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REDUCTIONS OF FILTRATIONS

J. S. OkoN AND L. J. RATLIFF, JR.

Let ¢ = {¢#(n)}n>o0 be a filtration on a ring R. Then the concept
of a reduction of ¢ is introduced, several basic properties of such re-
ductions are established, and then these results are used to character-
ize analytically unramified semi-local rings and locally quasi-unmixed
Noetherian rings.

1. Introduction. Reductions of ideals were introduced in [6] and
they have proved to be very useful in many research problems. Re-
cently, reductions of modules were introduced and developed in [16],
and their “dual” concept was investigated in [20]. Also, there have
been several recent papers in which a number of important theorems
for ideals in Noetherian rings have been extended to Noetherian fil-
trations (for example, see [1, 8, 9, 14, 15, 18]). (Filtrations are gen-
eralizations of the sequence of powers of a given ideal, and there are
many important filtrations (such as the sequence {g™},>o of sym-
bolic powers of a primary ideal g and the sequence {(I")s}n>0 of
integral closures of the powers of an ideal /) which are generally not
powers of an ideal, but which are quite often Noetherian filtrations.
So extension of these results to filtrations is of some interest and im-
portance.)

In §2 we introduce reductions of filtrations and show that many of
the basic properties of reductions of ideals have a natural extension
to reductions of filtrations. (Actually, basic reductions of Noetherian
filtrations were first considered and briefly used in [15], but general
reductions and their properties were not considered in [15].) Among
these properties is the very useful result that if ¢ and y are filtrations
on a Noetherian ring R, then ¢ is a reduction of y if and only if
the Rees ring of R with respect to y is a finite integral extension ring
of the Rees ring of R with respect to ¢. It readily follows from this
that if ¢ is a reduction of y, then ¢ is Noetherian if and only if y
is Noetherian. Also, if ¢ is Noetherian, then ¢ is a reduction of y if
and only if ¢ <y and ¢ and y determine linearly equivalent ideal
topologies on R if and only if y is a Noetherian filtration between
¢ and ¢, , the weak integral closure of ¢, and then there exists a

137



138 J.S. OKON AND L. J. RATLIFF, JR.

positive integer e such that y(n+e) = ¢(e)y(n) for all large n. Then
§2 is closed by showing that most Noetherian filtrations on a local
ring do not have minimal reductions (in contradistinction to the ideal
case), but they do have what are called minimal e-reductions (see
(2.12)).

Finally, §3 contains several applications of these results. Among
these are characterizations of analytically unramified semi-local rings
and of locally quasi-unmixed Noetherian rings, and filtration analogs
of the theorems of Sakuma-Okuyama and Briancon-Skoda.

2. Reductions for filtrations. In this section we define reductions of
a filtration and prove several of their basic properties. We begin with
several definitions.

(2.1) DerFinITION. If R is a ring, then:

(2.1.1) A filtration ¢ = {¢(n)},>0 on R is a decreasing sequence
of ideals ¢(n) of R such that ¢(0) = R and ¢(m)p(n) C ¢(m + n)
for all nonnegative integers m and n.

(2.1.2) If ¢ and y are filtrations on R, then ¢ =y in case ¢(n) =
y(n) forall n >0, and ¢ <y in case ¢(n) C y(n) forall n>0.

(2.1.3) If ¢ and p are filtrations on R, then ¢ is a reduction
of y in case ¢ < y and there exists a positive integer d such that
y(n) = ?20 ¢(n —1Q)y(i) for all » > 1. (Here, and throughout this
paper, ¢(i)=R if i <0.)

(2.1.4) If R is Noetherian, then a filtration ¢ on R is Noetherian
in case there exists a positive integer d such that

d
$(n)=>_ ¢(n—i)p(i) foralln> 1.

i=1

(2.1.5) The integral closure ¢, of a filtration ¢ on R is the se-
quence of ideals ¢, = {(¢(n))a}n>0, Where (¢(n)), is the integral
closure of ¢(n); therefore (¢(n)), = {x € R; x satisfies an equa-
tion of the form x* 4+ b xk=!' 4+ ... 4 b, = 0, where b; € (¢(n))’ for
i=1,...,k} (see (2.2.2)).

(2.1.6) The weak integral closure ¢,, of a filtration ¢ on R is the
sequence of ideals ¢ = {(¢(n))w}n>0, Where (¢(n)), is the weak
integral closure of ¢(n); therefore (¢(n)), = {x € R; x satisfies an
equation of the form xK + b xk~! 4+ ... 4 b, = 0, where b; € ¢(ni)
for i=1,...,k} (see (2.2.2)).
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(2.1.7) If ¢ is a filtration on R, then the Rees ring of R with
respect to ¢ is the graded subring R(R, ¢) = R[u, té(1), 24(2), ...]
of R[u, t], where ¢ is an indeterminate and u = 1/¢.

Concerning (2.1.3), since ¢(i) = R when i < 0, it is clear that
every filtration ¢ is a reduction of itself. Also, note that if d is such
that y(n) = E?j:o ¢(n — i)y(i), then a similar equation holds for all
integers greater than or equal to d. Further, if 7 C J are ideals in
R, then I is a reduction of J if and only if there exists a positive
integer d such that J” = Y7 1"~'Ji (= ["J9) for all n > 1.
Therefore, if ¢(n) = I" and y(n) = J" forall n > 0, then ¢ is a
reduction of y if and only if 7 is a reduction of J, so (2.1.3) extends
the definition of a reduction from ideals to filtrations.

