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INDEX FOR PAIRS OF FINITE
VON NEUMANN ALGEBRAS

P A U L JOLISSAINT

The Jones' index of a pair N c M of finite von Neumann algebras
with finite dimensional centers has been given two definitions: one
ring-theoretic, and one using Markov traces. We extend here the
second definition to the case of finite, σ-finite von Neumann algebras
and we show that the two definitions agree when the algebras are
direct sums of finite factors. We also study Markov traces on such
pairs.

Introduction. The purpose of the present article is twofold:

(1) If N c M is a pair of direct sums of finite factors, we prove
that the index [M : N] defined in Chapter 3 of [3] is equal to the
ring-theoretic index introduced in Chapter 2 of [3].

(2) We give a definition of the index for a pair as above in terms
of canonical objects associated to N and M such as center-valued
traces and coupling operators.

In fact, we present a solution of problem (2) providing a framework
in which problem (1) is easily solved. More precisely, let M be a
finite, σ-finite von Neumann algebra and let N be a von Neumann
subalgebra of M containing the identity of M. If N is of finite index
in M, i.e. if M acts on some Hubert space H in such a way that
the commutant N'H of N is finite, and that the coupling operators
CM(H)±X and CN(H)±{ are bounded, then we define two bounded,
linear, normal maps

CffeL*(Z(N)) and D%eL*(Z(M))

which do not depend on the chosen representation and which have the
same spectral radius.

Thus the index of iV in ¥ , denoted by [M : N], is the common
spectral radius of Cff and D%.

Let (AT, L2(M), J, P) be the standard form of M ([4]). The
basic construction associated to the pair N c M gives the finite von
Neumann algebra JN'J, denoted by (M, e^). Then M is of finite
index in (M, βjv) and [(M, e^) : M] = [M : N], so it is possible to
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iterate the basic construction and we get a tower of finite von Neumann
algebras (Mk)k>0 with

Mo = N c Mi = M c C Mk c Mk+λ c •

where Mk+X comes from the basic construction associated to the pair
Mk_ι c Mk . Let us state the main result of this paper:

THEOREM I. Assume that N and M are finite or countable direct
sums of finite factors, N being of finite index in M. Then the tower
(Mk) is isomorphic to the ring-theoretic tower of Chapter 2 of [3], and

[M : N] = limsup[rk(7l4|M0)]1//c

k—•oo

where rk(Mk\M0) denotes the smallest possible number of generators
of Mk as a right Mo-module.

Except for a technical lemma concerning some suitable trace on M,
Theorem I follows readily from the following proposition which gives
a nice relationship between the endomorphisms C^f and CN

k:

PROPOSITION II. Suppose that N c M is a pair of finite, σ-finite
von Neumann algebras, N being of finite index in M. Then we have
for every positive integer k:

We prove similarly that D™k = {D™k ) k .

The motivation for the choice of the map D^f is explained by the
following result:

PROPOSITION III. (1) Let N c M be a pair as in Proposition II and
let φ be a normal, faithful, finite trace on M. Then φ is a Markov
trace of modulus β for the pair N c M {see Definition 5.1) if and
only if:

(2) Suppose that φ is a Markov trace of modulus β for N c M.
Then its extension to {M, e^) is a Markov trace of modulus β for
Me {M, eN).

We will see that Markov traces do not always exist, but classical
Perron-Frobenius theory implies that such traces exist when Z(M)
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and Z(N) are finite dimensional and when Z(N) Π Z(M) = C (see
[3], 3.7.4). When the pair N c. M has a Markov trace t r M of modulus
[M : N], then the triple (N, M, tτM) behaves more or less like a pair
of factors, as the next two results show:

THEOREM IV. If the pair N c M admits a Markov trace XrM of
modulus [M : TV] then the basic construction (M^ , e^) associated to
the pair N c M^ is isomorphic to M2k for every k.

Remark that Theorem IV is a generalization of Theorem 2.6 of [7].
Finally, the last proposition may be compared to the definition of

index in the case of factors [5]:

PROPOSITION V. Assume that XrM is a normalized Markov trace of
modulus [M : N] for the pair N c M. Denote by tr^ the restriction to
N oftΐM Then the pair M' c N1 c B(L2(M)) admits a normalized
Markov trace \rN< of modulus [Nr : Mf] = [M : N] and we have for
every ξ in L2(M):

where eίA>j is the orthogonal projection onto the closed subspace [Aξ]

ofL\M).

I would like to thank P. de la Harpe, V. Jones and G. Skandalis for
their suggestions and comments during the preparation of this article.

1. Preliminaries. Throughout this paper M will be a finite, α-finite
von Neumann algebra, i.e. M admits a normal, faithful finite trace.
Z(M) denotes the center of M and \\M its canonical Z(AT)-valued
trace. If M acts on some Hilbert space H in such a way that its corn-
mutant M'H is finite, then there exists a unique positive, selfadjoint
operator CM(H) , which is affiliated with Z(M) and invertible in the
sense of unbounded operators, such that

for every ξ in H, where eίA>) is the projection onto the closed sub-
space [Aξ] of H and where \\'H denotes the trace on M'H. The
operator CM{H) is called the coupling operator associated to M and
H and it possesses the following properties:

(i) c i
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(ii) cqM{qH) = qcM^H) for every central projection q
(iii) if e1 is a projection in M'H with central support 1, then:

Let us recall that if e1 is as in (iii) above, one has:

(xe,)b =e\x**) and (x'e,)b = e'(e<)-ι(e'

for x in M and JC' in M'H, where ^ (resp. t ^ , t£,) denotes the
canonical trace on M'H (resp. Me>, M\). (See [2] or [8]).

