
PACIFIC JOURNAL OF MATHEMATICS

Vol. 146, No. 1, 1990

NEVANLINNA PARAMETRIZATIONS
FOR THE EXTENDED INTERPOLATION PROBLEM

SECHIKO TAKAHASHI

Let 3§ be the set of holomorphic functions / with |/ | < 1 in
the open unit disc D = {z e C: \z\ < 1}. Let σ = {zx, z2, . . . }
be a finite or infinite sequence of distinct points in D and, for each
point Zi e σ, (C,Ό, ... , Cint-ι) be an ordered «/-tuple of complex
numbers (0 < ΛZ < +oo). The problem is to find a function / which
belongs to 38 and satisfies the extended interpolation conditions

Λ, - l

(El) f(z) = Σ cia(z - Zi)a + O((z - Zi)n<) (Vz, € σ).
α=0

Let W denote the set of all solutions of this problem (£1) in £%
and assume the hypothesis

(H) W has at least two elements.

A bijection π: 38 —• % is called Nevanlinna parametrization of <o
if there exist four functions P, Q, i?, and 5 holomorphic in D
and such that Rg + 5 ^ 0, π(g) = (P^ + Q)/(Rg + S) for any
g e <&. The existence, some properties and some applications of
such parametrizations are shown. One has a bijection between the
set of Nevanlinna parametrizations of W and the group of Mδbius
transformations.

In our previous paper [24], σ = {z\, ... , zk} being finite, we con-
structed in a simple manner an Hermitian n x n matrix A from the
given data {zf } and {c, α} ( l < / < f c , 0 < α < Λ / — l ) , where
n = Σ!i=\ ni 9 a n ( * established the following theorems which unify the
coefficient theorem of Caratheodory-Toeplitz-Schur [3], [26], and [19]
and the interpolation theorem of Pick [17]:

THEOREM E. The problem (El) admits a solution in & if and only
if A > 0 (positive semidefinite). If so, among the solutions, there is a
finite Blaschke product of degree < n.

THEOREM U. The solution of the problem (El) in & is unique if
and only if A > 0 and det A = 0. In this case, the unique solution
is a finite Blaschke product whose degree is equal to the rank of A.
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Conversely, if a finite Blaschke product of degree < n is a solution of
(El) in 38, then it is the unique solution o/(EI) in 3§.

In the case where σ is infinite, we shall treat briefly the existence
of solutions and Denjoy's uniqueness theorem in §7 below.

Now, we proceed to the case in which the problem (El) has more
than one solution in 3S. As we said above, we shall assume, always in
this paper except in §7, the hypothesis (H). Nevanlinna parametriza-
tions are very powerful for our study of the present case.

In §5, we shall prove that, under the hypothesis (H), there exists
a Nevanlinna parametrization of %, somewhat more axiomatically
than Nevanlinna [13] did in the classical case where all Λ, reduce to
1, that is, only the values at z, are prescribed.

After having studied some properties of Nevanlinna parametriza-
tions in §3, we shall proceed in §4 to consider the totality 9° of Nevan-
linna parametrizations of %. In [13], Nevanlinna introduced some
parameters in each step of his algorithm and then specialized them
conveniently for his purpose. It is natural to ask how many parame-
ters are essentially efficient to induce different parametrizations. Our
answer is as follows:

The group G of Mδbius transformations

τ{z) λ

here regarded as analytic automorphisms of the closed unit disc D =
DudD, operates canonically on & in such a way that

(τ*(π))(g) = π(τog) (πe<?>,ge^).

We shall prove in §4 that, under the hypothesis (H), for any πo, π e
&, there exists one and only one τ € G such that π = τ*(πo). Thus,
with πo G & fixed, £P and G correspond bijectively.

Finally, we want to mention that the existence theorem of Nevan-
linna parametrizations in §5 and some parts of the results in §6 and
§7 are reported in [25].

2. Preliminaries. Schur's triangular matrices will make easy and
transparent our calculations of coefficients in the sequel. To a function

α=0
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holomorphic at ZQ and to a positive integer m, we associate the fol-
lowing mx m triangular matrix

f co λ
C\ Co

Δ(/;zo;m) = .