The other definitions in (2.1) have previously appeared in the liter-
ature, but a Noetherian filtration, as defined in (2.1.4), is sometimes
called an essentially powers filtration in the literature. Also, the weak
integral closure ¢,, of ¢ (see (2.1.6)) is called the integral closure of
¢ in [15]. This seems like appropriate terminology to us, but there is
already quite a lot of literature where ¢,, is called the weak integral
closure of ¢ and the filtration ¢, (see (2.1.5)) is called the integral
closure of ¢, so we decided to stay with the older terminology.

(2.2) lists two facts concerning these definitions that will be needed
below.

(2.2) REMARK. (2.2.1) It is shown in [1, (2.2) and (3.6)] together
with [12, (2.7)] that if R is Noetherian, then the following are equiv-
alent: (a) ¢ is Noetherian; (b) there exists a positive integer e such
that ¢(n +e) = ¢(e)p(n) for all n > e; (c) R(R, ¢) is Noetherian;
and (d) R(R, ¢) is finitely generated over R.

(2.2.2) If ¢ is a filtration on R, then it is shown in [8, (4.2.1) and
(2.2)] that ¢, and ¢, are filtrations on R such that ¢ < ¢, < ¢y, .
Also, if e is an integer such that ¢(ne) = (¢(e))" for all n > 1 (this
holds if ¢ is Noetherian, by (2.2.1)), then it follows from (2.1.5) and
(2.1.6) that (¢(ne)), = (¢(ne))y forall n>1.

(2.3) gives a useful characterization of when ¢ is a reduction of y.

(2.3) THEOREM. Let ¢ and y be filtrations on a ring R such that
all the ideals y(n) are finitely generated. Then ¢ is a reduction of y
ifand only if S =R(R, y) is a finite module over R = R(R, ¢).

Proof. Assume first that ¢ is a reduction of y. Then since R and S
are graded subrings of R[u, ], it readily follows that S is generated
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as a module over R by #y(1), ..., zdy(d), where d is as in (2.1.3).
Therefore the hypothesis on the ideals y(n) implies that S is a finite
R-module.

For the converse, assume that S is a finite module over R. Now
R and S are graded subrings of R[u, ], so let ©,, ..., 0, be ho-
mogeneous elements in S that are a linear basis of S considered
as an R-module, let d; be the degree of ©;, and let d =
max{d;;i = 1,...,m}. Now, if n > d, then using the basis it
follows that

y(n) S ¢(n—d)

i=1 =0

d
c Zy(n—i)y(i)gy(n),

Mm

p(n—1)y(i

Z _o@(n —i)y@i) forall n > 1, so ¢ is a reduction of
V. ]

(2.4) CoOROLLARY. Let ¢ be a filtration on a Noetherian ring R.
Then:

(2.4.1) There exists a one-to-one correspondence between the filtra-
tions y on R such that ¢ is a reduction of y and the graded subrings
S of Rlu, t] that are finite integral extensions of R(R, ¢).

(2.4.2) There exists a one-to-one correspondence between the filtra-
tions & on R that are reductions of ¢ and the graded subrings U of
R(R, ¢) such that R[u] CU and R(R, ¢) is a finite module over U.

Proof. For (2.4.1), assume first that S is a graded subring of R[u, {]
that is a finite module over R(R, ¢) and let I, = u"SNR. Then since
S is a graded subring of R[u, ¢] it is readily checked that y = {I,,},>0
is a filtration on R and that S = R(R, y), so ¢ is a reduction of
v, by (2.3) (the ideals y(n) = I, are finitely generated, since R is
Noetherian). And distinct rings S give distinct filtrations y, since
S=R(R, 7).

For the converse of (2.4.1), if y is a filtration on R that has ¢
as a reduction, then since R is Noetherian it follows from (2.3) that
S = R(R, y) is a finite integral extension of R(R, ¢). Also, S is a
graded subring of R[u, ], and it is clear that ¥"SN R = y(n), so
distinct filtrations y yields distinct rings S.

The proof of (2.4.2) is similar, so it will be omitted. O
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A result related to (2.4) for Noetherian filtrations is given in (2.8).
In (2.5.1) we consider the sum & + ¢ = {3°7_(d(n — i)¢(i)}n>0 Of
two filtrations J and ¢; it is readily checked that J + ¢ is a filtration
on R and that it is the smallest filtration y such that y > J and

y> 9.

(2.5) CoOROLLARY. If &, ¢, v and 6 are filtrations on a Noether-
ian ring R, then:

(2.5.1) If 6 is a reduction of y and ¢ is a reduction of 6, then
0 + ¢ is a reduction of y+ 0.

(2.5.2) If ¢ is a reduction of y and y is a reduction of 0, then ¢
is a reduction of 0.

(2.5.3) If ¢ is a reduction of 0 and if ¢ <y < 0, then y is a
reduction of 6. And if ¢ is Noetherian, then ¢ is a reduction of y.

Proof. For (2.5.1), it is readily checked that
R(R, 6 + ¢) = R[u, t6(1), t(1), 26(2), ?¢(2),...] and
R(R, y+6) = Rlu, ty(1), t6(1), *7(2), £*6(2), ...].

