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ON THE PROJECTIVE NORMALITY OF
SOME VARIETIES OF DEGREE 5

AKIRA OHBUCHI

We give some sufficient conditions for projective normality of com-
plete non-singular varieties of degree five. And we prove that every
complete non-singular surfaces of degree five embedded by a complete
linear system is projectively normal.

Introduction. Let X be a complete non-singular variety over an al-
gebraically closed field, and let L be an ample line bundle on X . The
classification of some (X, L) is found in Fugita’s papers (Fujita [1],
[2], [3], [4]). In this paper, we consider the projective normality of
(X, L) and the defining equations. This problem is trivial in the case
of (D")=1, 2 where n=dimX and & =& (D). If (D") =3, then
(X, L) is projectively normal and the ideal is generated by degree 2
and 3 (X.X.X. [11]). If (D") = 4, then (X, L) is projectively nor-
mal and the ideal is generated by degree 2 and 3 (Swinnerton-Dyer
[10]). So we consider the case of (D”) = 5. In this paper we give
some sufficient conditions for projective normality of varieties of de-
gree 5 and give the generator of the defining ideal. The main part
of this paper is the case of (D") =5 and A(X, L) = 2 (other cases
are clearly obtained by Fujita’s theory). This is a non-degenerate and
non-singular variety of codimension 2 in some projective space PV .
On the other hand, the following conjecture is known as a conjecture
of Hartshorne.

Conjecture (cf. Hartshorne [6]). If X C PV is a non-singular closed
subvariety and dim X > 2N/3, then X is a complete intersection.

If this conjecture is true, then we obtain that every non-degenerate
and non-singular variety which is degree 5 and codimension 2 is not
contained in PV for N > 7. As every non-singular variety is pro-
jectively normal if it is a complete intersection, therefore the results
in this paper are recognized as a step to prove the above conjecture.
Throughout this paper, variety means a complete non-singular variety.
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Notations.
(Dy - --- - Dy): The intersection number of divisors D;, ..., D, on
a variety X where n =dim X .
Oy : The structure sheaf of a variety X .
Ly : The restriction of a line bundle L to a subscheme Y.
Hi{(X,%): The ith cohomology group of a sheaf F.
hi(X, F): The dimension of H!(X, ) as a vector space.
|D|: The complete linear system defined by a divisor D.
@p|: The rational map defined by |D]|.
Z . The invertible sheaf associated to a line bundle L.
@(D): The invertible sheaf associated to a divisor D.
P(E): The projective bundle defined by a vector bundle E.
Kx : The canonical divisor on a non-singular variety X .
@x(k): The sheaf @y @ @pn(k) for a projective variety X embedded
in P".
1. Preliminary. We give several theorems from Fujita’s theory.

DEFINITION ([2]). Let X be a non-singular variety and let L be an
ample line bundle. We define a A-genus of (X, L) by

AX,L)=(D")+n-hX, L)
where n =dim X and L =& (D).
The above pair (X, L) is called a polarized non-singular variety.

DEFINITION ([8]). Let (X, L) be a polarized non-singular variety.
We say that L is normally generated if

H(X, 2)% — H(X, 2%¢)
is surjective for any positive integer k. And in this case, we call
(X, L) projectively normal.

DEFINITION ([2]). Let (X, L) be a polarized non-singular variety
and set L = @#(D). Let V be a reduced irreducible non-singular
member of |D| (if there exists). We call V' a regular member if

HO(X’*‘C/) _’HO(Va 3V)
is surjective.

DEeFINITION ([2]). Let (X, L) be a polarized non-singular variety.
We define g(X, L) by

2g(X,L)-2=(Kx+ (n—1)D).D" 1)

where L = #(D) and n = dim X . We call this g(X, L) a sectional
genus of (X, L).
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If L is very ample, then this g(X, L) is the genus of the generic
curve section of X in the projective embedding defined by L.

THEOREM A ([2]). Let (X, L) be a polarized non-singular variety.
If V' is a reduced irreducible non-singular member of |D| where & =
@(D), then A(V, Ly) < A(X, L). Moreover the following conditions
are equivalent:

(a) AX,L)=AV, Ly),
(b) V is a regular member.

Proof. As 0 — Ox — % — 4 — 0 is exact, therefore
W, %) >hX,2) - 1.

Hence A(X, L)-A(V, Ly) = hO(V, %)-h%(X, Z)+1 > 0, because
(D") = (D|y»-1) where 2 = @ (D). By the above equation, the last
part of this theorem is clear.