\Cm-\ ••• C\ Co)

For each z, e σ, replacing m by Λf and cα by cia (0 < α <
Λ/ - 1), we obtain an nixni triangular matrix Q . Then we may say
that for an / e 3S to belong to I? it is necessary and sufficient that
Δ(/; Zi n, ) = Q for any z, € σ. One sees immediately

PROPOSITION 1. Let f and g be holomorphic at ZQ. Then we have
(a) Δ(/ + g z 0 ra) = Δ(/; z 0 ra) + Δ(# z 0 ra)
(b) Δ(/g zo w) = Δ(/; z 0 ra) Δ(^ z 0 m) = Δ(g z 0 m) •

Δ(/; z o ; m);
(c) Δ(l ZQ m) = / m (ίΛ^ unit matrix of order m).

Next, to our extended interpolation problem (El), we assign the
Blaschke product

where A/ = 1 if z/ = 0; and Af = - | z , |/z/ if zf ^ 0. We point out
here that, when σ is infinite, the hypothesis (H) implies the conver-
gence of this infinite product. In fact, if f\, /> G J? and f\ ψ h,
then /i — / 2 is bounded and ^ 0 (does not vanish identically). Each
Z[ e σ is its zero of order > m, so that Σz eσ w/(l - |z/|) < +cx) and
the infinite product converges in D. Thus, σ being finite or infinite,
B is holomorphic in Z> and vanishes exactly on σ with the order m
at Zi eσ.

We recall the following well-known properties of linear transforma-
tions.

PROPOSITION 2. Let

τ(z) = p Z Q (p9q,r,seC;ps-qrφ0)
r z i s

be a linear transformation. If τ(D) is bounded, then \r\ < \s\ and
τ(D) is the open disc of center (qs - pr)/(\s\2 - \r\2) and of radius
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\ps -_qr\/(\s\2 - \r\2). // τ(D) C D then \p\ < \s\, \q\ < \s\, \r\ < \s\.
Ifτ(D) CD then \p\ < \s\.

3. Basic properties of Nevanlinna parametrizations. Until §7, we
consider always the extended interpolation problem (El) under the
hypothesis (H). For each ZQ G D, let

denote the set of values taken at z 0 by all solutions of (El) in <g. We
have W(z0) C D. In fact, W(ZQ) C D is evident. If there were an
/ G % such that f(z0) e dD, then / is constant by the maximum
principle, so that |cio| = 1. All solutions of (El) in <% reduce to the
constant C\Q , contrary to (H). For any zι e. σ, W{zϊ) reduces to a
point: W{z{) = {ci0}.

As we defined in the Introduction, a Nevanlinna parametrization
of g7 is a bijective mapping π: 3S —• g7 such that there exist four
holomorphic functions P, Q9 R, and 5 in D satisfying

We shall say that the quadruple (P, Q, R, S) represents π. To this
π and to each ZQ G 2), we associate the mapping πZo: D —• W(ZQ)
defined by

πZo(C) = τr(0(zo) (CeS) ,

where each ζ G D is regarded as a constant function. If P(zo)S(zo) -
Q(ZQ)R(ZQ) Φ 0, then we have

and, taking account of constant functions, we see that π Z o : D —•
W(ZQ) is bijective and hence W(ZQ) is a nondegenerate closed disc
in Z).

Using Proposition 2, we observe now some basic properties of qua-
druples representing Nevanlinna parametrizations.

PROPOSITIONS 3. Let (P, β , R, S) represent Nevanlinna parame-
trization of %. Then we have

(a) SφO in D\
(b) PS-QR^O;
(c) P/S, Q/S, and R/S are all holomorphic in D\
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(d) \P/S\ < 1, \Q/S\ <\,and \R/S\ < 1 in D;
(e)

Proof. Taking g = 0, one sees S φ 0 and Q/S e &. If PS-QR==
0, the bijection π would be a constant mapping, which is impossi-
ble. To see (c) and (d), take z0 e D \ σ such that S(z0) Φ 0 and
P(zo)S(zQ) - Q(zo)R(zo) φ 0. Then, since W(z0) c Z>, Proposi-
tion 2 shows that the inequalities in (d) hold at ZQ and hence in D
with the exception of a discrete set. Riemann's theorem of removable
singularities yields (c) and the maximum principle implies (d). D

By virtue of this proposition, for any representing quadruple
(P, Q, R, S), we shall assume always S Φ 0 in D (S has no ze-
ros in D) and sometimes S = \. Notice that by this assumption we
have Rg + S Φ 0 in D for any g e 38. Moreover, for any z0 G D,
πZo is surjective and we have the relation (*).