Therefore, since the hypothesis and (2.3) imply that R(R, y) (resp.,
R(R, 6)) is a finite module over R(R, d) (resp., R(R, ¢)), it follows
that R(R, y + @) is a finite module over R(R,d + @), s0 d + ¢ isa
reduction of y + 6 by (2.3).

(2.5.2) and the first part of (2.5.3) follow readily from (2.3).

Finally, if R and ¢ are Noetherian, then R(R, ¢) is Noetherian,
by (2.2.1). Also, if ¢ is a reduction of @, then R(R, ) is a finite
module over R(R, ¢), by (2.3), and if ¢ < y < @, then R(R, y)
is an intermediate ring. Therefore R(R, y) is a finite module over
R(R, ¢), and hence ¢ is a reduction of y, by (2.3). O

In (2.6.2) and (2.6.3), for a filtration ¢ and a given positive integer
k we consider the sequence ¢¥) = {@¢(nk)},>¢. It is readily checked
that ¢*) is a filtration on R.

(2.6) COROLLARY. Assume that R is Noetherian and let ¢ <y be
filtrations on R. Then:

(2.6.1) If ¢ is a reduction of y, then ¢ is Noetherian if and only if
y is Noetherian.

(2.6.2) If ¢ is Noetherian and a reduction of y, then ¢'™) is Noether-
ian and a reduction of Y forall n > 1.
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(2.6.3) If R is a local ring and ¢%) is Noetherian and a reduction
of Y% for some k > 1, then ¢ is Noetherian and a reduction of
() forall n>1.

Proof. For (2.6.1) let R = R(R, ¢) and S = R(R, y),s0 S is a
finite module over R by (2.3) (since ¢ is a reduction of y). Therefore
S is Noetherian if and only if R is, by Eakin’s Theorem [2], so y is
Noetherian if and only if ¢ is by (2.2.1).

For (2.6.2) assume that ¢ is Noetherian and a reduction of y and
for n>1 let

R, = R[u", t"¢(n), t*"$(2n), ...] and
S, = R[u", t"y(n), t*"y(2n), ...].

Then R, = R(R, ¢") and S, = R(R, y), sosince ¢ is a reduction
of y, it follows from (2.3) that S, is a finite module over R;. Also,
since (£'¢(i))* = t"(¢(i))" C ti"¢(in) C R,, it follows that R, is
integral over R, , and similarly S; is integral over S, for all n >
1. Further, R; is finitely generated over R, since R and ¢ are
Noetherian (see (2.2.1)), so R is finitely generated and integral over
R, forall n > 1. Hence R, is Noetherian by Eakin’s Theorem, and
so ¢ is Noetherian by (2.2.1). And, as already noted, S; is a finite
module over Ry, so S; is a finite module over R, for all n > 1.
Therefore, since R, €S, €S; and R, is Noetherian, it follows that
S, is a finite module over R,. Hence (2.3) and the isomorphisms
noted above show that ¢ is a reduction of ") forall n>1.

For (2.6.3), using (2.6.2) it suffices to show that ¢ is Noetherian and
a reduction of y. For this, $*) is Noetherian and a reduction of y)
by hypothesis, so with the notation of the preceding paragraph, (2.6.1)
and (2.2.1) show that S; is Noetherian (since S; = R(R, y¥))).
Therefore, since R 1is local, [19, (1.3)] shows that S; is Noetherian,
and hence y is Noetherian by (2.2.1). Also, S, is a finite module
over R, , by (2.3), and S, is integral over S;, by the preceding para-
graph, so S; is integral over R,. Hence S; is integral over R;,
since R, C R; C S;. Further, S; is finitely generated over R (since
it is Noetherian), so it follows that S; is a finite module over R;.
Therefore ¢ is a reduction of y, by (2.3), so ¢ is Noetherian by
(2.6.1). O

(2.7) COROLLARY. Assume that R is Noetherian and let ¢ and y
be filtrations on R. If both ¢ and y are reductions of ¢ + y, then
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R(R, ¢) and R(R, y) have the same integral closure. The converse
holds if both ¢ and y are Noetherian.

Proof. Assume first that both ¢ and y are reductions of ¢ + y.
Then R(R, ¢+ ) is a finite module over both R(R, ¢) and R(R, y)
by (2.3). Therefore it readily follows that all three rings have the same
integral closure, so R(R, ¢) and R(R, y) do.

For the converse, if ¢ and y are Noetherian, then ¢+y is Noether-
ian, by [12, (3.1.1)], so R(R, ¢ + y) is finitely generated over R, by
(2.2.1). Also, the hypothesis implies that R(R, ¢ + y) is integral over
both R(R, ¢) and R(R, y), so it follows from (2.3) that both ¢ and
y are reductions of ¢ + 7. O

(2.8) gives a useful characterization of the filtrations that are re-
duced by a given Noetherian filtration.

(2.8) THEOREM. If ¢ is a Noetherian filtration on a Noetherian
ring R, then the filtrations that ¢ reduces are the Noetherian filtrations
between ¢ and ¢, (see (2.1.6)). Therefore, the filtrations that reduce
¢ are the Noetherian filtrations y such that y < ¢ and y, = ¢y .

Proof. Let S=R'NR[u, t], where R’ is the integral closure of R =
R(R, ¢). Then S is a graded subring of R[u, t], and by considering
an equation of integral (resp., weak integral) dependence it follows
that if b € R, then bt™ € S if and only if b € (¢(m)),, . Therefore
u"SNR = (p(n))y forall n>1,s0 S=R(R, ¢y).