THEOREM B. If X is a variety and L is a very ample line bundle,
then A(X,L)>0.

Proof. Tt is a well-known fact (see Fujita [1]).

THEOREM C. Let (X, L) be a polarized non-singular variety. If
A(X,L)=0, then (X, L) isisomorphicto (P(E), Hg)or (P?, Hy(2))
where E is a vector bundle on P', Hf is a tautological bundle on P(E)
and Hy,.(i) =&(i) on P? (i€Z).

Proof. This is a well-known classical theorem (see Fujita [1]).

THEOREM D ([2]). Let (X, L) be a polarized non-singular variety.
If g(X,L)=0 and L is very ample, then A(X, L)=0.

Proof. We prove this theorem by the induction on n = dim X . If
n = 1, then this theorem is trivial. We may assume that n > 2.
Let V' be a reduced irreducible non-singular member of |D| where
% = @ (D). By the induction hypothesis, we assume A(V, Ly) = 0
because g(V, Ly) = g(X, L) = 0. Hence H'(V, Z2™) = 0 for
every t > 0 by Theorem C. Therefore the long exact sequence

AN HI(X, _c‘/®(—(t+1))) N HI(X, g@(—t)) N Hl(V, 3V®(—t))

says that Al(X, 2@+ > pl(x, #®(9) forany t > 0. As

H' (X, 2% =0
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for sufficiently large s, we obtain H'(X, @x) = 0. Therefore V is a
regular member. Hence we obtain this theorem.

THEOREM E. Let (X, L) be a polarized non-singular variety and let
d = (D") where ¥ = @ (D) and n = dim X . Moreover we assume that
A(X,L)< g(X, L) and L is very ample. In this case, the following
are true:

(a) if d > 2A(X, L)-2, then every reduced irreducible non-singular
member V € |D| is a regular member,

(b) if d > 2A(X, L)+ 1, then (X, L) is projectively normal and
AX,L)=g(X,L);

(¢) if d >2A(X, L)+ 2, then the ideal of (X, L) is generated by
degree 2.

Proof. See Fujita [2]. As L is very ample, the proof is the same in
the case of characteristic p > 0.

THEOREM F. Let X C PV be a closed non-singular subvariety which
is not contained in any hyperplane. If the degree of X is 4, then X
is of the following type:

(a) hypersurface,
(b) (2, 2) complete intersection,
(c) Segre variety P! x P? in P,
(d) Veronese surface P? in P,
(e) the variety obtained by hyperplane section or projection of (a),
2 (

t
(b), (c), (d), (e).

Proof. See Swinnerton-Dyer [10].

By the above theorems, we obtain that (X, L) is projectively nor-
mal for (D") =3, 4 where & = @(D) and n = dim X. Moreover
(X, L) is also projectively normal if (D”) = 5 and the codimension
of ¢p|(X) is 1, 3, 4. So we consider the case that (D") =5 and the
codimension of ¢p|(X) is 2.

2. Codimension 2 case. Throughout §2, we assume that #0(X, %)
=n+ 3 where n = dimX, & = #(D), (D*) =5 and L is very
ample. In this case, g(X, L) =1 or 2 because g(X, L) =0 implies
that A(X, L) = 0 by the Theorem D. This contradicts (D”) =5 and
hO(X,L)y=n+3.1f g(X,L)>2, then g(X, L) =2 by Theorem
E in §1.
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THEOREM 1. If g(X, L) = 2, then (X, L) is projectively normal
and the defining ideal of (X, L) is generated by degree 2 and 3.

To prove this theorem, we prepare two lemmas.

LeEMMA 1. Let (X, L) be as above. Let V be a reduced irreducible
non-singular member of |D|. If the homogeneous ideal of (V, Ly) is
generated by degree 2 and 3, then the homogeneous ideal of (X, L)
is generated by degree 2 and 3.

Proof. Let I(k) be the polynomials defined by
I(k) = ker[SKHO(X , &) — H)(X , £®9)]

where S¥ is a kth symmetric product and let I;-(k) be the polyno-
mials defined by

Iy (k) = ker[SKHO(V , &) — HO(V , Z8F)].

We prove this lemma by induction on k. In the case of k =2, 3,
this lemma is trivial. We assume that I(k) is generated by 7(2) and
I(3). By Theorem E (a) in §1, V' 1is a regular member. Moreover
(X, L) and (V, Ly) are projectively normal by Theorem E(b) in §1.
Therefore we obtain the following diagram:

0 0 0
1 1 1

0 — I(k) - Itk +1) 4 Iy(k + 1)
| - ! — {

0 - SH'WX,Y) - SH'PB'X,Y) — SH'EV,S) — 0
l — 1 — !