Two projections e and f of M are said to be equivalent if there
exists u in M such that: u*u = e and ww* = / . We write this fact:
e ~ f. If a projection e is equivalent to a subprojection of / , we
write: e •< f. By Corollary V.2.8 of [10], if e and / are projections
in M, then e •< f if and only if e^ < /W .

Let (M, L 2 (M), / , P) be the standard form of M ([4]): M acts
normally and faithfully on the Hubert space L2(M), P is a self dual
cone of L2(M), J is an antilinear involution on L2(M) and the
following relations hold:

(1) JMJ = M'\
(2) /α/ = c* for c in Z ( M ) ;
(3) /{ = <? ϊoτξ in P ;
(4) aJaJ(P) is contained in P for a in M.

M* denotes the predual of M and Af#, c denotes the set of central
elements of M*, i.e. those elements φ in M* such that ^(xy) =
φ(yx) for every x , y in M. A normal, finite trace on M is then a
positive element of Af*)C. The preadjoint of the canonical trace \\M
is an isometric isomorphism from Z(M)* onto M*)C whose inverse
is the map φ ι-> φ\Z(M) from M*)C onto Z(Af)*, i.e.

(^ |Z(M))(x^) = ̂ (x) for x in M and #> in Af*>c.

If F is a bounded, normal linear map from Z(M) to the center
Z(N), where TV is some finite, σ-finite von Neumann algebra, we
denote by F* the map from N*jC to M*? c defined by

for every φ in iV*jC.
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We end this section with two lemmas which are certainly well known,
but we could not find any reference for them:

LEMMA 1.1. Suppose that M is contained in B{H) and let e be a
projection in M such that there exist ξ\9 ... ,ζn in H with

n

e = M% -

Then there exist Y\\, . . . , ηn in H such that the projections eηM ^ are

pairwise orthogonal and
n

e =

Proof. Set βξ = eϊ ' for ξ in H. We prove the lemma by induc-
tion on n: the assertion is obvious for n = 1 assume that it is true
for some n, and let e be a projection in M such that

Λ+l

ι = l

w i t h ξx, . . . , £ Λ + 1 i n H. Set

Λ+l

ι=2

There exist r\2 > - - > 7̂«+i i n H such that the ̂  are pairwise orthog-
onal with sum / . Moreover

e-f = eξιVf-f~eξι-eξιΛf<eξι,

and hence there exists η\ in H with e - f = eηχ. D

LEMMA 1.2. Lei N be a von Neumann subalgebra of M containing
the identity of M. Them

(1) (y^N^M z=.y^M for every y in N;
(2) if y e N+ is such that y^ is invertible, then y^M is invertible.

Proof. (1) We have to prove that one has for every ζ in Z(Af)*:

Fix some £ in Z(Af)* and let $?f be the unique element of Af*>c

such that φζ\Z(M) = ζ . Then ^f(y^) = ̂ ζ(y) since jΛ belongs to
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the norm-closed convex hull of the set {υyv* υ unitary in N} and
since ψζ\N is central. Hence

(2) There exists a positive number c such that y^ > c. One gets
from (1): y^ = (yK)K > c, and y^ is invertible. D

2. Finite representations; index. In this section, M denotes a finite,
σ-finite von Neumann algebra and N is a von Neumann subalgebra
of M containing the identity of M.

DEFINITION 2.1. (1) A (normal, faithful) representation (π, H) of
M is a finite representation of M if the commutant π{M)' of n(M)
is finite and if the coupling operators cπ(M){H) and cπi^My{H) are
bounded operators.

(2) A representation (π, H) of M is ?i finite representation of the
pair N c M if it is a finite representation for M and N.

Notation. Let (π, H) be a representation of M . We denote by
M'H (resp. N'H) the commutant of π(M) (resp. π(jV)) in # ( / / ) .
We simply denote by M1 (resp. N1) the commutant of M (resp. N)
in B{L2{M)).

LEMMA 2.2. Suppose that M is contained in B(H) and that the
action of M on H is a finite representation of M. Let (π, K) be
another finite representation of M. Then there exist:

(1) an integer n>\.
(2) a projection e! in M'H®B{Kn) with invertible trace (Kn denotes

the Hubert space of dimension n),
(3) a surjective isometry u from K onto e'(H ® Kn), such that

n(x) = u*(x ® ln)e'u for x in M.

Proof Let cM{K) be the element of Z(M) c B(H) such that
U{CM{K)) = cπ(M){K). There exists an integer m > 1 such that
CM{K) < m and CM{H) > m~ι. By Propositions 3 and 6, pages
300 and 302, of [2], and by Lemma 1.1, the identity of M'κ is the
orthogonal sum of m cyclic projections, and every positive normal
form on M is the sum of m cyclic forms. Set n = m2. By Theorem
3, page 61, of [2], there exists a projection e' in M'H ® B(Kn) such
that π(M) is spatially isomorphic to {M®\n)e'. Moreover
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which shows that (e'Y'» is invertible as CM{H) and CM(K) are. (We
denote by \fn the canonical trace on M'H ® B(Kn).) D

We are presenting now the main tools needed in this paper:

THEOREM 2.3. Let N c M be a pair as above.

(a) The following conditions are equivalent:
(al) there exists a finite representation of the pair N c M\
(a2) the standard representation of M is a finite representation of

the pair N c M
(a3) any finite representation of M is a finite representation of the

pair N c M.
(b) Assume that one of the conditions in (a) holds, and let H be a

finite representation of the pair N cM. Define Sff: Z(M) -• Z(N)
and T^:Z{N)^Z{M) by

and

for every z in Z(M) and every w in Z(N). Set also

Cff = S$fTβf and D^^T^Sff.

(bl) The maps Sff, Tff C^ y D^ are completely positive and
normal

(b2) Sift does not depend on the chosen finite representation: if
(p, K) is a finite representation of the pair N c M, one has for z
in Z{M)

p(cN(H)(cM(H)-ιzf»'») = cp{N)(K)(cp{M)(KΓιp(z)f»κ.