4. Totality of Nevanlinna parametrizations. As in the Introduction,
let & denote the set of Nevanlinna parametrizations of % and G the
group of Mόbius transformations. For T G ( ? and π e ^ , w e have
by definition

(τ*(π))(g) = π(τog) (geX),

and, for τ\, T2 £ G,

(τx oτ2)* = τ\oτ\ and id* = id.

Thus G operates on 9°.
In the next §5, 9° Φ 0 will be shown. In this section, we shall prove

that there is a bijective correspondence between & and G, provided
that & Φ 0. For this purpose, we need two lemmas.

LEMMA 1. Let z0 e D, w0 e dW(z0), and π e 2?. Assume that
W(ZQ) does not reduce to a point Then there is a unique f e 38 such
that f(zo) — WQ. This unique function f is of the form f = π(ζ)
(ζedD).

In fact, as W(z0) is closed, there is an / e I? such that f(z0) = w0.
Take g € 38 with π(g) = / . Since πZo(g(zo)) = f{z0) e dW(z0),
g(zo) G dD and g reduces to a constant ζ with πZo(ζ) = ̂ o The
uniqueness is trivial. D

LEMMA 2. Let ZQED and π\, π2 € &. //* W(ZQ) does not reduce
to a point and if π\z = π 2 z then we have π\ = π 2 .
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To see this, let πv {y — 1, 2) be represented by {Pv , Qv , Rv , 1)
and put

Note that F\ and F2 are holomorphic on Z>x£> and that, for any fixed
ζ G Z>, they belong to If as functions of z . By assumption, F\ = F2

on { z o } x ΰ . By Lemma 1, i7! = F2 on DxdD and hence on DxD.
Therefore, for any g e 38, we have F! (z, g(z)) = F 2 (z, g(z)), which
shows 7Γi = π 2 . •

T H E O R E M 1. Assume the hypothesis (H) and let π,π$ e 3°. Then

there exists one and only one τ G G such that π = τ*(πo).

Proof. Take one z$ e D such that W(ZQ) does not reduce to a
point. There exists one and only one τ e G such that πZo = UQZO O

τ . Since πoZo o τ = (τ*(πo))zo> Lemma 2 shows π = τ*(πo). The
uniqueness is now clear. D

Note that if we fix one UQ G 3d as a base point, τ ι-» τ*(πo) gives a
bijective mapping of G onto ^ , so that the totality 3s of Nevanlinna
parametrizations has only three real parameters.

5. Existence of Nevanlinna parametrizations. By means of Schur-
Nevanlinna's algorithm, let us establish the existence theorem of para-
metrizations.

THEOREM 2. For the extended interpolation problem (El) and under
the hypothesis (H), there exists a Nevanlinna parametrization repre-
sented by a quadruple (P, Q, R, S) such that

(a) S has no zeros in D
(b) we can write

PS-QR

where B is the Blaschke product assigned to the problem (El) in §2 and
U is a holomorphic function with 0 < \U\ < 1 in D. For any ZQED

and WQ e D we may require moreover the condition
(c) R(zo)/S(zo) = wo.

Proof. 1°. Let us prove the first statement of the theorem in the
case where σ = {z\, ... , z^} is finite, by induction on the total order
n = n\ Λ + nk.
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Suppose n = 1. The equality

/(Z)-Cio Z-ZX

8K 'l-Cfif(z) \-ZXZ

is equivalent to
P(z)g(z) + Q

R(z)g(z)+S(z)'

where
z-zx cιo(l-zτz)(P(z) Q(z)\ ( z-z

\R(z) S(z)J \cΰ(z-

It is easy to see that / e f if and only if g e &. Clearly S(z) Φ 0
in D. We have

