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TRIANGLE IDENTITIES AND SYMMETRIES
OF A SUBSHIFT OF FINITE TYPE

J. B. WAGONER

We prove the group Aut(σ^) of symmetries of a subshift of finite
type is isomorphic to the fundamental group of the space R S ( ^ ) of
strong shift equivalences built from the algebraic RS Triangle Iden-
tities for zero-one matrices which arise from triangles in the con-
tractable simplicial complex of Markov partitions. Moreover, we show
the higher homotopy groups of RS(<§ )̂ are zero. RS(<§ )̂ is therefore
homotopy equivalent to the classifying space of Aut(σ^).

1. Introduction and statement of results. First we briefly review
Williams' strong shift equivalence criterion for conjugacy of subshifts
of finite type. See [3, 4, 8]. Let A: S^xS* -+{0, 1} and B\J~xF"->
{0? 1} be zero-one matrices on the finite state spaces S? and SΓ. An
elementary strong shift equivalence

is a pair of zero-one matrices R: 5? x F -> {0, 1} and 5 : 7 χ y - ^
{0,1} satisfying

RS = A and SR = B.

Let (XA , a A) and (XB , oB) be the subshifts of finite type (SFT) con-
structed from A and B respectively. The strong shift equivalence
(R, S) gives rise to an elementary symbolic conjugacy

defined as follows: Let x = {xn} be in XΛ. Then y = c(R, S)(x)
is the unique point y — {yn} in XB such that 1 = A(xn, xn+\) =
R(Xn 9 yn)S{yn 9 Xn+\) f° r aH n - Similarly, one has

c(S9R):XB^XA

and it is easy to verify the identities

c(S, R)c(R ,S) = σA and c(R, S)c(S, R) = σB

which show that c(R, S) and c(S, R) are conjugacies. More gener-
ally, let I? denote the set of zero-one matrices on finite state spaces.
We shall assume that any matrix in I? has at least one non-zero entry
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in each row and in each column. Williams defined A and B to be
strong shift equivalent in % provided there is a chain of elementary
strong shift equivalences from A to B through intermediate matrices
in IP. The composition of the corresponding elementary conjugacies
gives a conjugacy from (XA, σA) to (Xβ, σ#). Williams' proof of the
converse that conjugacy implies strong shift equivalence brings in the
set PA of Markov partitions for σA on XΛ. In [8] PA is given the
structure of a locally finite simplicial complex in which each Markov
partition is a vertex, and the key step in Williams' argument really
amounts to showing that PA is connected. In fact, PA turns out to
be contractable [8], and in this paper we make use of the fact that it
is simply connected to prove (1.5) and contractability to prove (1.13)
below.

The definition of Markov partition used in [8] for PA is the one
in [5]. A similar theory goes through using the Markov partitions by
rectangles as presented, say, in [4, p. 100]. Let U = {£//} be in PA

and let M = M(U) = {M(i, j)} be the zero-one matrix where

M(i,j) = l iff UiΠσ2ι(Uj)φ0.

For example, A = M{UA) where UA = {Uf} is the "standard"
Markov partition with Uf equal to the cylinder set of those x = {xn}
such that XQ = i. Let V = {Vk} also be in PA . Define zero-one ma-
trices R = R(U, V) = {R(i, k)} and S(V, U) = {S(k9 /)} by the
formulas

R(i9 k)=l if and only if UiΠVkφ0,

S(k ,/) = ! i f and only if Vk n σ~x(t/,) φ 0 .

Write U < V to mean that V refines U. As in [8] we write U -» V

provided U < V < U Π σ^ι(U), and we write U -* V provided

U < V < σA(U) n U. Finally, we write U -> V iff U -> U ΠV *- V.

An (ordered) 1-simplex of PA is a pair [£/, V] where U Φ V and
U -> F . Let P = M(U), β = M(V), and i? and S be as above. It
was shown in [8] that

P = RS and Q = SR

whenever U —• F that is, (R, S): P -+ Q. In particular, connectiv-
ity of P^ implies the transition matrices M(U) and A/(F) of any
two Markov partitions U and F in PA are strong shift equivalent
in &. To finish off the outline of Williams' proof, let a: (XA , σA) ->
(̂ Γg, σu) be a topological conjugacy. Let C/ = {£//} be in P^ where
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i runs through an indexing set / . Then a(U) = {α(C//)} is in Pβ.
In fact, let V = {Vk} be in Pβ where /: is in the index set K, and
suppose we have F = α(C/); that is, each Vk = α(C//) for exactly
one Ui. Then a gives a bijection α: / —• K. Throughout this paper
we will follow the convention that a also denotes the K x I permu-
tation matrix with a(k, ί) — 1 iff a(i) = k. Let P = M(U) and
Q = M(V). Since UiΠσ^ι(Uj)φ0 iff a{Ui) n σ~ι(a(Uj)) ^ 0, we
have <2 = α ^ α " 1 . Therefore

(a~ι, aP): P-+Q.

