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A NOTE ON THE SESSILE DROP

THOMAS I. VOGEL

The problem considered is that of a drop of liquid resting on a
plane, where the angle of contact between the drop surface and the
plane is not assumed to be constant. With no assumption on the
contact angle, it is shown that the drop surface, when considered from
zo/2 to zo, is a graph (here z 0 is the maximum height of the drop).
When the contact angle is assumed to lie in the interval [0, § ] , the
entire drop surface is shown to be a graph. These results also hold in
zero gravity, thus applying to surfaces of constant mean curvature.

1. Non-zero gravity. The model problem is that of a drop of liquid
in R3 resting on a horizontal plane Π in a uniform gravitational field,
and having varying contact angles. The free surface of the drop will
have as its mean curvature an affine function of height above Π (see
[1]). More formally, let z represent the coordinate perpendicular to
Π and x the coordinates in Π = {z = 0}. Let Ω c {z > 0} be
the region in space occupied by the drop, where Ω is an open set,
and let Σ be the closure of <9Ω n {z > 0}, i.e., the free surface of
the drop. Then at a point (x, z) e Σ, the mean curvature of Σ
must be \{κz + λ). Here K is the capillary constant, depending on
the materials involved, and λ is a Lagrange multiplier arising from
the volume constraint. Since the force of gravity is directed in the
negative z direction, we will have K > 0 (/c < 0 is the pendent drop).

For the moment, we make no assumptions on the angle of contact
between Σ and Π. In particular, the contact angle is not assumed
to be constant. The angle of contact between Σ and Π at a point
p G Σ Π Π is the angle between the outwardly directed normal to Σ
at p and the upward normal to Π at p . When talking of contact
angle, it is implicitly assumed that the boundary regularity of Σ is
enough to ensure that the idea of a normal to Σ at p makes sense.
If Π is assumed to be a homogeneous plate, then the accepted theory
predicts that the angle of contact is constant ([1]), from which H.
Wente proves ([5]) that the drop is rotationally symmetric. However,
we have all seen drops which are not rotationally symmetric resting on
reasonably clean plates (e.g., spilled coffee). Apparently there is some
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resistance to motion of the curve of contact which results in varying
contact angles (see [1], [2] and [3] concerning resistive forces). The
drops considered in this paper will include real-life spills as well as
Wente's rotationally symmetric drops.

Instead of the specific form for mean curvature considered above,
in this section we will require Σ to be a C2 surface, and the mean
curvature of Σ at (x, z) to be a Lipschitz function H(x, z) which
is strictly increasing in z . It is also not necessary to restrict ourselves
to R3 we will assume that (x, z) e R""1 x R. I will use a procedure
similar to the ones used in [5] and [6] to obtain information on Σ.
Consider the horizontal plane {z = ζ}, and let Ωr(C) and Σr(ζ) be
the reflections of Ω and Σ in {z = ζ} (so that Ωr(C) and Σr(C) are
upside-down). We will call the maximum height of the drop surface
z 0 . As ζ decreases from z 0 , Ω r ( C ) Π { 0 < z < C } will start out lying
inside Ω (since Σ is smooth). Let Co be the smallest non-negative
value of ζ with the property that Ω r ( ^ ) Π { 0 < z < ^ } i s contained
in Ω for all η > ζ. Notice that Ωr(Co) Π {0 < z < Co} is contained
in Ω.

For Co > 0, we first observe that one of the following cases must
occur:

(1) Σ r(£0) will be internally tangent to Σ at some point p = (x, z)

(2) Σ r(£0) will be internally tangent to Σ at some point p = (x, z)

(3) Σr(ζ0) will contact Σ on the contact curve Σ n Π .
The proof that these are the only possibilities is essentially the same

as Wente's proof of the analogous result in [5], and will be omitted.
However, on closer inspection we will see that cases 1 and 2 are im-
possible.