PS-QR .. . l 2 , z-zι

By (H), one sees |cio| < 1 and \U\ = 1 - |cio|2, so that (b) holds.
Suppose n > 1 and that the first statement is valid for the problem

of total order < n. Consider the transformation

z -

and, corresponding to / , the following extended interpolation prob-
lem of total order n - 1:

(EI)Λ f(z) = X ; c / α (z - z f )
α + O((z - z/)Λ0 (1 = 1 , . . . , / : ) ,

where h\ = Π\ -1 (if h\ = 0, there is no condition for / = 1), #/ = w/
for i = 2, . . . , k, and the coefficients cf α (α = 0, . . . , /zf - 1) are
defined with the notations in §2 by

/ 0 λ

(Λ — \ J \Z) — £iθ \
(1 — Z\z)-— ~.—r Z\ iί\ I

1 — C\OJ\Z) J

0 )

and, for / = 2, . . . , k,

1 —~Z\Z f(z) — C\Q
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Notice that, in this definition, it is enough to suppose that / is holo-
morphic in the neighborhood of the set {z\, . . . , z^} and satisfies
(El). Recalling the formulas in §2 and rewriting (1) at z\ in the form

we see that / is solution of (El) in 38 if and only if / is solution of
(EI)Λ in 33. The relation (1) is equivalent to

z

c^{z- zx)f{z) + (\ -ziz)"
Evidently, the problem (EI)Λ satisfies the hypothesis (H) as well as
the problem (El).

By the hypothesis of induction, choose a parametrization for the
problem (EI)Λ represented by a quadruple (P, Q, R,S) satisfying
(a) and (b). Put

(P(z) Q(z)\_( z-zx cιo(l--zιz)\(P(z) Q(z)
[ό) \R(z) S(z))-\c^(z-zι) l-zxz )\R(z) S(z)

The function

has no zeros in D, because |cio| < 1 by (H) and \Q\ < \S\ in D by
Proposition 3. From (3) one derives directly

PS - QR = (1 - |c l o | 2 )(z - z θ ( l - z{z)(PS - QR).

Taking account of the Blaschke product assigned to (EI)Λ, we can
write (PS - QR)/S2 = BU, where U is holomorphic and has no
zeros in D. Since, for any z0 £ D, the radius

p(z0) = \P(zo)S(zo) - Q(zo)R(zo)\/(\S(zo)\2 - |r(zo)| 2)

of disc W(ZQ) is smaller than 1 by Proposition 2, we have \BU\ < 1
and hence 0 < \U\ < I in D. Thus (b) holds. Finally, a function /
is solution of (EI)Λ in 38 if and only if / is of the form

f = J ZL for some g e 33.
Rg + S

This assertion and the relations (2) and (3) show that (P, <2, 7?, S)
represents a Nevanlinna parametrization of IT.
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2°. Let us show that the first statement yields the second. Let

(Po, Qo 9 Ro 9 1) represent a π 0 € & and take a T G G of the form

f ϊ — 2 Z + d (\2\ — I I

P u t

( P (
R S I ~~ V Ro I M S 1

Then (P, Q, R, S) represents τ*(πo). We can choose λ and a so
that

R(ZQ) _

S(z0) -

because |7?o(^o)l < 1
3°. We proceed to prove the first statement in the case in which

σ is infinite. To each finite section σk = {z\, . . . , zk} of σ (k =
1, 2 , . . . ) , we associate the following extended interpolation problem:

(El)* f(z) = £ c/α(z - z/Γ + O((z - z/)Λ0 (/ = 1, ... , fc).

Let ^ denote the set of all solutions of (EI)^ in 3S. Clearly % =
Γ\keN ^k - By assumption, g^ has at least two elements.

Fix a point ZQ e D and take, for each k, by 1° and 2°, a Nevan-
linna parametrization of ify. represented by (Pk, Qj<, Rj<, I) such
that the condition (b) holds and Rk(zo) = 0. By Proposition 3, we
can choose a subsequence {&,-} of N such that {Z\}, {Q*.}, and
{Rk } converge to holomorphic functions P, Q, and R in D re-
spectively. We have R e ^ and i?(zo) = 0, and hence |i?| < 1 and
Rg + l φ 0 in Z) for any g e J . A normal families argument shows
immediately that (P, Q, R, I) represents a parametrization of %.