Hence A is strong shift equivalent to B.
Let A\x\(σΛ) be the group of symmetries of (XA, σA). By defini-

tion, this is the group of homeomorphisms of XA which commute
with σA . It is discrete in the topology of uniform convergence, be-
cause σA is expansive. See [1, 2, 8] for some recent information
about this group. The preceding discussion suggests that elements of
Aut(σ^) can be described as products of various elementary conjuga-
cies c(R, S) modulo certain relations. This turns out to be the case,
and a very natural set of relations which do work come from triangles
in PA.

By definition a triangle in PA is an ordered triple [U, V, W] of
Markov partitions such that U —• V, V —> W, and U —> W. Let

M = M(U), P = M(V), Q = M(W),

RX=R(U9V)9 SY=S(V9U)9

[ ' j R2 = R(V9W)9 S2

S3 = S(W9U).

In §2 we will verify the RS Triangle Identities:

(1.2) R{R2 = R3, R2S3 = S{, S3R{=S2.

Upon either multiplying the second equation on the left by S2 or by
multiplying the third equation on the right by S\, we derive the SS
Triangle Identities found in [8]:

(1.3)
V ^ S S QS = S3M.

DEFINITION 1.4 The space RS(i?) of strong shift equivalence in %
based on the RS Triangle Identities is the geometric realization of the
simplicial set where an ^-simplex consists of the following data:

(a) an (n + l)-tuple (AQ , . . . , An) of square matrices in % and
(b) for each i < j a strong shift equivalence (i? / ;, Sji): Λ —• Aj in
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% such that the RS Triangle Identities hold for i < j <k\ that is,

The face operators are the usual forgetful ones and the degeneracies
insert the strong shift equivalence (1, At) from At to itself. See [6]
or [7] for background on simplicial sets and CW complexes. It is
immediate from the definition that the set of components
is exactly the set of strong shift equivalences in <§*.

THEOREM 1.5. There is an isomorphism

The explicit formula for Φ^ is given in (3.5) and (3.8) below.
For any strong shift equivalence (R, S): P -• Q, let γ(R, S) de-

note the corresponding homotopy class of paths from P to Q in
RS(1?). Elementary arguments in algebraic topology show that ele-
ments γ in 7Γi(RS(IT), A) can be represented as products

(1.6) V f

where e, = ± 1 . The defining relations are

γ(R9S)γ(R9S)-ι =

and

whenever the RS Triangle Identites hold; that is,

(1.7)

is a triangle in RS(I?). Given this presentation of π\ (RS(i"), A), the
inverse
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of <E>Λ is easy to describe: namely, Θ^ takes the product (1.6) to

(1.8) \-ε

where composition is read from right to left. That this is well defined
follows immediately from

LEMMA 1.9. Suppose (Rx, S\): M -+ P, (R2, S2): P -> Q, and
(R3,S3): M -+Q. Assume that R{R2 = i?3. Then

if and only if R2S3 = S\ and S3RX = S2.

The first equation of the RS Triangle Identities is very reasonable.
This lemma shows that the last equations, which were harder to guess,
are exactly what is needed to make composition of elementary conju-
gacies behave well around a triangle.

There is also the space SS(f) of strong shift equivalence in % based
on the SS Triangle Identities with the same face and degeneracy opera-
tors as used for RS(^). Since the RS Identities imply the SS identities,
there is a natural continuous map

RS(r) -> SS(g?).

The set of components πoίSS^)) is also the set of strong shift equiv-
alence in % and the induced map ττo(RS(l?)) —• πo(SS(ί?)) is a bijec-
tion. The commutative diagram (4.30) of [8] expands to

(1.10)

πi(RS(r),Λ)

"πi(SS(r),^)

,A)

where S(^) is the space of shift equivalences of non-negative inte-
gral matrices. It was shown in [8] there is an isomorphism between
πχ(S(¥)9 A) and the group Aut(sA) = Aat(G(A)9 G(A)+,sA) of order
preserving automorphisms of the dimension group G(A) which com-
mute with the automorphism sA induced on G(A) by A. The Finite
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Order Generation Conjecture (FOG) can therefore be reformulated to
state

The kernel of

( 1 . 1 1 ) δA:πι(KS(P),A)-+πι(S(¥)9A)

is generated by elements of finite order.
In [9] we use the spaces RS(ί?) and S(W) together with methods of

this paper to prove the following eventual version of this conjecture:

Eventual fog 1.12. Let a be in ker(^). There is an integer ko > 1
such that if k > ko, then a is a product of homeomorphisms of XA

of finite order which commute with σ^ .

In the proof of (1.12) given in [9], the integer ko seems to depend
on a and the product expressions are possibly different for different
k. Of course, FOG conjectures that we can take ko = 1, in which
case the product expression for k = 1 works for all k. M. Boyle
has shown a in (1.12) is a product of just two finite order elements
commuting with a\ for large k, although in practice one must take
k larger than ko to do this.

In §4 we prove

THEOREM 1.13. ππ(RS(F), 4) = 0 for n > 2.

For simplicity, we assume throughout this paper that all the ma-
trices in I? are finite. However, (1.5) and (1.13) generalize without
change when % consists of infinite matrices in one of the three classes
considered in (4.1) of [8]. There is also a stochastic version for sym-
metries of (XA , a A) which preserve a σA -invariant Markov measure.