Case 1. Choose a coordinate system (y\, ... , yn-\ > z) with z as
before, so that the plane tangent to Σr(£o) and Σ is {yn-\ — 0},
and the yn-\ axis is directed into Ω. Then in an open neighborhood
N C {yn-\ = 0 } of /?, there are functions u(y\, . . . , yn-2, z) and
v(y\9 . . . , yn-2 > z) such that Σ is locally the graph of u and Σr(£o)
is locally the graph of v . We must have v > u in N~ = Nn{z < Co}
There will hold:

div(Tu) = -{H(y{, . . . , yn_2 , z))

and
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in N~. Here

div(Γw) = div

is the mean curvature operator. H is introduced because of the rota-
tion. In N" we have div(Γw) > div(Γι ) . As in [4], §10.4 and [5],
the function w = u-v will satisfy M(w) > 0, where M is a linear
uniformly elliptic operator with coefficients depending on u and v .
We also have dw/du = 0 at p. This contradicts Hopf s boundary
point lemma if w is less than zero in N~ , and if w = 0 somewhere
in N~ , we violate the strong maximum principle, since w cannot be
identically zero in N~ .

Case 2. If 0 < z < Co, then the mean curvature of Σ at p is strictly
less than that of Σr(£o) at p. One can derive a contradiction as in
case 1 to Σr(£o) lying in Ω near p, using the maximum principle, or
one can proceed using the geometric definition of mean curvature, as
in [6]. Using either method, one quickly obtains a contradiction.

Now that we know that case 3 must occur, it follows that ζ0 < ZQ/2,
since Σ r(ζ 0) doesn't go below the plane z = 2ζo - z0.

THEOREM 1. Suppose that Ω c {z > 0} is an open set, with Σ the
closure of dΩf){z > 0}. Suppose that the interior of Σ is a C2 surface,
and that the mean curvature of Σ at (x, z) is H(x, z), a function
which is strictly increasing in z. Then the surface ΣΠ{ZQ/2 < z < ZQ}

is a graph over Π.

Proof. Suppose that this surface is not a graph. Then for some
x G Π there are two different values of z in the interval {zo/2 <
z < ZQ} such that (x, z) lies on Σ. Call them z\ and zi. Then for
ζ = (z\ + Z2)/2, Σ r(ζ) and Σ intersect at some point p. However,
this value of ζ is larger than ZQ/2 , so that Ωr(£) Π {0 < z < ζ} must
be contained in Ω, and their boundaries must be tangent at p. We
obtain a contradiction as in case 2, above.

Note. In the case of a symmetric sessile drop, the result of Theorem
1 is contained in the discussion following (3.7) in [1],

THEOREM 2. If in addition to the hypotheses of Theorem 1 it is re-
quired that the angle of contact between Σ and Π remains in the
interval [0, f ], then Σ is a graph over Π.
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Proof. If Σ is not a graph, then we find Co as above. Assume first
that Co > 0. The point of contact p between Σr(Co) and Σ is on
the contact curve Σ n Π . I claim that at p, the normal to Σr(Co) has
a non-positive z component. Suppose that this is not the case. We
immediately have a contradiction, since p will be contained inside of
Ωr(C) for C larger than Co > contradicting the definition of Co

But now, using the assumption on the contact angle, we will see
that both Σr(Co) and Σ are tangent at p. Indeed, for Ω to contain
Ωr(Co) n {0 < z < Co} > we must have that the normal vector to Σ has
a non-positive z component, but the contact angle assumption yields
that Σ has a non-negative z component at p. Thus the normal to
Σ at p is horizontal. We now obtain that the normal to Σr(Co) is
horizontal as well, since if the z component of this vector is strictly
negative, we violate the fact that Ωr(Co) Π {0 < z < Co} is contained
in Ω.