In particular Cjf and D™ do not depend on the chosen finite repre-
sentation.

(b3) The maps Cff and Djf have the same spectral radius.

Proof. The implications (a3) => (a2) => (al) are obvious. We show
that (al) => (a3): Assume that M is contained in B(H) and that
the action of M on H is a finite representation of the pair N c M,
and let (π, K) be a finite representation of M. By Lemma 2.2, we
may assume that K = e'{H ® Kn) and π(x) = (x ® ln)e', where n
and er are as in Lemma 2.2. Then N'κ = er(Nf

H®B(Kn))e' is a finite
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von Neumann algebra and

belongs to Z(π(N)) and is invertible by Lemma 1.2. (The trace on
N'H ® B(Kn) being denoted by \\'n .) The assertions (bl) and (b3) are
obvious. Let us prove (b2): let (p, K) be as in (b2). By Lemma 2.1,
it suffices to consider the case where p is a spatial isomorphism, a
finite dimensional ampliation or the induction by a projection with
invertible trace. The first two cases are easy; so assume that p is the
induction by some projection e' in M'H such that (efY» is invertible,
where \fH denotes the trace on M'H. Denote by \j['H (resp. t|£) the
trace on N'H (resp. N'κ). Then K = e'H, and

cM,{K) = e'{e')^ cM(H) and cN,{K) = e'(e'f

One gets for every z in Z(M):

We used Lemma 1.2 in the third line of the computation. The rest of
the statement follows now easily. D

DEFINITION 2.4. (1) N is said to be of finite index in M if the pair
N c M satisfies one of the equivalent conditions of Theorem 2.3(a).

(2) If N is of finite index in M, then the index of N in M,
denoted by [M : N], is the common spectral radius of the maps Cjίf
and D%.

(3) (See [3], Definition 3.5.3.) The inclusion of N in M is con-
nected \ϊ Z{N)ΠZ(M) = C.

REMARK. Suppose that Z(N) and Z(M) are finite dimensional.
Then the index above coincides with the index introduced in [3], Def-
inition 3.7.5. Indeed, denote by p\, . . . , pm (resp. q\, . . . , qn) the
minimal central projections of M (resp. N). By Proposition 3.6.8 of
[3], one verifies that the matrices of the maps Sff and T$ written in
the bases p\, . . . , pm and q\, . . . , qn are precisely the matrices Tjf
and Tff of Definition 3.7.5.
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COROLLARY 2.5. Let N c M c L be finite, a -finite von Neumann
algebras.

(1) If N {resp. M) is of finite index in M {resp. L) then N is
of finite index in L.

(2) If N is of finite index in L then N (resp. M) is of finite index
in M (resp. L).

(3) Assume that condition (I) or (2) above is satisfied. Then:

(i) SN = SN SM

( i i ) k h * f
(iii)

(iv) Dk = ThD%SM.

Proof. (1) follows from a straightforward application of condition
(a3) of Theorem 2.3.

(2) Let H be some finite representation of the pair N c L. We
have to prove that the operators CM(H)±X are bounded. There exists
an integer n > 1 such that Cχ(H) < n. By Proposition 5, page 301,
of [2], there exist ξ\, ... ,ξn in H such that

1-V
1=1

As N is contained in M we get

and hence CM(H) < n .
Similarly there exists m > 1 such that CL(H)~X < m. By applying

the proof above to the pair L'H c M'H we get CM(H)~X < m.
(3)(i) Let H be some finite representation of L . One has for every

x in Z(L)

= cN(H)(cL(H)-ιxfNΉ by Lemma 1.2

(ii) follows immediately from Lemma 1.2, and (iii) and (iv) are
straightforward applications of (i) and (ii). D
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Let us establish the expressions of the maps Sff, Cjf and Djf in
the standard representation L2{M) since they will be used frequently:
Set cN = cN(L2(M)) and recall that cM(L2(M)) = 1. Then

Sff(z) = cN(L2(M))(cM(L2(M)Γιz)^'

= CNZ^' for every z in Z(M).

Hence

Cff(w) = S%T$f{w) = cN{w**)^ for w in Z(N), and

Z)^(z) = TJfStf(z) = {cNz^')K for z in Z(M).

Before considering some examples of such pairs, let us study the case
of the pair M'H c N'H where H is some finite representation of N c
M:

COROLLARY 2.6. Suppose that N is of finite index in M and let H
be some finite representation of the pair N c M. Then M'H is of finite

index in N'H and
[N'H:M'H] =

Proof. N'H is obviously finite and σ-finite, so M'H is of finite index
in N'H. Let Γ: Z(M) —• Z(M) be the multiplication operator by
cM{H). Then we get for z in Z(M) = Z(M'H)

M"(z)
1VIH

Hence the spectral radius of CJ! is equal to the spectral radius of
H

EXAMPLE 2.7. Let M be a finite factor and let TV be a von Neu-
mann subalgebra of M containing the identity of M. Denote by t r ^
the standard trace on M, i.e. X^M = XΪM{X) - IM ΐor x in M. We
will see in §4 that Z(N) is finite dimensional if N is of finite index
in M. Let q\, . . . , qn denote the minimal central projections of N.
One has

cN = Σ du&qN(qjL2(M))qj (see Chapter 3 of [3]),
ι = l

and Dff is the multiplication operator on C = Z(M) by \TM(CN).
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Hence

[M : N] = tτM(cN) =

since

[MQj : Nq) =

and

EXAMPLE 2.8. Let A be an abelian, σ-finite von Neumann algebra
and let a be an automorphism of A. Assume that there exists a
normal, faithful, semifinite trace μ on A which is invariant under
a. Set M = Mat2(A), and

Let H = L2(A, μ)®C2 and let w be the unitary operator on L2(A, μ)
such that a = Ad(«). Then

(

i s finite' a n d

a bu*\^ϋ _l(a + a'ι(d) 0
uc d ) ~~ 2 V 0 a{a) +

for a, b, c, d in A. Hence cχ(H) = 2 and CM{H) = 1/2, so iV
is of finite index in M. Moreover

(Λ) = 2a + a(a) + a~\ά) for a in ^ = Z{M), and

CN n / \ = ( Λ /n/ \N where D = Dx.N \0 a(a)J V ° <*(D(a))J N

As Dff(l) = 4, we have [M : TV] = 4.
Finally, remark that the inclusion of iV in ¥ is connected if and

only if α is ergodic.
The motivation for our definition of index needs the basic construc-

tion which is the subject of the next section.