Now assume that ¢ is a reduction of a filtration y on R. Then y
is Noetherian, by (2.6.1), and R(R, y) is a finite R-module, by (2.3).
Therefore RCR(R, y) CS,s0 " RNRCu"R(R,y))NRCu"SNR
forall n > 1; thatis, ¢(n) C y(n) C (¢(n)w,s0 ¢ <y < ¢y .

Next, if y is a Noetherian filtration on R such that ¢ <y < ¢y,
then R C R(R, y) C S, and R(R, y) is finitely generated over R.
Therefore R(R, p) is finitely generated and integral over R, so (2.3)
shows that ¢ is a reduction of y.

For the final statement, y is Noetherian by (2.6.1) and it is clear
that y < ¢, so ¢ < y,, by what has already been shown. Finally, it
is shown in [8, (2.4)] that if § and 6 are filtrations such that 6 <6,
then J, < 0, and (6y)w = Oy, so it follows that ¢, = ¥, . 0

(2.9) gives three useful characterizations of reductions of Noether-
ian filtrations. The first of these shows that ¢ is a reduction of y if
and only if ¢ < y and ¢ and y determine linearly equivalent ideal
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topologies (that is, ¢(n) C y(n) for all n > 1 and there exists a posi-
tive integer d such that y(n) C ¢(n—d) for all n > d), and the third
characterization resembles the ideal equality J"+¢ = [¢J"

(2.9) THEOREM. Assume that R is Noetherian and let ¢ and y be
Noetherian filtrations on R. Then the following are equivalent:
(2.9.1) ¢ is a reduction of y.

(2.9.2) ¢ <y and there exists a positive integer d such that y(n) C
o(n—d) forall n>d.

(2 9.3) ¢ <y and there exists a positive integer d such that y(n) =
S od(n—i)y(i) forall n>d.

(2.9.4) ¢ < y and there exists a positive integer e such that
y(n +e) = ¢(e)y(n) forall large n.

Proof. Assume that (2.9.1) holds, so ¢ < y and there exists a pos-
itive integer d such that y(n) = Z —oP(n —i)y(i) foral n > 1.
Since ¢ is Noetherian, by (2.2.1) let e be a positive integer such that
p(n+e)=¢(e )¢( ) forall n>e,andlet n >d +e. Then

y(n+e) Zgb n+e—1i)y(i)

ple)p(n—i)y(i), sincen—i>n—d>e,

I

N

d
d
Y ¢@yn—i)y(i)Shle)y(n)Cy(n+e).
i=0
Therefore y(n +e) = ¢(e)y(n) for all large n, so (2.9.1) = (2.9.4).
Now assume that (2.9.4) holds and let k be such that y(n +e) =
¢(e)y(n) for all n > k; it may clearly be assumed that £ > e. Let
d=k+e—1,let n>d,and write n=qge+r with k<r<k+e.
Then y(n) = y(qge+r) = (¢(e))?y(r) (by hypothesis and the choice of
r) C Zk+e‘ ¢(n—1i)y(i) C y(n). Therefore y(n) = E?:o d(n—1i)y(i)
forall n>d, so (2.9.4) = (2.9.3).
If (2.9.3) holds, then it follows that ¢ <y and

y(n) = Zas(n—:)y(z)cw— Zm ) C ¢(n - d)

i=0 =0
forall n>d,so (2.9.3) = (2.9.2).



REDUCTIONS OF FILTRATIONS 145

Finally, assume that (2.9.2) holds. Then it readily follows that
R(R, ) C R(R, y) and that u"R(R, y) C R(R, ¢) forall n > d.
Also, u is a regular element in R(R, ¢), and R(R, ¢) is Noetherian,
by (2.2.1). Therefore R(R, y) is a finite module over R(R, ¢), so
(2.9.2) = (2.9.1) by (2.3). ]

(2.10) gives two related results. The proof of the first of these is
an application of (2.9.1) = (2.9.3). And the second shows that a
nice characterization of when a regular ideal 7 C J is a reduction of
J (namely that there exists a regular ideal K such that /K = JK)
does not extend to filtrations. For this second result, a filtration ¢ is
said to be regular in case J(n) contains a regular element for some
n > 1 (equivalently (since Rad(d(n)) = Rad(d(1))), if (1) contains
a regular element). (The restriction that J be regular in (2.10.2) is
needed, since ¢0 = 0 = y0, where 0 is the filtration such that 0(n) =
(0) forall n>1.)

(2.10) REMARK. Let ¢ and y be Noetherian filtrations on a
Noetherian ring R such that ¢ is a reduction of y. Then the follow-
ing hold:

(2.10.1) ¢J is areduction of yJ for all Noetherian filtrations J on
R.

(2.10.2) There need not exist a regular filtration 6 on R such that
@0 = 0.

Proof. For (2.10.1), since ¢ (resp., ) is Noetherian, by (2.2.1) let
e; (resp., e;) be a positive integer such that ¢(n + e;) = ¢(e;)p(n)
for all n > e; (resp., d(n + e;) = d(e;)d(n) for all n > e;). Then
it is readily checked that both of these hold with ¢ = e;e, in place
of e; (resp., e;). Also, since ¢ is a reduction of y, by the proof
that (2.9.1) = (2.9.3) it follows that y(n+e) = ¢(e)y(n) for all large
n. Therefore (yd)(n+e) = y(n+e)d(n+e) = ¢p(e)y(n)d(e)o(n) =
[(@pd)(e)][(yd)(n)] for all large n, so o is a reduction of yd by
(2.9.3) = (2.9.1).