2. Proof of the RS triangle identities. Consider the triangle

(2.1)

u

in PA with the corresponding matrices (1.1). The equation R1R2 =
i?3 was verified in (3.3) of [8]. So it remains to prove the last two
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equations in (1.2). As in §3 of [8] this subdivides into 9 triangles

(2.2)

As in (3.9) of [8] we have U Γ)W = UnVnW and the diagram

v

(2.3)

The first step is to verify the RS Triangle Identities for each triangle
in (2.3). In all that follows, "LHS" is the left hand side of an equation
and "RHS" is the right hand side. Let σ = σA .

Triangles #1, #3, #4, #7:
These are all of the form

U nW



188 J. B. WAGONER

(I) S , =
LHS: 5,((/,p), j) = l iff Ut Γ)WPΓ)σ~\Uj) φ 0.
RHS: The term R2((i, p), q)S3(q, j) = 1 iff Ϊ7, nWpnWq^0 and

In particular <? = /? so there is at most one non-zero term and the
RHS is a zero-one matrix.

Write

Ui = (Jσ(Wa) n Wb, Uj = [Jσ(Wc) n Ŵ

Assume RHS / 0. Then Ut Γ\ Wp ψ 0 implies some b = p and
^ n σ " ' ( [ / j ) ^ 0 implies some c = q=p. Therefore,

UiΠσ-^C/y) D σ(Wa)nWpnσ-ι(Wd)φ0

for some a and some d. This shows C/, n WpΠσ~'(ί7/) Φ 0 implying
LHS ?έ 0. Conversely, suppose that LHS Φ 0. Then Ut n Wp n
σ~\Uj) φ 0. Let q =p. Then UiC\WpnWq φ 0 and ^
0 implying RHS φ 0.

(II) S 2 =
LHS:5 2(p,C/»0)) = l iff ^ na~l(Uj) Γ)σ-ι(Wq) φ 0 .
RHS: Consider a single term ^3(p, i)R\(i, (j, q)). This is equal to
1 iff Wp n σ~'(£//) ^ 0 and 17, n C/j> n Wq φ 0 which implies i = j
and Ui D Uj n ^ .

Thus there is at most one / giving a non-zero term on the RHS,
and so 53*1 is a zero-one matrix.

Now write

wp = \Juana~i(ub),
Assume RHS Φ 0. Then / = j and

implying some b = j . Similarly,

Uj nwq = \JUjΓ\Uen σ~ι(Uf)

implying some e = j . Therefore,

for some a and some / . Hence LHS Φ 0. Conversely, suppose
LHS φ 0. Then Wp n σ~ι (Uj) φ 0 and Uj Γ\UjΓ\Wqφ0 implying
R H S ^ O .
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Triangles #5, #6:
These are of the form

where all ε = ± 1 are equal.
First, we give the argument for ε = + 1 .

(I) S{=R2S3.
LHS: Si (A:, i)φθ iff Vkna~l(Ui) φ0.
RHS: R2(k, p)S3(p, i)φθ iff VknWpφ0 and Wp na~l(Ui) φ 0 .

We claim that RHS is a zero-one matrix. Given k, choose
some j such that R{(j\ k) φ 0. Then i^O*, k)R2{k, p)S3(p, i) =
^3(7 ? P)S?>(P 9 ί) Since .R3S3 = <2 is a zero-one matrix, there can be
at most one p for which this term is non-zero.

Assume LHS φ 0. We have W < Una~l(U) < Vnσ~ι(U).
So choose the unique index p with Wp D VkΠσ~ι(Ui). Then Vk n
»^ ^ 0 and H^ n α-^t//) ^ 0 implying RHS φ 0. Conversely, let
RHS 7̂  0. Since V <W, VknWp φ 0 implies J^ D ίF p . Thus

-ι((7/) ^ 0 implies KΛ n α-^ί//) φ 0 . This shows LHS φ 0.Wp Π σ-ι((7/)

(II) S2 =
iff

iff i) φ0 and

Since J7 < V, we have C// D ^ and thus / is determined by k . This
shows RHS is a zero-one matrix.

Assume LHS Φ 0. Let / be such that £// D Γ̂  . Then Ŵ  n
o-^C//) φ 0 and C// nVkφ0 showing that RHS φ 0. Conversely,
suppose RHS Φ 0. Then Uι D Vk as remarked above. Write

The condition Ŵ  n σ~ι(Ut) Φ 0 implies some b = i. Hence,

Wp Π σ-\Vk) DUaΠ σ-\Ui) Π σ'2(Ud) φ 0

for some a and some rf. Thus LHS Φ 0.
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Next, we give the argument for ε = — 1. Remember that now
Ri = R(W, V), R2 = R(V, U), R3 = R{W, U), etc.

(I) S{=R2S3,
LHS:Sι(k,p)φ0 iff Vkr\σ'x{Wp)φ0.
RHS: R2(k, i)S3(i, p) φ 0 iff Vk n Ut φ 0 and Ut n σ~ι {Wp) φ 0 .

We claim that RHS is a zero-one matrix. Given k and /7, choose
some q such that R\(q, k) ΦO. Then

Rx{q, k)R2{k, i)S3(i,p) = R3(q, i)S3(i,p).

Since R3S3 = Q is a zero-one matrix, there can be at most one / for
which this term is non-zero.