3 The basic construction. Throughout this section JV c M is a
pair of finite, σ-finite von Neumann algebras, N being of finite index
in M.
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For φ in M+\c, we denote by Ωφ e P c L2(M) the unique positive
vector in L2(M) such that

φ[x) = (χ£lφ, Ωp) for x in M (see [4]).

If φ is a normal, faithful, finite trace, we denote by E^ the (unique)
conditional expectation associated to φ, and by eφ

N the orthogonal
projection onto [NΩφ].

PROPOSITION 3.1. Let φ be a normal faithful finite trace on M.
Set (M, eφ

N) = (M U {eφ

N})". Then

(1) (e^* = cj
(2) / commutes with eφ

Ή and eψ^xeφ

N = E^(x)e^ for x in M\
(3) if ψ is another normal faithful finite trace on M then the

projections eφ

N and e^ are equivalent in Nf and

Moreover, eψ

N and e^ are equivalent in JN'J.

Proof. (1) By faithfulness of φ, the vector Ω^ is cyclic and sepa-

rating for M thus e^ * = 1. As eψ

N = e^ , we have by definition of

cN = cN(L2(M))

cN(eφ

Nf»' = 1.
(2) Let Jφ be the involution on L2(M) extending the map: xQφ »->

x*Ωφ. By Lemma 2.9 of [4], we have Jφ = / . Hence Jeψ

N — eψ

NJ
and eφ

Nxeφ

N = Eφ

N(x)eφ

N for x in M . See [5], §3.
(3) It follows from (2) that N = M n {eφ

N}', and that (M, eφ

N) =
JN'J. By (1), eψ

N and e^ are equivalent in Nf

 9 as they have the
same trace. Finally, they are equivalent in JN'J since they commute
with / . D

Thus, in order to define the basic construction for the pair N c M,
we choose an arbitrary normal, faithful, finite trace tr on M, and
we set ex = e^ and (M, e^) = JN'J which is equal to (M, e^) for
any other such trace φ on M. As M = JM'J, then M is of finite
index in (M, e^) and [(M, e#) : M] = [M : TV]. This allows us to
iterate the basic construction and we get a tower of finite, σ-finite von
Neumann algebras (Mk)k>o with

N, M{=M, and Mk+Ϊ = (Mk, eMk_x) = JkM'k_xJk,

where Jk is the involution on the standard representation L2{Mjc).
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Recall now that for every normal, faithful, finite trace φ on M,
there exists a unique normal, faithful, semifinite trace Tr^ on N'
with the following property:

Ίτ!9{eφ

Ny>eφ

N) = (y'Ωφ, Ω,), for / in N'.

In fact, Tr^ is the trace on Nf whose spatial derivative (in the sense
of [1]) with respect to φ\N is equal to 1. Let then Tr^ denote the
corresponding trace on (M, e^) = (M, e^) = JN'J. It is the unique
normal, faithful trace on (M, eN) such that

Ίrφ(eψ

Nxeφ

N) = {xΩφ, Ω^) for x in (M, eN).

Moreover, one has another nice interpretation of the trace Ύrφ : By
Proposition 3.6. l(v) of [3], the map Ψ, from N to the reduced al-
gebra efί(M, e^efr given by Ψ(y) = ye# for y in N is an isomor-
phism and it is easily checked that Tr^ is the unique normal trace on
(M, eN) such that

We are ready to interpret the maps D ^ and SM '*"' in terms of

the traces φ and Ίτφ on M and (M, βjq) respectively. Recall that

Z>* is a map from Af*)C to itself and S* is a map from Λf*>c to

(M, eΛr)*,c, where we set D = D% and S = Sjjf ' ^ } .

PROPOSITION 3.2. The map S* is the unique positive, linear, bounded
map from M*iC to (M, e^)*,c such that

(1) S*(φ) = Tr^ for every normal, faithful, finite trace φ on M.
Moreover we have for every φ in M*yC:

(2) S*(φ)\M =

Proof. Uniqueness of such a map follows from its continuity, from
uniqueness of Ύrφ and from density of normal, faithful, finite traces
in the positive part of Af*>c. Let us prove (2) first: we have for any
φ in M*9c and any z in Z(M)

= φ(D(z)) =

since c ( M )^)(L2(M)) = Jc^J.
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In order to prove (1), let us fix a normal, faithful, finite trace φ on
M. We establish first the identity:

(*) y*N = cN(e^Jy*J)^' for every y in N.

Indeed, set θ(y) = cN(e^Jy*J)^' for y in N. It is easy to check that
θ is linear, positive, bounded and normal, that Θ(y\y2) = θ{yiy\) for
yx, ^2 i n N, and finally that θ(w) = w forw in Z(N), since one
has for such a w: e^Jw*J = eφ

Nw, which implies that θ(w) — w
using Proposition 3.1. By uniqueness of the canonical Z(N)-valued
trace, we get θ = \\χ, and (*) is proved. Now take a and b in M,
and set y — Eφ

N{ά)Eφ

N{b). Then

Hence S*(φ) = Tr^ by uniqueness of Tr^ and by density of the set of
finite sums of elements of the form ae^b (a, b in M) in the algebra
(M, eN) (Lemma 1.1 of [6]). D

In the next sections we will need to study the relationships between

the maps CN

k and DN

k, and the maps Cjtf and DM

k respectively.