For (2.10.2) let I be a regular ideal in R and define filtrations y
and ¢ on R by y(n) =1" forall n >0 and ¢(2n—1) = ¢(2n) = I*"
forall » > 1 (and ¢(0) = R). Then it follows as in the proof of (2.11)
below that ¢ is a reduction of y, and it is clear that y is regular and
Noetherian, so ¢ is, by (2.6.1). And it is also clear that ¢(1) = I? is
not a reduction of (1) = I. But if there exists a regular filtration ¢
such that ¢J = yd, then (¢d)(n) = (yd)(n) for all n > 1. Therefore
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¢(n)d(n) = y(n)d(n), so ¢(n) is a reduction of y(n) by [6, Theorem
2, p. 156], so there does not exist such a filtration ¢ . O

(2.10.2) showed that one important result concerning reductions of
ideals does not extend to Noetherian filtrations. (2.11) shows that
another such result (namely that there exist minimal reductions when
R is local) also fails to extend to Noetherian filtrations.

(2.11) REMARK. If ¢ is a Noetherian filtration on a local ring R
such that ¢(n) # (0) for all large n, then ¢ does not have a minimal
reduction.

Proof. Fix a positive integer e = ¢; and define ¢; by ¢,(0) = R,
¢1(1) = -+ = di(e) = #(e), di(e+1) =--- = ¢1(2e) = (¢(2e)),
etc. Then it is readily checked that ¢; is a filtration on R. Let
S = R(R, ¢) and R = R(R, ¢;). Then for i > 1 it holds that
(t'p(i))¢ C ti€p(ie) C R, so S is an integral over R. Also, S is
finitely generated over R since it is finitely generated over R, so ¢;
is a reduction of ¢, by (2.3), and hence ¢, is Noetherian by (2.6.1).
Now repeat this with e, > e; and with ¢; in place of ¢, etc. to
obtain a descending sequence ¢p = ¢ > ¢; > ¢ > --- of Noetherian
filtrations on R such that ¢; is a reduction of ¢;_; for i=1,2,....
Now if ¢(n) # (0) for all large n, then since S is Noetherian it
follows that for each » there exists a positive integer k(z) such that
¢(n) D ¢(n+k(n)), and it readily follows from this that this sequence
of filtrations can be chosen to be strictly decreasing. O

If y is a Noetherian filtration on a Noetherian ring R and if e is
a positive integer such that y(n +e) = y(e)y(n) for all n > e (see
(2.2.1)), then a reduction ¢ of y such that y(n +e) = ¢(e)y(n) for
all large n will be called an e-reduction of y. In view of (2.11) this
definition is useful, since it will now be shown that y has minimal
e-reductions when R is local.

(2.12) THEOREM. If 6 is a Noetherian filtration on a local ring,
then 6 has a minimal e-reduction.

Proof. By (2.2.1) let e be a positive integer such that 8(n +e) =
0(e)f(n) for all n > e, let I be a reduction of f(e) and define a
filtration ¢ on R by ¢(0) =R, ¢(1)=---=¢(e) =1, ple+1) =
.= ¢(2e) = I*, etc. Also, define y similarly, but use 6(e) in place
of I. Then the proof of (2.11) shows that R(R, 0) is a finite integral
extension of R(R, y) (since (6(e))’ = 6(ie) for all i > 1). Also,
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R(R, y) is an integral extension of R(R, ¢), since I is a reduction
of ¢(e), so R(R, 0) is integral over R(R, ¢). Further, R(R, 0)
is finitely generated over R, so it follows that R(R, 6) is finitely
generated and integral over R(R, ¢). Hence ¢ is a reduction of
6 by (2.3). Moreover, since I is a reduction of 6(e) there exists a
positive integer m such that 1(6(e))" = (6(e))"*! forall n > m; that
is, I60(ne) = O(ne + e). Therefore, if n > me + e, then ¢(e)f(n) =
10(n) = 168(me)0(n — me) = O(me +e)8(n—me) =0(n+e),so ¢ is
an e-reduction of 6.

Finally, assume that / (in the preceding paragraph) is a minimal
reduction of f(e) and let & be an e-reduction of 6 such that 6 < ¢,
s0 d(n) C ¢(n) forall n> 1. Also d(e)f(n) = 8(n + e) for all large
n, since d is an e-reduction of @, so in particular d(e)(0(e))" =
d(e)0(ne) = O(ne + e) = (6(e))"*! for all large n. Therefore J(e)
is a reduction of f(e), and d(e) C ¢(e) =1, so d(e) = I since [
is a minimal reduction of 6(e). Then d(i) 2 d(e) = I = ¢(i) for

o

i=1,...,e. Also,for i=1,...,e, d(e+i) D d(2e) D (de))? =
I? = ¢(e + i), and it is similarly seen that §(n) D ¢(n) forall n > 1,
so 0 = ¢. Hence ¢ is a minimal e-reduction of 6. O

