \ldots, n)$.
Theorem 1. If (1) holds and if $p>0$, then

$$
\begin{equation*}
\prod_{j=1}^{n} a_{j}^{q_{j}} \leq\left\{p \int_{0}^{\infty}\left[\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}}\right]^{-p-1} d x\right\}^{-1 / p} \leq \sum_{j=1}^{n} q_{j} a_{j} \tag{3}
\end{equation*}
$$

Proof. For $x \geq 0$, we replace a_{j} by $x+a_{j}$ in (2); then

$$
0<\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}} \leq \sum_{j=1}^{n} q_{j}\left(x+a_{j}\right)=x+\sum_{j=1}^{n} q_{j} a_{j} .
$$

Hence (for $p>0$)

$$
\begin{align*}
& \int_{0}^{\infty}\left[\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}}\right]^{-p-1} d x \tag{4}\\
& \quad \geq \int_{0}^{\infty}\left[x+\sum_{j=1}^{n} q_{j} a_{j}\right]^{-p-1} d x=\frac{1}{p}\left(\sum_{j=1}^{n} q_{j} a_{j}\right)^{-p}
\end{align*}
$$

In addition, by Hölder's integral inequality for n functions [2, \#188],

$$
\begin{align*}
& \int_{0}^{\infty}\left[\prod_{j=1}^{n}\left(x+a_{j}\right)^{q_{j}}\right]^{-p-1} d x=\int_{0}^{\infty} \prod_{j=1}^{n}\left[\left(x+a_{j}\right)^{-p-1}\right]^{q_{j}} d x \tag{5}\\
& \leq \prod_{j=1}^{n}\left[\int_{0}^{\infty}\left(x+a_{j}\right)^{-p-1} d x\right]^{q_{,}} \\
& \quad=\prod_{j=1}^{n}\left[\int_{0}^{\infty}\left(x+a_{j}\right)^{-p-1} d x\right]^{q_{j}}=\prod_{j=1}^{n} \frac{1}{p}\left(a_{j}\right)^{-p q_{j}}
\end{align*}
$$

Multiplying (4) and (5) through by p and raising both sides to the power $-1 / p$, we obtain respectively the right and left sides of (3).

Remarks. (a) As examination of the proof of Theorem 1 shows, there is strict inequality in each part of (3) unless $a_{j}=a_{1}(j=$ $1, \ldots, n)$.
(b) If $q_{1}=\cdots=q_{n}=1 / n$ in (3) then, for any $p>0$,
(6)

$$
\begin{aligned}
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & \leq\left\{p \int_{0}^{\infty}\left[\left(x+a_{1}\right) \cdots\left(x+a_{n}\right)\right]^{-(p+1) / n} d x\right\}^{-1 / p} \\
& \leq \frac{1}{n}\left(a_{1}+\cdots+a_{n}\right)
\end{aligned}
$$

Suppose $a_{i j}>0(i=1, \ldots, m ; j=1, \ldots, n)$; then $([2, \# 11])$

$$
\begin{equation*}
\sum_{i=1}^{m} \prod_{j=1}^{n} a_{i j}^{q_{j}} \leq \prod_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j}\right)^{q_{j}} \tag{7}
\end{equation*}
$$

If we then use $a_{j}:=\sum_{i=1}^{m} a_{i j}$ in (3) and combine (6) with the left side of (3), we obtain the apparently more general result (reducing to (3) for $m=1$):

COROLLARY 1.1. Let $a_{i j}>0(i=1, \ldots, m ; j=1, \ldots, n), p>$ 0. Then

$$
\begin{align*}
\sum_{i=1}^{m} \prod_{j=1}^{n} a_{i j}^{q_{J}} & \leq\left\{p \int_{0}^{\infty}\left[\prod_{j=1}^{n}\left(x+\sum_{i=1}^{m} a_{i j}\right)^{q_{j}}\right]^{-p-1} d x\right\}^{-1 / p} \tag{8}\\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{n} q_{j} a_{i j}
\end{align*}
$$

If A is a real positive definite $n \times n$ matrix (namely the quadratic form $v A v$ is positive for all non-trivial n-vectors v) then it is well known that the eigenvalues $a_{j}(j=1, \ldots, n)$ are all positive. Indeed, since the a_{j} are the solutions of the polynomial equation $|\lambda I-A|:=\operatorname{det}(\lambda I-A)=0$, we clearly also have

$$
|x I+A|=\prod_{j=1}^{n}\left(x+a_{j}\right) \quad \text { for any } x \in \mathbb{R}
$$