The following proposition is the first step in this direction:

PROPOSITION 3.3. Consider a pair N c M as above. Then the
following identities hold:

N — λ N
(M,eN) __ ^ M ~{M,eN

Proof. (1) Fix w in Z(N). One gets

= (Cff{w))*M = TJfCffiw).
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(2) Similarly one has for w in Z(N)

D

COROLLARY 3.4. For every pair N c M as above and every positive
integer k, we have

Proof. (1) By induction on fc. If k = 1 it is obvious. Suppose
that the assertion is true for some k and for every pair of finite, σ-
finite von Neumann algebras of finite index. Applying the induction
hypothesis to the pair M c Mk+X one gets

+ι Tjf by Corollary 2.5
M>eN)\kτM

'eN))k-χTtfC% by Proposition 3.3(1)

\eN) TMrΓM\k-\

[N K^N ) = \^N )

The assertion (2) is proved in the same way. D

COROLLARY 3.5. Let N c M and k as above, one has

(1) Ck(l) = cN(L2(Mk)), where C = Cff

(2) [Mh : N] = [M : JV]*
(3) [M : N] > 1.

Proof. (1) C*(l) = C ^ ( l ) = cN(L2(Mk)) when computed in the
finite representation L2(Mk).
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(2)

[Mk : N] = l i m | | ( C ^ Π | 1 / m =

= lim(\\Cmk\\χ/mk)k = [M : N]k.
m

(3) By Proposition 3.1 we have cN(L2{Mk))~ι < 1, hence Ck{\) >
1, and IIC^H1/^ > 1 for every k since C is completely positive. D

4. The case of pairs with atomic centers. We assume here that
N c M is a pair of finite, σ-finite von Neumann algebras with atomic
centers (see [10], Definition IΠ.5.9). It is equivalent to say that N and
M are finite or countable direct sums of finite factors. The purpose
of the present section is to prove that the index defined above coin-
cides with the index introduced in §2.1 of [3]. We denote by Min(M)
the set of minimal central projections of M and by Min(iV) the cor-
responding set of N. If /7 and p' belong to Min(Λf), we say that
they are neighbors if there exists q in Min(ΛΓ) such that pq φθ and
p'q Φ 0. We denote by Wp the set of neighbors of p G Min(M).

LEMMA 4.1. There exists a positive integer n such that for every p
in Min(M) one has

card(H^) < n.

Moreover, the projection z(p) = ΣeeW e is the support of Djf(p) in

Z(M).

Proof. Set Qp = {q G Min(TV) pq φ 0} for p in Min(AΓ). Then
ΣqeQ 4 *s ^ e c e n t r a l support of p in N', and using Lemma 3.6.7
of [3], we see that:

where λjq = [Mpq : Npq] > 1 and cp,q = trpM(pq). We get for q in

QP

\\cN\\' q > cNp^fq > (l/cp,q)q; hence cp,q\\cN|| > 1.

But

qeM\n{N) q<ΞQp

which implies card(Q^) < \\CN\\ . Similarly, we have

card{p' G Min(M) p'q φθ}< \\c^\\
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for every q e Qp, since ty = cM>(L2{N')). Hence card(W^) <

\\CN\\Λ\c)f\\.
Finally, as Djf(p) = (c^p^')^ , the last claim is easy to check. D

LEMMA 4.2. There exists a normal faithful finite trace φ on M
with the following property: for every x in (M, e^), there exists a
unique y in M such that

xeφ

N = yeφ

N.

In particular\ (M, e^) = ( Σ " = 1 cij^bj aj, bj e M}. (See Lemma
3.6.3 of [3D

Proof. The proof is decomposed into two parts:
(1) We show that there exists a normal, faithful, finite trace φ on

M and a positive number c such that

(*) D.(φ) < cφ.

Indeed, if Z(N) or Z(M) is finite dimensional then they are both
finite dimensional by Lemma 4.1, and any faithful trace on M satisfies
(*). We assume that Z(N) and Z(M) are infinite dimensional and
that the inclusion of N in M is connected. Then fix an arbitrary
projection po in Min(Af) and set VQ = {po} and V\ = WP\VQ. For
k > 1, we set

Vk+ι = lpe Min(M) p $ \J Vj and 3p' e Vk such thatp' eW

[ J=o
By connectedness of the pair N c M, we get that Min(M) is the

union of the Vk 's and that Vk Φ 0 for every k (since if Vk+Ϊ = 0

for some k > 0, then the projection z = ΣjLo Σeev e belongs to

Z(N) Γ)Z(M), hence equals 1).
Moreover, if n denotes the integer given by Lemma 4.1, it is easy

to verify that:

(i) card(J^) < nk for every k\

(ii) for every k and for every p in Vk one has: Wp c Uy=/-i Vi

Then we set φ(po) = 1/2 and for p e Vk: φ(p) = n~kk~2. Thus there
exists d > 0 such that

Σ φ{p') < c'φ{p) and 2Z ViP) < 5 + Σ k~2 < °°»
p'eίf P A:>1

for every /? in Min(Af).
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As D(p) < \\CN\\Z(P), the trace φ above satisfies (*) with c =

\\CN\\C

(2) We take φ as in (1) and we set φ = S*(φ) = Ti> e (M, eN)*yC

(see Proposition 3.2). Let EM denote the conditional expectation
from {M 9 e^) onto M associated to φ. We show that EM(^) is
invertible. Indeed, let Ω^ and ΩΦ e P c L2(M) be the vectors
associated to φ and to φ\M = D*(φ) respectively. We get for every
a in M

{EM{eφ

N)aΩΦ, aΩφ) = φ(EM(eφ

Naa*)) = φ{eψ

Naa*)

= {aa*Ωφ, Ωφ) by Proposition 3.2

= φ{a*a)

> c-ιD*(φ)(a*a) = c~ι{aΩΦ , aΩφ).