(2.13) REeMARK. The proof of (2.12) showed that if 6 is a Noether-
ian filtration on a Noetherian ring R and e is a positive integer such
that 6(n + e) = 0(e)f(n) for all n > e, then the filtration y such
that y(ke + i) = 6((k + 1)e) = (8(e))**! (for i=1,...,e and for
all k£ > 0) is a reduction of 6, and it is readily checked that y is an
e-reduction of 6. The proof of (2.12) also showed that if I is a re-
duction of (e), then the filtration ¢ such that ¢(ke+ i) = I*+! (for
i=1,...,e and for all kK > 0) is an e-reduction of 6§, andif I isa
minimal reduction of 6(e), then ¢ is a minimal e-reduction of 6. In
§3, a reduction ¢ of 6 of this form will be called the e-repeated ideal
reduction of 6 generated by I (since the ideals I*“*! are repeated e
times in the filtration), and if 7/ is a minimal reduction of 6(e), then
¢ will be called the basic e-repeated ideal reduction of 6 generated
by I (since it is a minimal e-reduction of 6 and also an e-repeated
ideal reduction of 8). Note that by (2.6.1), such reductions of 6 are
Noetherian filtrations.

In closing this section we note that reductions of a filtration y are
closely related to y-good filtrations on R (see [14]). Because of this,
a couple of additional necessary and sufficient conditions (in terms of
restricted Rees rings) for ¢ to be a reduction of y are given in [14,
(3.3)1.



148 J. S. OKON AND L. J. RATLIFF, JR.

3. Applications. This section contains several applications of the
results of §2. The first of these gives four characterizations of when
a semi-local ring R is analytically unramified. (In [18, Lemma 3],
Sakuma and Okuyama showed that the following are equivalent for a
semi-local ring R: R is analytically unramified; there exists an open
ideal J in R and a positive integer d such that (J"), € J*~¢ for
all n > d; and, for each ideal J in R there exists a positive integer
d such that (J"), € J" 4 forall n > d. Now (2.9.1) & (2.9.2)
(applied to ¢ = {J"},>0 and y = {(J")a}n>0) shows that (J"), C
Jn=4 for all n > d is equivalent to ¢ is a reduction of 7, so it
follows that the equivalence of (3.1.1)-(3.1.3) extends the theorem
of Sakuma-Okuyama from ideals to Noetherian filtrations. Also, it
should be noted that the equivalence of (3.1.1), (3.1.4), and (3.1.5)
was first shown in [15, (4.1) and (4.3)].)

(3.1) THEOREM. If R is a semi-local ring, then the following are
equivalent:

(3.1.1) R is analytically unramified.

(3.1.2) ¢ is a reduction of ¢y for all Noetherian filtrations ¢ on
R.

(3.1.3) There exists a Noetherian filtration ¢ on R such that ¢(1)
is open and ¢ is a reduction of ¢y, .

(3.1.4) ¢y is Noetherian for all Noetherian filtrations ¢ on R.

(3.1.5) There exists a Noetherian filtration ¢ on R such that ¢(1)
is open and ¢, is Noetherian.

Proof. (3.1.2) & (3.1.4) and (3.1.3) & (3.1.5) by (2.8), and it is
clear that (3.1.2) = (3.1.3) and (3.1.4) = (3.1.5).

Now assume that (3.1.1) holds and let ¢ be a Noetherian filtration
on R. Let R = R(R,¢) and let S = R' N R[u, t] be as in the
first paragraph of the proof of (2.8), so S = R(R, ¢,). Since ¢ is
Noetherian, R is finitely generated over R, so since R is analytically
unramified it is shown in [10, Lemma 2.4] that R’ is a finite R-module.
Therefore S is a finite R-module, so ¢ is a reduction of ¢,, by (2.3),
and hence (3.1.1) = (3.1.2).

Finally, assume that (3.1.3) holds and let ¢ be a Noetherian filtra-
tion on R such that ¢(1) is open and ¢ is a reduction of ¢, , so
S = R(R, ¢y) = RN R[u, t] is a finite module over R = R(R, ¢),
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by (2.3). By (2.2.1) let e be a positive integer such that ¢(n +e) =
¢(e)p(n) forall n >e,let J = ¢(e), and let A = R[u®, t¢J]. Then
(£p(i))¢ C tep(ie) = (t°¢p(e))! C A for all i > 1, so R is integral
over A. Also, R is finitely generated over R, so R is a finite module
over A. Therefore S is a finite module over A, so A’ N R[u¢, t¢]
is a finite module over A, since A C A'NR[u?,*] C S and A is
Noetherian (here, A’ is the integral closure of A). Also, A = B,
where B = R(R, J), so it follows that B’ N R[u, ] is a finite module
over B. Further, B C R(R, 7,) €S B'NR[u, ], where y = {J"},>0,
so R(R, yy) is a finite module over B. Hence y is a reduction of
Yw by (2.3). Also, yy = Y4, by (2.2.2) (where the integer e of (2.2.2)
for the present y is 1), so the proof of (2.9.1) = (2.9.3) shows that
(J*+1, = J(J"), forall large n. It follows that there exists a positive
integer A such that (J"t"), = J*(J"), C J" forall n > 1, and J
is open (since ¢(1) and ¢(e) = J have the same radical). Therefore
it is shown in [18, Lemma 3] that this implies that R is analytically
unramified, so (3.1.3) = (3.1.1). O

If ¢ is a filtration on a ring R and S is a multiplicatively closed
set in R such that 0 ¢ S, then it is readily checked that ¢R; =
{¢(n)Rs},>0 is a filtration on Rg and that ¢Rg is Noetherian if ¢
is. This will be used several times in the remainder of this section.