Assume LHS φ 0. We have V < Unσ~ι{U) < Vnσ~\W).
So choose the unique index i with U, D ̂  n σ ~ ' ( ^ ) Φ 0 . Then
Vk Γ\Uiφ0 and UiCίσ-χ{Wp)φ0 implying RHS φ 0. Conversely,
the RHS^O. Write

WP = \J σ(Ua) ΠUb, Vk=\J σ(Uc) ΓΊ Ud.

Since VknUi Φ 0, some ύf = /. Also UiΠσ~ι(Wp) Φ 0 implies
some a — i. Therefore

Vknσ-ι(Wp)Dσ(Uc)DUinσ-ι(Ub)φ0

for some c and some b. Thus LHS ̂  0.

(II) S2=
LHS: S2(i,k)φ0 iff Ui nσ~ι(Vk) φ 0.
RHS: Si(i,p)R{(p,k)φθ iff UtΠσ-

We claim that RHS is a zero-one matrix. Given / and k, choose
some j such that R2(k, j) φO. Then

Si(i,p)Rι(p,k)R2(k,j)=S3(i,p)R3(p,j).

Since S3R3 = Λf is a zero-one matrix, there can be at most one p for
which this term is non-zero.

Assume LHS φ 0. We have fF < σ(U) Γ)U < σ(U)ΠV. Let p be
the unique index where Wp D σ(Uj)Γ\Vk φ0. Then UiΠσ-ι(Wp) Φ 0
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and WpΓ\Vk φ 0 . This says RHS φ 0. Conversely, assume RHS Φ 0.
Since V < W, we must have WpcVk. Hence UiΠσ~ι(Vk)φ0 and
LHS ^ 0.

Triangle #2:
This triangle is of the form

(I) Sι=R2S3.
LHS: Si (k ,i)φθ iff F*. n σ " 1 (17/) # 0 .

RHS: Λ 2 ( £ , />)S3(/> ,i)φθ iff VkΓ)Wpφ0 and ^ n σ " 1 (Ui) # 0 .

The RHS is a zero-one matrix. To see this, choose j so that

= 1. Then RiV, k)R2(k, p)S2(p, i) = R3(J, p)S3(p, i). Since
R3S2 = M is a zero-one matrix, there is at most one p giving a
non-zero term.

Assume LHS φ 0. We have PF < V n σ - 1 (^) < F n σ-^C/). So
choose p with Wp D Vkn a~l(Ui) Φ 0 . Then Ffc Π Wp Φ 0 and
^ n σ-\Ui) φ 0 and RHS φ 0. Conversely, suppose RHS φ 0.
Then Ffc D ̂  and Ffc n σ~ι (C/, ) ̂  0 . This gives LHS # 0.

(II) 5 2

LHS: S2(p, k) φ 0 iff Wp Π σ- 'TO 7̂  0 .
RHS: S3(p, i)Rι(i, k) φ 0 iff Wp n ff-H^i) # 0 and

The RHS is a zero-one matrix. To see this, let q be any index where
R2(k, q) φ 0. Then 53(p, ϊ)R\(i, k)R2(k, q) = S3(p, 0*3(1, «).
Since 53i?3 = Q is zero-one, there is at most one / for which the
term is non-zero.

Assume LHS φ 0. We have U < σ{V) n F < σ(W) n F . Let / be
the index for which l/f D ( 7 ( ^ ) n F t / 0 . Then ^ n σ~ι{Ui) φ 0
and Ui Γ) Vk φ 0 . This shows RHS ^ 0. Finally, let RHS φ 0.
Then Ui c Vk, because C/ > F . Therefore Wp C\σ~x(Vk) Φ 0 and
LHS^O.

This completes the argument for the triangles in (2.3). We now
show how these combine to prove the RS Identities for (2.1). From
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(2.2) we have the diagram of three triangles

(2.4)

Step 1. We will show the RS Identities for Triangles A, B, and C in
(2.4) imply the RS Identities for (2.1).

(I) S(V, U) = R(V, W)S{W9 U)Ί

Since U < t / n F , the matrix R(U, UnV) has exactly one non-zero
term in each column. Therefore, the above equation holds provided
it holds when multiplied on the right by R(U, U Π V). We have

s(v, U)R(U, unv) = s(v, unv)
and

R(V, W)S{W, U)R(U, UΓ)V)=R(V, W)S{W, UnV)

= S(v, unv)
(II) S{W9 V)=S(W, U)R(U, V)Ί

9 unV)R(Unv, v)

9 U)R(U9 unV)R(Unv, v)
= S(W, U)R(U9 V).

It remains to check the RS Identities for each of the triangles A, B, C.

Step 2. Triangle A is just Triangle #1 of (2.3).

Step 3. Triangle B.
From (2.2) and (2.3) we obtain the diagram

U πV

(2.5)

u +~ w
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Recall that U Γ\W =U Γ\V Γ\W and that the RS Identities for each
of the subtriangles was verified above for (2.3).

(I) S(Unv, u) = R(Unv, w)S{w, u)Ί

S(unv, u) = R{Ur\V, unvr\W)S(Unvnw, u)
= R(Unv, unVnw)R(unvnw, w)S{w, u)
= R{Unv, w)S{w, u).