We end the proof as in Lemma 3.6.3 of [3]. D

Before stating and proving the main result of this section, let us re-
call the definition of the ring-theoretic basic construction proposed in
§2.1 of [3]: We associate to the pair N c M the pair M c End^(Λf),
where End^(Af) is the algebra of endomorphisms of M viewed as
a right iV-module; M is identified with a subalgebra of Endr

N(M),
each x € M being identified with the left multiplication operator
(j; »-• xy) G End^v(Λf). If L is a right iV-module we denote by
rk(L|iV) the smallest possible number of generators of I as a right
JV-module.

THEOREM 4.3. Let N cM be a pair of finite, σ-finite von Neumann
algebras with atomic centers, N being of finite index in M. Then

(1) | |C^| |<rk(JI/|Λ0<||Cj5f| | + l ;
(2) M®NM = (Af, eN)as N-bimodulesand End^(Λ0 = {{M, eN)

as C-algebras;

(3)

[M : N] = \imsup[rk(M®»\N)]ι/k

k-+oo

k—>oo

where M®» = M ®N M- ®N M, k times.

Proof (1) We have by definition Cjf(l) = cN(L2{M)) = cN. Set
r = r k ( M | N ) . Then there exist ζι, ... ,ξr in L2(M) such that the



INDEX FOR PAIRS OF FINITE VON NEUMANN ALGEBRAS 61

subspace generated by the Nξj 's is dense in L2(M). This means that

7=1

Thus:

<±
J 7=1

which implies that

As Cjf is completely positive, we have | | C ^ | | = | |C#(1) | | , and the
first inequality is proved.

In order to prove the second one, let φ be a normal, faithful, finite
trace on M as in Lemma 4.2, and let m be the integer such that

\\cN\\<m< \\cN\\ + 1.

We are going to exhibit a basis {vi / = 1, . . . , m) of M over N
with the following properties:

(a) Eφ

N(v*Vj) = 0 if iϊj;
(b) fi = E^(v*Vi) is a projection in N, Vifo = t;,-, and

fiEfj(v*x) for every / and every x in M;
(c) every x in M has a unique expansion

^ ^ withy, in Λ ;̂
ι = l

in fact Viyi = ViEfj(v*x).

Such a basis {ί;/} is called a Pimsner-Popa basis of M over iV;
see [6] and Theorem 3.6.4 of [3].

Remark first that for every q in Min(N) we have

since (effl*' = % ! . Hence for every q in Min(N) there exist m
pairwise orthogonal projections Ti{q) such that

m

Π(Q) ~ eφ

NJqJ for every /, and
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If r, = ΣqeMm(N)ri(y) > ^en ^e projections r, 's are pairwise or-
thogonal, their sum equals 1 and r, ^ ^ for every /. Then there
exist m partial isometries wι G (M, e^) with

w*Wi < eφ

N and

ι = l

By Lemma 4.2 there exist V\9 ... 9vm in M such that u;,- = V[eφ

N

for every /. It is easily verified that the collection {v{) is a Pimsner-
Popa basis of M over JV: see the proof of Theorem 3.6.4 of [3]. This
implies that rk(M\N) < m, and (1) is proved.

Finally (2) follows from the existence of the Pimsner-Popa basis
above, and assertion (3) follows from assertions (1) and (2) and from
Corollary 3.4(1). D

5. Markov traces. We return to the general case where N c M is a
pair of finite, σ-finite von Neumann algebras with the same identity,
TV being of finite index in M. We set as usual C = Cβ, D = D%

and S = sff ' ^ . (Recall that F*(φ) = φ o F o \\.) Let us recall
Definition 3.7.1 of [3]:

DEFINITION 5.1. A normal, faithful, finite trace φ on M is a
Markov trace of modulus β for the pair N c M if it extends to a
normal, faithful, finite trace φ on (M, e^) such that

βφ{eψ

Nx) = φ{x) for x in M.

PROPOSITION 5.2. (1) Let φ be a normal faithful finite trace on
M. Then φ is a Markov trace of modulus β for the pair N c M if
and only if

(2) Suppose that φ is a Markov trace of modulus β for the pair
N c M. Then its extension to (M9 e^) is equal to β~xS*(φ) and it
is a Markov trace of modulus β for the pair M c (M 9 e^).

Proof. (1) Assume that φ is a Markov trace of modulus β. We
prove that its extension φ is equal to β~{S*(φ). Indeed, if a, b e M ,
we have

βφ(eφ

N{aeφ

Nb)eφ

N) = βφ{eφ

NEφ

N{a)b)

Hence the normal, faithful trace βφ satisfies

βφ{eφ

Nxeφ

N) = {xΩφ , Ω^) for x in (M, eN).
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By Proposition 3.2 we get βφ = Ύrφ =S(φ), and

Conversely, if φ is an eigenvector of D* with eigenvalue β, set φ =
β-χS*{φ). Then

βφ(eφ

Nx) = S*{φ){eψ

Nx) = {xΩφ , Ω^) = ^(x) for x in Λf.

Moreover ^ extends φ:

φ\λf = β~ιS*(φ)\M = β~ιD*(φ) = φ by assumption.

(2) By (1), we need only check that φ o Z)^ '*"' = /?0. Using
Proposition 3.3(1), we get

COROLLARY 5.3. Suppose that there exists a normalized Markov
trace XτM of modulus [M : TV] for the pair N c M. If (Mk) de-
notes the tower given by iterating the basic construction, let XτMk be the
Markov trace of modulus [M : N] extending \τM.