0 — HO(X,G.?@/() N HO(X’_?@(kH)) N HO(V,fZV@’(k“)) ~ 0
l l |
0 0 0

By the snake lemma, 7 is a surjective map. By the assumption,
Iy(k + 1) is generated by degree 2 and 3. Therefore I(k + 1) is
generated by degree 2 and 3.

LEMMA 2. If C is a non-singular curve and L is a very ample line
bundle on C and A(C, L) = 2, then (C, L) is projectively normal
and its ideal is generated by degree 2 and 3.

Proof. See Saint-Donat [9].

Proof of Theorem 1. It is clear by Lemma 1 and Lemma 2.
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Next we prepare the following notation.

DeFINITION. Let (X, L) be a polarized non-singular variety and
let L be a very ample line bundle. We define ¢(X, L) by

¢(X, L)=minimum{i; X =X, D X,_1D---DX; DD X; with
X; being a reduced irreducible non-singular
member of |D,,,| where Ly = &(D,) and
A(Xn, Lx)=---=A(X;y1, Lx ) > A(X;, Lx)}.
where n = dimX. In the case of A(X;, Lx) = A(X, L), we put
c(X,L)=0.

If AIX,L)=2 and g(X,L)=2,then ¢(X,L)=0.If A(X, L)
=2 and g(X,L)=1,then 1 <¢(X,L) <dimX — 1. Therefore
Theorem 1 is in the case of ¢(X, L) =0.

THEOREM 2. If ¢(X, L) = 1, then (X, L) is projectively normal
and the ideal defining (X, L) is generated by degree 3.

We prepare the following two lemmas.
LEMMA 3. If C C P3 is a non-singular elliptic curve of degree 5
which is not contained in any hyperplane, then
HO(]P3 ’ @;p’(k)) - HO(C s ﬁC(k))

is surjective for every k > 2.

Proof. Let &¢(1) = @(D). We obtain the following diagram:
]P4
o) :
— | projection
C ———>]P’3
As (C, @(D)) is projectively normal, hence
HY(C, ¢ (k) ® H(C, @c(m)) — HY(C, @c(k + m))
is surjective for every k, m > 1. By the assumption, the canonical

map
H(P?, g,:(1)) = H(C, &c(1))

is injective. Now we show that
HO(]P3 s ﬁp’(z)) - HO(C s @C(2))



PROJECTIVE NORMALITY OF DEGREE 5 319

is an isomorphism. As (P, 4,:(2)) = h°(C, #¢(2)) = 10, therefore
we may show that
HO(P’, 8,5(2)) = H'(C, €c(2))

is injective. If this is not true, then there exists some quadratic surface
Q in P3 with Q O C. If Q is non-singular, then the degree of
C =a+b and the genus of C =ab—-a - b+ 1 for some integers a,
b. This cannot occur because the degree of C = 5 and the genus of
c=1.If Q is singular, then the genus of C = a? —a for odd degree
2a+ 1 of C. Hence degree of C =5 and genus of C =1 does not
occur. Therefore the above map is injective, hence is an isomorphism.
Next we show that HO(P3, 4,:(3)) — H%(C, @(3)) is surjective. We
take the basis of H(C, @¢(1)) with

HOP?, g,:(1)) = [x0, X1, X2, X3],
HO(C, c(1)) =[x0, X1, X2, X3, X4]

where [Xxy, ..., Xy] means that x;,..., xy are bases of a vector
space. As
0(mw3
HY(P°, 6,3(2))
2 .2 .2 .2
= [xq, Xi» X3, X3, XoX1, XoX2, X0X3, X1 X2, X1X3, X2X3]

and HO(P3, 4,:(2)) = H(C, &c(2)), therefore H°(C, &c(2)) has

the above basis. But x;x4 (i = 0,...,4) are contained in
HO(C, 6.(2)), and therefore we obtain the following relations:
*) xixg = fi(X0, X1, X2, X3)

where i =0,1,2,3,4 and f; (i =1, 2, 3,4) are homogeneous
polynomials of degree 2. As (C, @¢(1)) is projectively normal, hence
HO(C, 6c(1)®* — HY(C, 8c(3))

is surjective. Therefore we obtain the generators of H°(C, @.(3)) as

follows,

LR
2

x3x1, X3x2, x3x3, x}x0, X2x3, X3 %3

X3X0, X3x1, X3X3, X3xX0, X3X1, X%

~

XpX1X2, X0X1X3, X0X2X3, X1X2X3

X3, X3x0, X}x1, X3x2, X2X3
(2)  § xaxd, Xaxi, xax3, X4x3
L X4X0X1, X4X0X2, X4X0X3, X4X1 X2, X4X]1X3, X4X2X3.
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The part (1) is clearly the image of H°(P3, 4,:(1)). And the rela-
tion () says that the part (2) is also in the image of HO(P?, 4,:(3)).
Because