It remains to verify (b). Write for each k

Pk - Qk ' &k — Bk ' Uk 9

where Bk is the Blaschke product assigned to (EI)^ and Uk is holo-
morphic function with 0 < |C/ |̂ < 1 in D . The subsequence {U^ }
converges evidently to a function U e 38. If {/ Ξ 0 in ΰ , then
P - QR = 0 and all solutions in % would be reduced to a same con-
stant, contrary to (H). Thus 0 < \U\ < 1. Since {Bk} converges to
B, this completes the proof of Theorem 2. D
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By (b) of Theorem 2 and the note at the end of §3, we have

COROLLARY 1. Under the hypothesis (H), let π e^ and zoeD\σ.
Then 7ZZQ:T) —> W(ZQ) is bijective and W(ZQ) is a nondegenerate
closed disc contained in D. If (P, Q, R, S) represents π then the
center and the radius of W(ZQ) are

^ ( ϊ ό 2 - \R(zo)\2)

and
\P(zo)S(zo) - Q(zo)R(zo)\/(\S(zo)\2 -

respectively.

COROLLARY 2. Under the hypothesis (H), let π e <&>. If (P, Q,
R, S) represents π then we can write

PS-QR

where U is a holomorphic function with 0 < \U\ < 1 in D.

To see Corollary 2, let π 0 G & be represented by a (Po > Qo > ^o
satisfying the conditions (a) and (b) of Theorem 2. By Theorem 1,
there exists τ eG such that π = τ*(πo). Write

Put

Then (P', Q, R!, Sf) represents π also and we have

PS-QR __ P'S' - Q'R' ( S0\
2 P0S0 - <2o*o

S2 ~ S'2

Since |5Ό| > I-Rol * n D a n d I/7! > M> ^ has no zeros in D. Thus
we can write (PS - QR)/S2 = BU, where £/ is holomorphic and has
no zeros in D. For each ZQ G D, the radius of W(ZQ) is smaller
than 1, so that we have |2?£/| < 1 in D. The well-known theorem on
the factorization of bounded analytic functions yields 0 < |J7| < 1
in D. D

Notes, (i) In Theorem 1, we see by 1° of its proof that, in the finite
case, we may require moreover the fourth condition

(d) P, β , R, and S are polynomials in z of degree < n .
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(ii) In the finite case, by (1) in 1° and from the fact that if / is a
finite Blaschke product of degree m then t o / is also such that for
any τ e G, we see by induction that, for any n G & and ζ e dD,
π(ζ) is a Blaschke product of degree n.

(iii) In the infinite case, the argument of Nevanlinna used in [13]
shows that, for any π e ^ and ζ G dD, π(ζ) is an inner function.

6. Discs W(zi). In this section, we study the closed discs

by means of a Nevanlinna parametrization. Let π e 3s be represented
by (P, Q, R, S) such that S φ 0 in D. For the sake of simplicity,
for each zf G σ and / e 38, we shall denote the value of the /i/th
derivative of / at z, by

dif = fin<\zi).

The following lemma shows that, for g e 38, di(π{g)) depends only
on π and the value of g at z z .

LEMMA 3. Let g, g§^3§. For α«y z, G σ we

In fact, a simple calculation yields

Since |*S| > |i?| and P 5 - βi? vanishes at z, with the order n\, we
have at once the relation of the lemma. α

THEOREM 3. Under the hypothesis (H), let π be a Nevanlinna pa-
rametrization of % represented by a quadruple (P, Q, i?, S) such that
S has no zeros in D. Then we have, for each z\ G σ, with the notation
di defined above,

'(Zi) = U{QIS)
{

77* ws, W'(zi) is a nondegenerate compact disc of radius

\dj{PS-QK)\

To see this, it is enough to put ^ = 0 in Lemma 3 and recall
Proposition 2. D
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Note that in the case where σ is finite we showed in our recent
report [25] that W\zϊ) is a nondegenerate compact disc without using
Nevanlinna parametrizations.

From Lemma 1 in §3, Corollary 1 in §5, and the above expression
of W'(zi) of Theorem 3, we sum up the following properties of the
extremal solutions of (El) in 3S .