(ii) S{w, unv) = s(w, U)R(U, unv)Ί

Similarly to (I) of Step 1 this equation holds iff it holds when mul-
tiplied on the right by R(UnV, UnVnW). We have

S{W, unV)R{UnV, , unvnw)
and

S{w, U)R(U, unv)R(unv, unvnw)
= S(W, U)R(U, unvnw) = S(W, unvnw).

Step 4. Triangle C.
From (2.2) and (2.3) we get

(2.6)

u n v

Assuming the RS Identities hold for the Triangles AA, BB, and CC,
we now verify the RS Identities for Triangle C. In Step 5 below the
RS Identities for AA, BB, CC are checked.

(I) S{V, Uf)V) = R{V, W)S{W, UΓ\V)Ί

S{v, unv) = R(v, vnW)S{vnw, unv)
= R(V, vnw)R(vnw, w)S{w, unv)
= R(V, W)S{W, UΓ)V)

(II) S(W, V)=S{W, UΓ)V)R(UΓ)V, V)Ί
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Similarly to above remarks, this equation holds iff it holds when
multiplied on the right by R(V, VnW). We have

s{w9 v)R(v, vnw) = s(w, vnw)
and

S(w, unv)R(unv, v)R(v, vnw)
= S(w, unv)R(unv, vnw) = s(w, vnw).

Step 5. Triangles AA, BB, CC
Triangles AA and CC are just like Triangles #2 and #3 in (2.3).

From diagram (2.2) we see that Triangle BB subdivides into

VnW

(2.7)

υ n v w

Each of the subtriangles in (2.7) satisfies the RS Identities by Step 1.
So proceed as before:

(I) S(vnw, unW) = R(Vnw, W)S{W, c/nF)?

The matrix R(U Π V n W, VnW) has the property that each row
has exactly one non-zero entry. Therefore the above equation holds
iff it holds when multiplied on the left by R(U Π V ΓΊ W, V Π W). We
have

R(U n v n w, v n w)S{v n w, un V)
= S(Unvnw, unv)

and

R(unvnw, vnw)R{vnw, w)S(w, unv)
= R{Unvnw, w)S{w, unv) = S(Unvnw, unv).

(Π) S{w, vnW) = S(w, unv)R(Unv, vnW)Ί
S(w, vnW) = S(w, unvnw)R(unvnw, vnw)

= S(W, unV)R{Unv, unvnW)R{Unvnw, vnw)
= S(W, unV)R(Unv, VnW).

This finally completes the proof of the RS Triangle Identities.
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3. The isomorphisms ΦA and Θ^ . Our first goal is to give a formula
in (3.5) and (3.8) for the homomorphism

Φ^: Aut(σ^) -> πj(RS(^), A).

If the square matrices A and B lie in the same component of
RS(J?), let

denote the set of homotopy classes of paths starting at A and ending
at B. Concatenation of paths gives a pairing

πx (RS(r) A, B) x nλ (RS(ff) 5 , C)' - π{ (RS(r) Λ, C)

denoted by " * ". When A = B we just have the fundamental group

Let Isom(σ^? σ^) denote the set of conjugacies a: (XA, σΛ) ->
( ^ , σB). Suppose C/ -> F in i ^ with P = M(i7) and Q = M(V),
and let R and 5 be defined as in § 1 giving a strong shift equivalence
(i?? S): P -^ Q. Let α be in Isomίσ^, σ^). Let U' = a(U) and
K; = a(V) in P 5 . Let P1 = M(Uf) and ρ ; = M(V). We have
t/' —• V in i ^ . Let R1 and 5' be the corresponding matrices giving
a strong shift equivalence from P' to Qr. These matrices satisfy the
identities

ι , S'= aSa~ι,

which translate into the following diagrams of triangles in RS(<?):

(3.1)

CΛ.S)

(3.2)
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Incidentally, these two diagrams form the boundary of the tetrahedron
(P,P',Q9&) in R S ( ^ ) .

LEMMA 3.3. (a) γ(l, A) = I in πx{RS(g)9A).
{\>)Ifγeπx(RS{g)\A9B), then γ(A, l)*γ = γ*γ(B, 1).
(c) γ(R,S)*γ(S9R) =
(d) γ(a-ι,aP)-ι=γ(a,

Proof of (a). The triangle

shows that γ(l, A) * γ(l, A) = γ(l, A). Now cancel.

Proof of (b) αnd(c). Since y is a product of paths y(i?? 5) and their
inverses, it suffices to consider the case γ = γ(R, S). The formula (b)
then follows from the diagram

(A.I)

(Λ.S) (K.S)

(B.l)

The formula (c) is a consequence of the top triangle in this diagram.

Proof of "(d). This follows from the triangle

αPα

(of\αP)
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PROPOSITION 3.4. Let U and V be in PA with P = M(U) and
Q = M{V). Then there is a well defined path T{U, V) in
πi(RS(r) ; P, Q) such that

Γ ( C 7 , l / ) = l ,

Γ(U, W) = Γ(U, F ) * Γ ( F , W).