Then for every k, the trace \XM is a normalized Markov trace of

modulus [Mk : N] = [M : N]k for the pair N c Mk .

Proof. Set Dk - D^ j by Corollary 3.4 we have {Dk)
k = D^k.

As t r ^ °Dk = [M : Λ̂ ] tΐMk, we see that

ϋ x oD$ = [M : N]k XvMk = [Mk : N] XxMk by Corollary 3.5. D

REMARK. Let p be a non-zero projection of Z(N)n Z(M). Then
the reduced algebra Np is of finite index in Mp and [Mp : Np] <
[M : TV] since C}fp

p is the restriction of C ^ to Z(Np) = Z(N)p.
If ψ is a Markov trace of modulus [M : TV] for TV c M , then
the corresponding trace φp on Mp is a Markov trace of modulus
[M : TV] for Np c Mp. Hence [Mp : TV/?] = [M : N] for any
non-zero projection p of Z(TV) n Z(M).

Of course, such a condition is almost never fulfilled in the noncon-
nected case. This shows that connectedness of the pair TV c M is
a reasonable hypothesis for the study of Markov traces of modulus
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DEFINITION 5.4. Let A be an abelian von Neumann algebra and let
F be some positive, normal endomorphism of A. We say that F is
irreducible if no σ-weakly closed ideal of A, distinct from {0} and
A, is invariant under F.

REMARK. Let A and F be as above. The predual A* of A is a
Banach lattice, and a subspace V of A* is solid (in the sense that if
φ eV and ψ G A* and if \ψ\ < \φ\ then ψ e F) if and only if it is
invariant under the action of A, i.e. a- φ eV for a in A and ^ in
V. Hence, using Theorem IΠ.2.7 of [10], it easy to verify that F is
irreducible if and only if its preadjoint F* is irreducible in the sense
of [9], page 269, i.e. no closed solid subspace, distinct from {0} and
^4*, is invariant under i7*.

The following result provides a link between connectedness of the
pair N c M and Perron-Frobenius theory for irreducible positive
maps on Banach lattices:

PROPOSITION 5.5. For a pair N c M as above, the following condi-
tions are equivalent:

(1) the inclusion of N in M is connected',
(2) the map Cjf is irreducible;
(3) the map D$ is irreducible.

Proof. Connectedness of the pair N c M is equivalent to connect-
edness of the pair M' c N' c B(L2(M)). As Cjp = D% (see the
proof of Corollary 2.6), we need only prove equivalence between (1)
and (3). Thus assume first that Z(N) Π Z(M) Φ C, let p be some
non-trivial projection of Z(N) n Z(M) and set / = Z(M)p. As
D(zp) = D(z)p for z in Z(M), we see that D is not irreducible.
Suppose now that the pair is connected, and let / Φ {0} be some
a -weakly closed invariant ideal of Z{M). Denote by p the support
of / : / = Z(M)p. Hence D(p) = D(p)p, and by faithfulness of \\M ,
we get p^'(\ -p) = 0. Let q be the support of p^' in Z(N). We
are going to prove that q = p. We need only show that q(\ -p) = 0,
because q is also the central support of p in Nr. For every integer
# > 1 let qn G Z(N) be the spectral projection of /J'V corresponding
to the interval [l/n, oo). The sequence (qn) increases to q and as

there exists a sequence (xn) in Z(N)+ such that xw = x ^ and
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np^N' = qn for every n. Thus qn{\ -p) — xnp^Nl{\ -p) = 0 so

n(l-P) = θ. Ώ

By classical Perron-Frobenius theory, if the centers Z{N) and Z(M)
are finite dimensional then the pair N c M admits a unique Markov
trace of modulus [M : N], provided that the inclusion is connected.
See [3], Corollary 3.7.4. In the infinite dimensional case, we will see
that Markov traces may or may not exist. We need the following
result:

PROPOSITION 5.6. Suppose that the inclusion of N in M is con-
nected and that Cjf or Dff admits a positive eigenvector associated
to the eigenvalue [M : N]. Then any non-negative, normalized eigen-
vector of /)*, if it exists, is a normalized Markov trace of modulus
[M : N], and such a trace is unique.

Proof. In any case, we can assume that D admits a positive eigen-

vector associated to [M : N], since if 0 Φ WQ £ Z(N)+ is such that

C{w0) = [M : N]w0 then z 0 = w\M φ 0 and D{z0) = [M : N]z0 . Let

It is easy to see that V is a closed solid subspace of Af* , c . Moreover,
if φ G V, φ = ψ\ + iψi with ψj = φ* then φj e V and

\D.{Vj)\{z0) < D*(\φj\)(z0) = [M : ΛΠ|^|(z0) = 0,

which shows that D*(φ) = D*(q>\) + iD*(φs) belongs to V. By the
irreducibility of D, we have V = {0} since ZQ φ 0. Now, if φ is an
element of M*yC such that φ > 0, φ{\) = 1 and D*(φ) = βφ then

βφ(z0) = D.(φ)(z0) = [M : N]φ(z0),

which proves that β = [Λf : N] since ^(ZQ) > 0. Moreover, φ is
faithful: indeed, let Iφ = {z e Z(M) : φ(z*z) = 0}. Then Iφ is a
σ-weakly closed ideal of Z(M) and it is invariant under D: if Z is
in /p we get

^(Z)(z)*Z)(z)) < \\D\\φ{D{z*z)) = \\D\\[M: N]φ(z*z) = 0.