Xaxixj = fi(xo, X1, X2, x3)x; (i, j#4),
x3x1'=f;$(x0,XI,x2,X3)x1' (i=07132, 3):
x3 = fa(xo, X1, X2, X3)X4

by the relation (x); moreover the relation () says fyx4 is in the
image of H%(P?, #,:(3)). Hence

HY(P?, 4,:(3)) = H(C, &c(3))

is surjective. Finally we prove this lemma. If £ = 2, 3, then this
lemma is true by the above argument. We consider the case in which
k > 4. First, we show this lemma in the case that k is even. Let
k = 2m. We show in this case by the induction on m. In this, we
give the following diagram:

H(P*, O,s(2m)) HY(C, @-(2m))

1 — 1
H(P,62(m-1)@H (P, £(2)) — HYC,O(2m-1))@H(C,O(2)

By the hypothesis of induction and projective normality of
(C, Bc(1)), we obtain
H(B, 6,,(2m)) — HY(C, oc(2m))

is surjective. Next we consider the case in which k isodd and k > 5.
But this case is clear by the same argument. Therefore we obtain this
lemma.

LEMMA 4. If C c P3 is as in Lemma 3, then the homogeneous
ideal of C c P is generated by degree 3.

Proof. Let I be the kernel of HY(P3, g,:(k)) — HY(C, &c(k)).
We show that
Ik ® HO(P3 > ﬁp’(l)) - Ik+l
is surjective for every k > 3. We take a divisor D with &(1) = @ (D)

and support of D consists of 5 distinct points. As D C P?, we define
I (k=1,2,...) by

0— I} — H(P?, g,:(k)) —» H'(D, &p(k)) = H'(D, &p).
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If k£ > 2, then we give the following diagram:

0 0 0
! ! 1

0 — I, — ) ) — I
! — 1 — 1

0 - HYP,0k) — H'P®,OKk+1) — HP,0k+1) — 0
l — l — 1

0 — HYC,Ok) — HYNC,Ok+1) — HY(D,Ok+1)
! ! !
0 0 0

By the snake lemma,
0—-Iy > Iy — I, —0
is exact for every k > 2. Moreover we define 4 so the following
diagram commutes:
I, @ HO(P?, g,:(1)) — 1, @ H(P?, g,5(1))

\ !
I, ® HO(P?, 6,:(1))

As I — I!, issurjective if k >3 and HO(P3, 4,:(1)) — HO(P?, g,.(1))
is surjective, therefore A is surjective for £ > 3. Next we define
v: I, —» I, ® H'(P?, 6,:(1)) with y(s) =s®J where J is a section
of HO(P?, g,:(1)) which is defining P2. This shows that the following
diagram

L@ HYP3, 6,(1)) & I, @ H'®?, g.(1))
V" ! — !
0 - I — I — L,,—0

is commutative for k > 2. Therefore if I, ® HO(P?, G,..(1)) — I},
is surjective for every k > 3, then this lemma is proved. So we show
that
I, ® H'(P?, 6.(1)) = I,

is surjective for k > 3. Let ¥V = H(P?, 8,:(1)) and let V'* = the
image of HO(P?, #,:(k)) — H°(D, &p(K)). As the support of D is
not collinear, V — HO(D, &p(1)) is injective. We show that V* =
HO(D, @p(k)) for k >2.If V # HY(D, &p(2)), then the dimension
of ker[H(P?, 4,:(2)) —» H(D, @p(2))] is at least 2. Therefore there
exist distinct quadratics Q; and @, with Q; DD (i=1,2). Q; and
Q, satisfy Q;NQ, = finite points. Because if Q;NQ, has component,
then there exist distinct lines /;, /,, /5 with

[y N D = 4 points
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and
Q=L+, Q=N +1.