Moreover, if a e Isom(σ^ , σ#), then

Γ(α(C/), α(F)) = ̂ α " 1 , aP)~ι * Γ(C/, F) * γ(a~ι, αβ)

Proof. For the special case U -+ V in PAy define Γ(C7, F) =
y(iϊ, 5 ) . In general, choose a path from t/ to F in PA which is con-
catenation of edges (C//_i, ί//)ε(/) for / = 1, ... , n where ε(z) = ± 1 .
Then define

(3.5) Γ(C/, K)=Γ(C/ 0 , C/i)ε ( 1 )*Γ(t/1 ? t/ 2 ) £ ( 2 )*. . .*Γ(t/ w _ 1 ? t/w)£W.

From the definition of Γ, we see that Γ(U, U) = γ(l, A)= I by (a)
of (3.3). It is also clear that Γ(U, F ) * Γ ( F , fF) = Γ(i7? fF) provided
Γ is independent of the path chosen in PA from U to V. But this
follows immediately from the RS Triangle Identities (1.2) and simple
connectivity of PA proved in [8]. The formula for Γ(α(ί/), α(F))
follows from the diagram (3.1) and (d) of (3.3).

PROPOSITION 3.6. There is a map Φ = Φ(A, B) from Isom(σ^,
to π\(RS(&)\ Ά, B) such that if a e Isom(σ^, σB) and β e
Isom(σ^, σc) then

Φ(βa) = Φ(a)*Φ(β).

Considering σA e Aut(σ^) = Isomίσ^, σA) we have

From this result we then obtain the homomorphism

(3.7) ΦA:Aut(σA)^πι(^S^)9A)

by taking A = B and setting Φ^(α) = Φ ( α - 1 ) .

Proof. Let a € Isom(α^ , σ#). We then have

(cΓ 1 , aA): A = M{UA) -> M(a(UA)) = aAa~ι.

Define

(3.8) Φ(α) = γ(a-1, aA) * Γ(a(UA), UB).
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Now let a € Is

Φ(jSα) = γ

= γ

*

From (3.4) we

Γ(βa(UJ

J. B.

;om(σ^, σ#) and

'(α"1/?"1, aβA)*

ioΓx

9(xA)*y{β-

Γ(β(UB),Uc).

see that
4),β(UB))

(β-ι,aβAa-1)-

WAGONER

/? G Isom(σ5,

-T(βa(UA)9 h
l

9afiAa~1)*

1 *Γ(α(i7^)? L

Substituting and simplifying gives

Φ(βά) = γ(a~1 , α^ί)*Γ(α(C/^))9 UB)*γ(β~ι

Then

, βB) * Γ(^((75), (7C)

To compute Φ(σ^), recall that σA(UA) -> C/"4. We then have the
triangle

oAaΓ1

where a is the bijection between the states UA and the states of
σA(UA) induced by σA . This shows

Φ(σA) = y(α - 1 , α̂ 4) * Γ(σA(UA), Ϊ7^) = y(̂ 4, 1).

This completes the construction of Φ^ . Next consider the homo-
morphism

θA:πι(RS(P)9A)-+A\a(σA).

The formula for θ ^ was given in (1.8), and as discussed in §1 it only
remains to give the

Proof of (1.9). Suppose that (R,S):A -> B. The equation)
c{R,S)c(S,R) = σA implies c(R9S)"1 = σ~ιc(S,R). If y =
{j«} € Xβ, we can therefore characterize x = c(ϋ, 5r)~1(y) to be
the unique point x = {xn} e XA such that

S{yn-ι9xn)R{xn9yn) = 1

for all «.
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First we will show that the RS Triangle Identities imply

c(R29S2)c(Rx , S 1 ) =

Let x = {xn} e XM with y = c(R{, Sχ)(x) = {yn} and z =
c(R2,S2)(y) = Un} Let w = c(R3, S3)~{(z) = {wn}. We want
to show that xn = wn for all n. We know that wn is the unique
state satisfying

S 3(zΛ_i, wn)R3{wn, zn) = 1.

Let k be the unique state such that

n_{ , Wn)RX{wn ,

Then k — yn. We also have

Thus

R2(yn-\, zn-ι)S3(zn-ι, wn) = Sχ(yn-ι 9 wn) = I

and

S{(yn-ι, wn)Rχ[wn9yn) = 1.

We conclude that wn = xn .
For the converse, remember that each matrix in g7 has at least one

non-zero entry in each row and in each column.

The equation S3R\ = S2: The left hand side LHS is a zero-one
matrix, because S3R\R2 = S3R3 = Q is zero-one. Fix a pair of
indices (p, /) such that S2(p, /) = 1. Choose points z = {zn} e XQ
a n d y = {yn} e X? s u c h t h a t zo=p, yx=l, a n d z = c(R2, S 2 ) ( y ) .
Then choose x = {xn} e XM with y = c(i?i, S\)(x). In particular,
we have z = c(R2, S2)c(R{, SΊ)(Λ;) = c(i?3, S3)(x). Then