COROLLARY 3. Under the hypothesis (H), let π e & and f e %.
The following conditions are equivalent:

(a) /(z0) e d JV(zo) for some zoeD\σ.
(b) f(z) e dW(z) for any zeD.
(c) fni\zi) edW{zi) for some ZiEσ.
(d) fni\zι) edW'(zi) for any Zieσ.
(e) There exists a ζedD such that f = π(ζ).
If one of (and hence all of) these conditions is satisfied, ζ in (e) is

uniquely determined by π and f.

7. Remarks on the existence and the uniqueness of solutions. In this
section, we state some remarks on the existence and the uniqueness of
solutions of (El) in 33, in the case where the sequence σ is infinite.

As in §5, for each finite section σk — {z\, . . . , zk} of σ (k =
1, 2 , . . . ) , we consider the problem (EI)^ , and the set %k of solutions
of (El)* in 3S. Clearly gk D gk+ι and W = ΓϊkeBN^k- Let Ak be
the Hermitian matrix of (ΈI)k, mentioned in the Introduction and
defined in [24].

A normal families argument shows immediately that there exists a
solution of(El) in 33, that is, I? Φ 0 , if and only if Ak>0, that is,
%kφ<Z,forall k<EN.

Assuming & Φ 0 , we proceed to the uniqueness. We distinguish
two cases:

Case I where det Ak = 0 for some k
Case II where det Ak > 0 for all k.
In Case I, by Theorem U in the Introduction, the solution of (El)

in 33 is evidently unique and it is a Blaschke product of degree <
rt\Λ \-nk. In Case II, each (El)* has an infinite number of solutions
in 33. But it happens that the solution of (El) in 33 may be unique.
From now on we restrict ourselves to the Case II.

For any z 0 e D, let Wk(z0) = {/(z0): / e g * } . By Corollary 1,
Wk(z0) is a nondegenerate closed disc in Z>, provided that z$ £ σk.
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We easily see Wk(z0) D Wk+ι(z0) and W(z0) = f)keNWk(zo). The
radius pk(zo) of Wk(z0) converges to the radius P(ZQ) of W(ZQ) as
k —• o o .

By Corollary 1, we observe at once that // pk(zo) —> 0 (as k —• oc)

ybr some ZQ G D \ σ then ρk(z) —• 0 ^br all z e D and hence the
solution of (El) in 32 is unique.

Finally, we note that, by means of Schur-Nevanlinna's algorithm
[13], we obtain Denjoy's criterion of uniqueness [4], in our extended
case too. This criterion involves unhappily a sequence of constants
that we cannot determine directly in terms of the given data {z/}
and {eta} . Here we are content to indicate only the first step of the
algorithm.

Fix a point ZQ G D \ σ and consider the following transformation

(A\ /i ~ Cio = z-z\ fi-a

with the constant a = C\o(zo - ^i)/(l - z\~zo) As in §5, we see that
/i G IP (resp f\ G ̂  ) if and only if /2 is a solution in ^ of another
extended interpolation problem (El/2) (resp (EI)jj^) defined from
(El) by means of (4), analogously to (EI)Λ in §5. The order nψ of
(EI)(2^ at Zi is equal to n\ - 1 for / = 1 and to «/ for i > 2. Put

z(i) = Zχ, c^ = cio; z(2) = z2 if /ii = 1, and z(2) = zi if nx > 2;
and c(2^ = fi(zi^)) for some solution fι of (EI)(2^. Rewrite (4) in
the form

with

^ Q cio-au
1-Ίχz9 \

By the definition of a, we have R(ZQ) = 0 . Put

n(\) = | p / z N| = |M(1)| 1 ^ 1 C ( 1 ) 1 2

where |w(1)| = |ZQ - z ( 1 ) |/|l - Z^ZQ\ is the noneuclidean pseudodis-
tance between ZQ and z^ιK The relation (5) shows that ηW is the
ratio of the radius of Wk(z0) to that of H^(2)(z0) = {fi(zo): h is
solution of (EI)^ in &} and so on. Thus,

7=1
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Denjoy's criterion in our case says that the uniqueness is equivalent to
the divergence of the infinite product Π GN ̂  o r ^ e divergence of

1 -
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