From this equation $(x=0)$ and the definition of the trace, we therefore have

$$
|A|=\prod_{j=1}^{n} a_{j}>0, \quad \operatorname{tr} A=\sum_{j=1}^{n} a_{j}
$$

Using these a_{j} in (6), we then obtain
Corollary 1.2. Let A be a real positive definite $n \times n$ matrix and $p>0$. Then

$$
\begin{equation*}
|A|^{1 / n} \leq\left\{p \int_{0}^{\infty}|x I+A|^{-(p+1) / n} d x\right\}^{-1 / p} \leq \frac{1}{n} \operatorname{tr} A \tag{9}
\end{equation*}
$$

There is an analogue of this result similar to Corollary 1.1; replace A by $\sum_{i=1}^{m} A_{i}$ in Corollary 1.2 and use Minkowski's inequality for positive definite $n \times n$ matrices (e.g. [1, p. 70, Theorem 15]), that

$$
\sum_{i=1}^{m}\left|A_{i}\right|^{1 / n} \leq\left|\sum_{i=1}^{m} A_{i}\right|^{1 / n}
$$

(this is really (7) in disguise, with $q_{1}=\cdots=q_{n}=1 / n$). We obtain immediately

Corollary 1.3. Let $A_{i}(i=1, \ldots, m)$ be real positive definite $n \times n$ matrices, and $p>0$. Then

$$
\begin{align*}
\sum_{i=1}^{m}\left|A_{i}\right|^{1 / n} & \leq\left\{p \int_{0}^{\infty}\left|x I+\sum_{i=1}^{m} A_{i}\right|^{-(p+1) / n} d x\right\}^{-1 / p} \tag{10}\\
& \leq \frac{1}{n} \operatorname{tr}\left(\sum_{i=1}^{m} A_{i}\right)
\end{align*}
$$

As a further application of Theorem 1, we show how to insert additional terms between the two sides of Euler's inequality $2 r \leq R$ (e.g.
see [3, p. 79] or [4, v.2: §17.3, p. 161]) connecting the circumscribed radius R and the inscribed radius r of a triangle. If the triangle has angles A, B, C with sides a, b, c opposite these angles, and area Δ, then, using the sine rule,

$$
\begin{equation*}
R=\frac{a+b+c}{2(\sin A+\sin B+\sin C)} \geq \frac{a+b+c}{3 \sqrt{3}} \tag{11}
\end{equation*}
$$

Also

$$
2 r(a+b+c)=4 \Delta \leq \sqrt{3}(a b c)^{2 / 3}
$$

(see [4, v.2: §17.3, pp. 161, 372]) and so, by the arithmetic-geometric mean inequality,

$$
\begin{equation*}
2 r \leq \frac{\sqrt{3}(a b c)^{2 / 3}}{a+b+c} \leq \frac{\sqrt{3}(a b c)^{2 / 3}}{3(a b c)^{1 / 3}}=\frac{(a b c)^{1 / 3}}{\sqrt{3}} \tag{12}
\end{equation*}
$$

Now, by (11), (12) and (6), we have:
Corollary 1.4. If a, b, c are the sides of a triangle, with inscribed radius r and circumscribed radius R, then, for any $p>0$,

$$
\begin{equation*}
2 r \sqrt{3} \leq(a b c)^{1 / 3} \leq J(a, b, c ; p) \leq \frac{1}{3}(a+b+c) \leq R \sqrt{3} \tag{13}
\end{equation*}
$$

where

$$
J(a, b, c ; p):=\left\{p \int_{0}^{\infty}[(x+a)(x+b)(x+c)]^{-(p+1) / 3} d x\right\}^{-1 / p}
$$

There is strict inequality throughout (13) unless $a=b=c$.
I wish to thank D. Russell for assistance in English language presentation and for improvements of some details in the results.

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin-Heidel-berg-New York: 4th printing, 1983.
[2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, University Press, Cambridge (2nd edn. reprinted), 1988.
[3] N. D. Kazarinoff, Geometric Inequalities, Random House, New York, 1961.
[4] G. Pólya and G. Szegö, Problems and Theorems in Analysis, vols. 1,2. SpringerVerlag, Berlin-Heidelberg-New York: English translation, 1976.

Received July 15, 1988.
Economic Information Department
Gui-Zhou Finance \& Economic Institute
People's Republic of China