(3.2) CoRrOLLARY. Let P be a prime ideal in a Noetherian ring
R. Then the following are equivalent:

(3.2.1) Rp is analytically unramified.

(3.2.2) For all Noetherian filtrations ¢ on R such that ¢(1) C P,
¢Rp is a reduction of (pRp)y .

(3.2.3) There exists a Noetherian filtration ¢ on R such that P is
a minimal prime divisor of ¢ and ¢Rp is a reduction of (¢Rp)y .

(3.2.4) For all Noetherian filtrations ¢ on R such that ¢(1) C P,
(¢Rp)w is Noetherian.

(3.2.5) There exists a Noetherian filtration ¢ on R such that P is
a minimal prime divisor of ¢ and (¢Rp), is Noetherian.

Proof. This follows immediately from (3.1). o

By virtue of (2.9.1) & (2.9.2), (3.1.2) could be restated: there exists
a positive integer d such that (¢(n))y C ¢(n—d) forall n > d.
Here, the integer d depends on ¢. However, the beautiful theorem
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of Briancon-Skoda, as developed by Lipman, Sathaye, and Teissier
in [3] and [4], shows that often d can be chosen independent of ¢ ;
specifically, if 7 is an ideal in a regular local ring R, then (I"), C
I"=4 for all n > d, where d + 1 = altitude(R). In (3.3) we extend
this theorem to Noetherian filtrations by showing that the integer d
depends only on altitude(R) and the integer e such that ¢(n+e) =
¢(e)p(n) for all n > e. and not on the particular ¢. To do this we
need to use the following result, [4, Corollary, p. 200]: if R is a regular
local ring and by, ¢y, ..., by, ¢, are nonunits in R, and if A’ is the
integral closure of A = R[c /by, ..., ¢cn/by], then (by---b,)A' C A.

(3.3) THEOREM. Let ¢ be a Noetherian filtration on a regular local
ring (R, M), let d = altitude(R), and let e be a positive integer such
that ¢(n +e) = ¢(e)p(n) for all n > e. Then (¢(n+de))y C ¢(n)
forall n>0.

Proof. It is readily seen that if X is an indeterminate, if 4 =
R[Xmrix), and if p(n) = ¢(n)d for n = 0,1,..., then
(y(n +de))y C y(n) if and only if (4(n + de))y C ¢(n), so it may
be assumed that R/M is infinite. Therefore each ideal in R has a
reduction that is generated by d = altitude(R) elements, so let X =
(b1, ..., bg)R be a reduction of ¢(e), let § be the e-repeated ideal
reduction of ¢ generated by X (see (2.1.3)), and let A = R(R, J).
Then the proof of (2.12) shows that R = R(R, ¢) is a finite integral
extension ring of A, so it follows that A C R C R’ C A’. Also, it
is readily seen that A = R[u, t°X]. Further, L = R[u]s 4)rp 1 @
regular local ring, and if S = R[u]— (M, u)R[u], then Ag = L[ X/u°]
and R is the integral closure of Ag. Therefore it follows from the
comment preceding this proof that if g = de then uéR§ C Ag C Rg.
Hence u"*$R§ C u"Rg forall n>0.

Now if p is a prime divisor of uR, then

pC(u, M, t(1), 24(2), ...)R,

so pNR[u] C (M, u)R[u], so pNS = &, and so it follows that u*RgN
R = ¥R forall k > 1. Also, it is readily seen that #"R'NR = (¢(n))w
for all n > 1 (since R = R, it follows that B = R(R, ¢,,) = R'), so
it follows from the end of the preceding paragraph that (¢(n+g))w =
u"ER'NR C u"8RGNR C u"RgNR = u"RNR = ¢(n) forall n > 0.0

For the remaining applications we need two additional definitions.
The first is of the analytic spread of a filtration, and (3.4.1) agrees with
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the definition of spread in [15, p. 28], and it extends the definition
of a(I) (= altitude(R(R, I)/(u, M)R(R, I)), see [6, Theorem 2, p.
149]) from ideals I in a local ring (R, M) to filtrations on R.

(3.4) DEFINITION. Let ¢ be a filtration on a Noetherian ring R.
Then:

(3.4.1) If R islocal with maximal ideal M , then the analytic spread
a(¢) of ¢ is defined by a(¢) = altitude(R(R, ¢)/(u, M)R(R, ¢)).

(3.4.2) Ay(p) ={P; P € Ass(R/(¢(n))y) for some n > 1}. Mem-
bers of Ay (¢) are called the asymptotic prime divisors of ¢.

(3.4.3) If I is an ideal in R, then /f*(I) ={P; P € Ass(R/(I")a)
for some (equivalently, by [S, (3.4)], for all large) n > 1}. Members
of A*(I) are called the asymptotic prime divisors of I .

(3.5) LeEMMA. Let ¢ be a filtration on a local ring (R, M) and
let 6 be the e-repeated ideal reduction of ¢ generated by ¢(e) (see
(2.13)). Then a(¢) = a(d) = a(o(e)).