Hence P? -/, — P! be a projection with center /;, andlet C--- — P!
be a restriction map to C. Let f: C — P! be an associated morphism
defined by the above map C--- — P!. As /;nD = 4 points, therefore
f is a bijective morphism. Hence the genus of C = the genus of
P! = 0. This is a contradiction. So Q;NQ, = finite points. As Q; and
Q, are conics, Q;NQ, contains at most 4 points by Bezout’s theorem.
But Q;NQ; contains D with degree 5; this is a contradiction. Hence
VZ=HOD, @p(2)). We take s € V with

HYD, op(k)) = HOD,Opk + 1)).
!

t — s
In this, we obtain the following commutative diagram:

HO®?, 6,.(k)) —  HYD,op(k))
al — 1¢
HOP?, @.(k+1) — HD,&p(k+1))

where o, (, are defined by f +— fs. Therefore we obtain
HO(P*, 8 (k)) = HO(D, &p(k))
is surjective if k > 2. Hence
vk =HYD, op(k))

forevery k > 2. Let K(Vk, V) be ker[Vk@V — VKk+1] and K(V, s)
be ker[V® — V] where k and s are positive integers. We consider
the following commutative diagram:

0 0 0
| | . l
KVt myev & KWk, vy & KWk p)
| — ! - |
vi-lgrev L vkey & yklgy
! - | — |
45:3% ooy & vk
| ! |

0 0 0
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where B(a®b®c) = ab®c, o isinducedby B, {(f) = fs, p(fRg) =
fs®g, & isinduced by p and s is an element of V' defined as above.
If k>3, p and { are isomorphisms. Hence we obtain that o is a
surjective map. Next we consider the following commutative diagram:
0—-KWV,keV: KWV, k+1) > KWV, v)—0
wl — a T
KV, k)eV L KWV-!1 V7)oV —0
where u, v, v’ and w are canonical maps and the surjectivity of
v and v’ is induced by the following commutative diagram and the
snake lemma:

0 0 0
l ! |

0 - KV, k)@V & K(V,k+1) 5 KWk, v
id | — l — !

0 - KV, k)V — yek+h pkey — 0
! — ! — !

0 — 0 N yk+1 id pk+1 - 0
| |
0 0 0

Therefore K(V, k + 1) = im(w) + im(u) if k > 3. Hence we obtain
that I}, ® HO(P?, &,(1)) — I, is surjective for k > 3. Hence we
prove this lemma.

Proof of Theorem 2. First we show that

H(X, 2)® — H'(Xx, 2%)
is surjective for k > 1. If k = 1, then this is clear. Now we can take
X=X,02X,_.10---02X3;0X,
such that X; is a reduced irreducible non-singular member of |D;, |
where % =@(D;) (i=1,2,...,n=dimX) and
2=A(X,, Lx)=---=A(Xa, Lx) > A(Xy, Lx,) = 1

because ¢(X, L) = 1. As X; is an elliptic curve of degree 5 in P3,
therefore HO(P?, 4,:(k)) — H(X,, L}eglk) is surjective for k > 2 by
Lemma 3. We consider the following diagram:

0 - HY(P*,@k-1) — H'P* k) — H (P, OKk) — O

— l —

! !
0 — HU, ZZ) - B0, ZE - HX, ZP
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By induction on k, L X, is projective normal. So it is clear that
L is projectively normal because A(X,, Lx) = -+ = A(X;, Ly)).
The last part of this theorem is obtained by Lemma 4 and the same
argument.

COROLLARY. If (X, L) is a polarized non-singular surface, (D?) =
5 where ¥ =@ (D) and L is very ample, then (X, L) is projectively
normal.

To conclude this section, we give two examples of varieties of degree
5 and codimension 2.

ExaMPLE 1. Let f: S — P? be a blowing up with center p;, ...,
pg € P2 where p, ..., pg are in general position. We put f~!(p;) =
E; (i=1,...,8) and D = f*(4l) — 2E; — E;— —Eg where [ C P?
is a line. This D is very ample, (D?) =5 and g(S, @#(D)) = 2 (see
Hartshorne [5]). Therefore ¢(S, #(D)) =0.

ExXAMPLE 2. Let f: S = P(&) — C be a ruled surface over an
elliptic curve C where & is an indecomposable locally free sheaf of
rank 2 on C. Let deg(&) = 1. Let Cp be a section of f with
Pic(S) = zCy @ f*Pic(C). Let D be a divisor in Pic(S) with D =
Co+ f*(T) and deg(T) = 2. This D is very ample (see Hartshorne
[5]). Let / be a fiber of . As D is numerically equivalent to Cy+2/,
therefore (D?) =5 and (D.(D + Ks)) = 0. Therefore g(S, #(D)) =
1. This is an example of ¢(S, #(D))=1.
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