1 = S 3 ( z o , x\)R3(xι, z\) = S3(z0, xι)R\(x\9 yι)R2(y\, zx)

and S3{p, Xι)Rι(x{, /) = 1. Thus LHS ψ 0. On the other hand,
suppose for an index / that S3(p, i)R\(i9 /) = 1. We must show
S2(p, /) = 1. Choose a point z in Λfρ w ^ zo= P and i?2(̂ > z i ) =
1. Then choose a point x in X /̂ with z = c(R3,S3)(x) and
JCI = /. Consider y = c(i?i, SΊ)(x). Then z = c(i?2 ? S2)(y). We
claim that yj = /. Recall i?i(xi, y\)R2(y\, zi) = 1. But / is the
unique state with R3(i, z\) = R\(i9 l)R2{l, z\) = 1. Hence yi = /.
Since y = c(R2, S2)~ι(z), we must have S2(p, l)R2{l, zi) = 1 and
so S2(p,l) = l.
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The equation R2S3 = S\: The left hand side LHS is a zero-one
matrix, because R\R2S3 = R3S3 = M is zero-one. Suppose RHS Φ 0
and fix a pair of indices (k, /) such that 5Ί (fc, /) = 1. Choose x
in XM and y in XP with Xi = /, y0 = k, and j ; = c(R\, S\)(x).
Let z = c{R2,S2)(y) = c{R3,S3)(x). Then R3(x0,z0) =
-R1 (*o > J>o )&2 (JΌ > zo) = 1 and S3 (z 0 , X\) = 1. Therefore
Ri{k, zo)Si(zo, i) = 1, which says LHS ψ 0. Conversely, assume
LHS Φ 0 and choose a state p with i?2(^? p)Si>(P > /) = 1. Choose
an .x in X^r such that X\ = / and i?i(xo ?^) = 1- Then
Rι(x0,k)R2(k,p)S3{p,i) = R3(xo,P)S3{p,i) = 1. Let >; =
c(Λi, SΊ)(x) and z = c(R2,S2)(y) = c(R3,S3)(x). Then z0 = p
and yo must satisfy R\(xo9yo)Sι(yo9 X\) = 1. We also have
R\(xo,yo)R2(yo,zό)S3(zo,xι) = 1. Thus R\{x0, yo)R2(yo, z0) =
1, so yo = k - This gives S\ (k, i) = 1.

Proof that ΦA and ΘA are isomorphisms.

Step 1. Θ^ΦΛ = Id.
Let U = {Uk} be Markov partition in PA with P = M(U). We

have the well-known isomorphism I = I(U, UA) in Isom(σ^, σ>)
defined on x in XA by the condition

(3.9) I{x)n = k if and only if an

A(x) e Uk.

See [8] for example. Now consider an isomorphism a e Isom(σ^ , σβ)
and let U e PA and V e PB where a(U) = V. Let U = {Ue}
and V = {F/-} where e and / run through indexing sets is and
i 7 respectively. The homeomorphism a induces a bijection from E
to F. Let P = M((7) and Q = A/(K). Then Q = aPa~ι and

LEMMA 3.10. 7 ( F , C/^)α = ^ α " 1 , aP)I(U, UΛ).

Let Iu = I(U,UA), Iv = I(V, UB), and c = clα" 1, aP).
Remember that c is the one-block map taking y = {yn} with yn^E
to α(y) = {a(yn)} with α(yπ) G F. Since α, c, /[/, and 7j/ are shift
commuting, it suffices to show that

Iv(cχ(x))o = c(Iu(x))0

for all x e XA. Let y = Iu(x) = {yn} with yn e E. Let e =
yo Then c(/c/(x))o = / if and only if α(e) = / . That is, if and
only if a(Ue) = Vf where x G C^. On the other hand, suppose
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h = Iy(a(x))o. Then a(x) G Vh. Let g G E be the unique index
where x e Ug with α(C/^) = Vh . Then e = g and so / = h.

Let £/ -> F in 7^ . Let i? = R(U, F) and 5 = 5(K, £/).

LEMMA 3.11. 7(F, *7^) = c(R, 5)7(1/,

Since 7(C/^, t/^) = 1, we get 7(C/, C/̂ 4) = c(Λ,5) whenever
C/̂  -^ C/ in PΛ.

Proof. Let 7 = 7(C/, UA),J = I(V, UΛ), and c = c(Λ, 5 ) . It
suffices to show that

for all x G X^ . Let y = I(x) = {y«} with ^o = k and y\ = I. This
means x eU^ and σ^(jc) € ί//, and consequently t ^ ΠσJ^t//) # 0 .
Using F < C/ n σJ^C/), let F̂  be the unique set in F with Vb D
uk n σ" 1 (£//). Then /(x 0) = * . But also we have UkΓ\Vb ^ 0.
Equivalently, R(k, i )5(^, /) = 1, which implies c(y)o = b.

We are now ready to prove Θ^Φ^ = Id. Recall that Φ^(α) =
Φ(α~ 1 ) . We will show more generally for a G Isom(σ^, OB) that
ΘΦ(α) = α" 1 where

Φ: Isom(σ^, σB)

is defined by (3.8), and

θ :

is defined on

1=1

by the formula

(3.12)
ι = l

Let α G Isom(σ^ , σ^) and let

<*(UA) = VO^VX< >yn_ι+-Vn

be the path in PB as in the definition (3.8). For 0 < k < n, let
Ak = M(Vk).For \<k<n, Rk = R(Vk_{, Kfc), 5* = 5 ( F , , Vk_x),
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and εk = +1 when Vk_{ - Vk, and let Rk = R(Vk, Vk_{), Sk =
S(Vk_u F/ c),and εk = - 1 when K* -+ F ^ . Then (3.10) and (3.11)
show that

k=\

= Θ (y(cT', aA) f[ γ(Rk , S*)β* ) = θΦ(α).