Proof. Let R = R(R, ¢), B = R(R, §), and A = R[u®, t°¢p(e)],
so A CBCR. Also, (£'¢(i))° = t'(¢p(i))® C tg(ie) = t*(¢(e))’ =
(tp(e))! CA forall i>1,s0 R and B are integral over A. There-
fore it follows from integral dependence that altitude(R/(u, M)R) =
altitude(B/(u, M)RNB) = altitude(A/(u, M)RNA). Also, (v, M)B
C(u, M) RNBC ((u, M)B),, by integral dependence, so

a(d) = altitude(B/(u, M)B) = altitude(B/(u, M)RNB)
= altitude(R/(u, M)R) = a(¢).

Further, A = R(R, ¢(e)), so a(¢(e)) = altitude(A/(u, M)A),
so it follows similarly that a(¢(e)) = altitude(A/(u, M) RN A) =
altitude(R/(u, M)R) = a(¢). Hence a(¢) = a(d) = a(¢p(e)). O

A proof similar to that of (3.5) shows that if ¢ and y are filtrations
on a Noetherian ring R such that ¢, = yy,, then a(¢) = a(y). And,
similarly, a(¢) = a(¢™) forall n>1.

(3.6) extends McAdam’s Theorem [5, (4.1)] from ideals to Noether-
ian filtrations.

(3.6) THEOREM. Let R be a locally quasi-unmixed Noetherian
ring, let ¢ be a Noetherian filtration on R, and let P € Spec(R)
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such that ¢(1) C P (see (2.13)). Then P € Ay(p) if and only if
height(P) = a(¢Rp).

Proof. Let P € Spec(R) such that ¢(1) C P. Then ¢Rp is Noether-
ian, since ¢ is, so P € Ay (¢) ifand only if P € AA*(d)(e)) for e such
that ¢(n +e) = ¢(e)p(n) for all n > e, by [8, (3.4.3)], if and only if
PRp € A*(¢(e)Rp), by [13, (2.9.2)], if and only if PRp € Ay (¢Rp),
by [8, (3.4.3)]. Also, Rp is quasi-unmixed, so it may be assumed to
begin with that R is local with maximal ideal P, and it remains to
show that P € A, (¢) if and only if height(P) = a(¢).

For this, by (2.13) let § be the e-repeated ideal reduction of ¢
generated by ¢(e), so a(¢) = a(d) = a(s(e)), by (3.5). Also, it is
shown in [8, (3.4.3)] that A, (¢) = AA*(¢(e)). Further, since R is
quasi-unmixed, P € /f*(d)(e)) if and only if height(P) = a(¢(e)), by
[5, (4.1)]. Therefore, P € Ay, (¢) if and only if P € ff*(qﬁ(e)) if and
only if height(P) = a(¢(e)) = a(¢). O

(3.7) CoROLLARY. A Noetherian ring R is locally quasi-unmixed
if and only if whenever P € Spec(R) is in Ay (p) for some Noetherian
filtration ¢ on R it holds that height(P) = a(¢Rp).

Proof. 1t is shown in [7, (2.8)] that R is locally quasi-unmixed if
and only if whenever P € Spec(R) is in A*(I) for some ideal I in
R it holds that height(P) = a(IRp). Also, it is clear that for each
ideal I in R, ¢ = {I"},>o is a Noetherian filtration on R such that
Ay(p) = /T*(gb) , so this follows immediately from (3.6). O

(3.8) extends the main result in [11] to Noetherian filtrations. For
this result we use v(I) to denote the number of elements in a minimal
basis of the ideal 1.

(3.8) THEOREM. Let R be a locally quasi-unmixed Noetherian ring,
let ¢ be a Noetherian filtration on R, and assume that ¢ has a (nec-
essarily basic) e-repeated ideal reduction 6 generated by an ideal I
with v(I) = height(¢(1)) (see (2.13)). Then height(P) = height(¢(1))
for every P € Ay(9).

Proof. By (2.13), note that I is a reduction of ¢(e) (where e
is such that ¢(n +e) = ¢(e)p(n) for all n > e), and it is readily
checked that height(¢(1)) = height(¢(n)) for all » > 1. Therefore
v(I) = height(¢(1)) shows that I must be a minimal reduction of
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¢(e), and hence (2.13) shows that J is a basic e-repeated ideal re-
duction of ¢. Also, if P € Ay(¢), then P € A*(¢(e)) = A*(I), by
[8, (3.4.3)] (and since (I"), = ((¢(e))"), for all n > 1), so since
v(I) = height(¢(e)) and R is locally quasi-unmixed, [11, Corollary
2.14] shows that height(P) = height(¢(1)). O

Our final result characterizes locally quasi-unmixed Noetherian rings
in terms of reductions of Noetherian filtrations.

(3.9) CoROLLARY. A Noetherian ring R is locally quasi-unmixed
if and only if whenever P € Spec(R) and ¢ is a Noetherian filtration
on R that has a basic e-repeated ideal reduction generated by an ideal
I with v(I) = height(¢(1)) it holds that P € Ay (¢) if and only if
¢(1) C P and height(P) = height(¢(1)).

Proof. It was shown in [11, (2.29)] that a Noetherian ring R is
locally quasi-unmixed if and only if whenever P € Spec(R) and I
is an ideal in R with v(I) = height(/) it holds that P € /f*([) if
and only if 7 C P and height(P) = height(I). Therefore this follows
from (3.8), since for each ideal I in R it holds that {I"},>o is a
Noetherian filtration on R such that A, (¢) = AA*(I ). O
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