It follows that Σ and Σr(Co) must have the same normal vector at
p . Indeed, if they do not, their tangent planes will cross in {z > 0},
which cannot occur if Ωr(Co) Γ) {0 < z < Co} is to be contained in Ω.
Thus Σ and Σr(Co) are tangent at p. We obtain a contradiction as
in case 2, above. Thus Co = 0

Even though Co = 0 > it is still conceivable that Σ is not a graph, in
that it may contain a vertical line segment. However, this leads to the
same contradiction obtained in the proof of Theorem 1.

Note. Theorem 2 is sharp in that a sessile drop surface is a graph if
and only if the contact angle exceeds f nowhere on the curve of con-
tact, since if the contact angle exceeds § anywhere, the drop surface
obviously cannot be a graph.

2. Zero gravity. We now generalize to H(x, z) which is increasing
in z, but not necessarily strictly. This includes the case of zero gravity
for the physical problem of the sessile drop, when Σ is a surface of
constant mean curvature. We can obtain the results of Theorems 1
and 2, with some additional assumptions.

THEOREM 3. Make the same assumptions as those of Theorem 1,
except that H(x, z) is increasing in z, but not necessarily strictly.
In addition, assume that Σ is connected, and that Σ n Π ^ 0 . Then
Σ Π (ZQ/2 < z < z0} is a graph over Π.

Proof. In going through the procedure of § 1, it is now possible that
all three cases occur. An example is provided by taking Σ to be a ball
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and Π a plane tangent to Σ. However, I claim that if for some value
of Co cases 1 or 2 occur, then case 3 must also occur for that value of

C o .
First, assume that case 1 holds. Consider the proof of the impossi-

bility of case 1 in the case that H(x, z) is strictly increasing. When
we now allow H(x, z) to be merely increasing, we have div(7Tw) >
άi\{Tv) in N~ , so that M(w) > 0. It follows from applying Hopf s
boundary point lemma and the strong maximum principle that w = 0
in N~ . We can now continue in this fashion to obtain that Σ = Σr(Co)
in {0 < z < Co} Since we have assumed that Σ Π Π φ 0 , we now
know that case 3 holds. We similarly can show that if case 2 applies,
then we are also in case 3. The proof of Theorem 3 now follows the
proof of Theorem 1.

Note. The factor of \ in Theorem 3 is sharp, as shown by the
example of a ball tangent to Π.

THEOREM 4. Assume the hypotheses of Theorem 3 and that the angle
of contact between Σ and Π remains in [0, §] . Then Σ is a graph
over Π.

Proof. If Co > 0> w e c a n find a point p e Σr(Co) n ( Σ n Π ) as in
Theorem 3. The proof now proceeds as that of Theorem 2.

Note. The methods of this section may be applied to [6], §3. They
will extend the results of [6], §3 which are stated for surfaces of con-
stant mean curvature to include surfaces with mean curvature as con-
sidered in the present action.

Acknowledgment. This research was partially supported by the Na-
tional Science Foundation (DMS-8801515). I am grateful for the hos-
pitality of the Mathematics department of Stanford University, where
some of this work was done, and I am particularly grateful for the
hospitality of Robert Finn during that visit.

REFERENCES

[1] R. Finn, Equilibrium Capillary Surfaces, Springer-Verlag, New York, Inc., New
York, 1986.

[2] R. Finn and M. Shinbrot, The capillary contact angle, I: the horizontal plane
and stick-slip motion, J. Math. Anal, and Appl., 123 (1987), 1-17.

[3] , The capillary contact angle, II: the inclined plane, Math. Meth. in Appl.
Sci., 10 (1988), 165-196.



388 THOMAS I. VOGEL

[4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, 2nd ed., Springer-Verlag, New York, Inc., New York, 1983.

[5] H. C. Wente, The symmetry of sessile and pendent drops, Pacific J. Math., 88
no. 2, (1980), 387-397.

[6] T. I. Vogel, Uniqueness for certain surfaces of prescribed mean curvature, Pacific
J. Math., 134 (1988), 197-207.

Received September 15, 1988.

TEXAS A & M UNIVERSITY
COLLEGE STATION, TX 77843