Step 11: ΦAΘA = Id.
Assume (i?, 5) : Λ -> B and let c = c(R, 5) : Z^ -* X 5 . Let

ί/̂  = {Uf} and UB = {Uξ} be the standard Markov partitions for
σA and cr# respectively. Let U = {Uk} = {c~\Uξ)} = c~\UB) and
V = {V,} = {c(Uf)} = c(UA).

LEMMA 3.13. UA-> U in PA and V -> UB in PB.

Proof. It clearly suffices to verify UA —• J7. The definition of
c(R, S) shows that £4 consists of those points Λ: in X^ such that
R(xo, /c)5(/:, X\) = 1. In other words,

where the pairs (/, j) run over those states with R(i, fc)5(/:, 7) = 1.

For a given set Uf Γ\σ^x{Uf) in UAΓ)σ^ι(UA), let fc be the unique

state such that R(i, k)S(k, ) = 1. Then UfnσJι(Uf)cUk. This

shows that ί7^ —• ί7^ n C/. Next we verify U -+ UA ΠU. Fix a pair

of states (k, I) and write

Then

n c// = U σA(UA) n c// n 1^ n σ~ι (UA)

where each non-empty term must have b = c, R(a, /c)5(/c, b) — 1,
and i?(c, /)^(/, rf) = 1. Then R(k, b)S(b9 /) = 1, and so only one
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b can occur. The expression becomes

σA(uk) n υι = \JσA(uf) n ub

A n σ~\

This completes the proof of (3.13).

203

c uf n uh

Let a G Isom(σy4, σ#) be of the form a = c(i?, 5) corresponding
to (i?, 5) : Λ -> 5 and let / G Isom(σ5 ? σ c ) . Let C/ - fot{UΛ)
and F - f(UB). From (3.13) we see that U -+ V in PB. Let

? F ) ? a n d S'= S(V, U). Then

B' =

and moreover there is the following diagram of triangles in RS(I?) :

(3.14)

Similarly to Step I we will show that ΦΘ(γ~ι) = γ for any path
y = Πy(Rk,SkY" from A = Ao to B = An in 7Γ/(RS(r); Λ, 5 ) .
For 0 < /c < n — 1, let a^ G Isom(σ^ , σ^) be given by the formula

Let an = id. Remember that our convention is to read composition
of homeomorphisms between spaces from right to left. Let Vk =
ak{UΛk) in PB for 0 < k < n - 1 and let Vn = UB. From (3.1)
we know that Vk_{ -> Vk if εk = +1 and J^ —• F^_! if εk = - 1 .
Let % = M(P^). Then 5^ = α ^ ^ ^ α ^ 1 . From (3.14) we have the
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following two diagrams corresponding respectfully to the parities
+1 and εjζ = - 1 :

4 M -

These fit together to provide a homotopy in RS(J?) with end points
fixed between the original path γ and the path

γ(a~ι, α0Λ) * Γ(α o(I/^), C7*) = Φ(α 0).

But αo = Θ(γ~ι). So Φ θ ^ " 1 ) = y. This finally completes the proof
that Φ and θ are isomorphisms.

REMARK 3.15. The CW-complex R S ^ ) is locally compact. This
follows from (3.13), the observation in [8] that PA is a locally fi-
nite simplicial complex, and the fact that there are only finitely many
(R, S): P -* P for a given square zero-one matrix P.

4. RS(ί?) is aspherical. We now give the proof of (1.13). Let
RS(<2?)Λ denote the component of RS(I?) containing A. The univer-
sal cover RSΛ of RS(^)^ is the realization of the following simplicial
set: The /c-simplices are pairs (γ, Δ) where

(i) Δ is a λ -simplex of RS(I?),4 given by the data (AQ, ... , An)
and (Rjj, »S/, ): Aj —• Aj as in (1.4) and

(ii) γ is a homotopy class of paths from the base point A to AQ .

The /th face operator of RS acts on Δ just as it does in RS. For
1 < i < n, it leaves γ unchanged, and for i = 0 it changes γ to
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γ * γ(R\, S\). Similarly for the degeneracy operators. The covering
map

is induced by the map of simplicial sets taking (γ, Δ) to Δ.
For each /c-simplex (γ, Δ), let αo = θ(y) and for 1 < k < n, let

α^ = θ(y * γ(Rok 9 Sko)) Let I/*. = α^({7^) £ ^4 The discussion in
§3 shows {Uo, ... , Uk) is a /c-simplex in PA. Moreover, the corre-
spondence taking (y, Δ) to (ί/o, .. . , C4) is map of simplicial sets.
Using (3.14) we obtain a homotopy commutative diagram

\

Since PA is contractable [8], we see that

is the zero homomorphism^On the other hand, it is also an isomor-
phism for n > 2 because RS(lf )^ is the universal cover.
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