Since Iφ Φ Z(M), we have Iφ = {0} .
Finally, if ψ\, $02 are Markov traces of modulus [M : N]9 set

ψ — φ\~ ψ2- Let ψ = ψ+ - ψ- be the Jordan decomposition of ^ .
Then
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but D*(\ψ\)(z0) - [M : N]\ψ\(z0) = 0, so D*(\ψ\) = [M : N]\ψ\ and
ψ+ and ψ- are both eigenvectors of Z>* with eigenvalue [M : TV]. As
their supports are orthogonal and as ψ(l) = 0, we see that ψ = 0. D

EXAMPLE 5.7. Let us consider the pair N c M of Example 2.7:
M = Mat2(^4) with A abelian and

where α is an ergodic automorphism of A. Recall that [Λf : N] = 4,
and that D(α) = 2α + α(α) + α" 1(α) for every a in ^ = Z ( M ) . Since
1 is a positive eigenvector of D associated to 4, Z>* has at most one
eigenvector associated to 4 which is normalized. As aoD = Doa/ιϊ
φ is such a vector, then φ\A o a — φ\A. Consequently, if 4̂ = /°°(Z)
and if a is the shift automorphism then there is no Markov trace
for the pair N c M. If S 1 denotes the unit circle, if A = L°°(Sι)
and if a is some irrational rotation, then the trace on M defined
by Lebesgue measure on 5 1 is the unique Markov trace for the pair
N c M. These examples were suggested to me by G. Skandalis.

We generalize now Theorem 2.6 of [7]:

LEMMA 5.8. Suppose that there exists a normalized Markov trace
tiM of modulus [M : N] for the pair N c M. Let L be a von
Neumann algebra containing M and let tr^ be a normalized, nor-
mal faithful finite trace on L extending XrM - Finally let e be some
projection of L. Then the following conditions are equivalent:

(1) There exists a spatial isomorphism π from (M9 e^) onto L
such that:

n(x) = x for x in M and π(e#) = e >

where eN = ex^M

(2) L and e have the following properties:
(i) the central support of e in L is equal to 1

(ii) exe = EN(x)e for x in M\
(iii) EM(e) = β~ι, where β = [M:N]\
(iv) L =

Proof. The implication (1) =» (2) is clear. Assume that (2) holds.
Denote by Me^M (resp. MeM) the subset of (M, e^) (resp. L)
constituted by all finite sums of elements of the form ae^b (resp.
aeb) with a, b in M. The Me^M (resp. MeM) is a strongly
dense *-subalgebra of (M, e^) (resp. L), by properties (i), (ii) and



INDEX FOR PAIRS OF FINITE VON NEUMANN ALGEBRAS 67

(iv): see [3], Proposition 3.6.1. Denote by Ω e L2((M, e^)) and
by Ω' € L2(L) the positive vectors associated to tv^M ^ and to XvL

respectively. Then the subspaces MeNMΩ and MeMΩf are dense
in L2((M9 eri)) and in L2(L) respectively. Using property (iii) one
verifies that the map

7 = 1 7 = 1

is an isometry from Me^MΩ to MeMΩ'. Thus it extends to a sur-
jective isometry u from L2({M, e^)) onto L2(L). Then we set

π(x) = uxu* for Λ: in (M, e#)

We get

for a\,... ,an, b\,... ,bn in Λf it is easy to check that π(x) = x
for x in M . •

Assume henceforth that there exists a normalized Markov trace
of modulus β = [M : N] for the pair N C M. Denote by k

the conditional expectation from Mjt+1 onto Λf̂  associated to the
Markov trace trjj/ and let (^)^>i be the sequence of projections
associated to the Markov traces. The following relations hold:

(a) ekeι = eιek if \k -1\ > 2
(b) ekek±xek = β~ιek for every fc (see [5]).

Set for n > 0 and for A; > 1

£B = (en+ken+k-ι • • ek)(en+k+i • - ek+ι) • • • (e2n+k • • enJrk)

€ M2n+k+ι,

fix = 7ngk

n , where γn = βn^+^2, and fn+ι = fn+ϊ.

The proof of the following lemma is exactly the same as in the case
of factors [7], §2:

LEMMA 5.9. With the notations above, one has:

(i) (ft!)* = &ί =(en+\---e2n+\)gl-\{e2n---en+\)\
(ii) / n + i is a projection in N' Π M2n+2',

(iii) EMϊn+k{gk

n) = β
(iv) EMnJfn+ι) =
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THEOREM 5.10. Let N c M be as above. Denote by eNyH the
projection of L2(Mn) onto the closed subspace [NΩn], where Ωn is
the positive vector associated to tΐM . Then there exists an isomorphism

n

πn from (M, e#,n) onto M2n such that
πn(x)=x for x in Mn andπn{eN^n) = fn.

Proof. By Lemma 5.8, assume that we have for some n > 1:

(i) the central support of fn in M2n equals 1
(ii) fnxfn = ENin(x)fn for x in Mn \

(iii) EM (fn) = β~»
(IV) M2n = (MnU{fn})".

Remark that (i) to (iv) hold for n = 1. Let us check them for n +1.
Condition (iii) is statement (iv) of Lemma 5.9.

(i) Every central projection of M2n+2 is of the form JqJ where q
is a central projection of M2n and where / is the canonical involution
on L 2 ( M 2 n + i ) . We prove that g\JqJ φQ if q φ 0:

g\jqj = (en+{ - e2n)e2n+ign-de2n -en+ϊ)JqJ

hence

tTM2nJgl

nJQJ) = β-^tVMjqg^) > 0

by induction hypothesis.
(ii) It suffices to show that fn+ixenyfn+ι=EN9n+ι(xeny)fn+ι

x and y in Mn . As en+\ commutes with Mn and as em+x commutes
with fn , we have:

fn+\Xenyfn+\ = VΪ(gn)*Xenygn
2 " en+\)

(iv) By Kaplansky's density theorem and by induction, it is easy to
see that the subspace M2n_\e2n-\e2ne2n+\M2nfnM2n is strongly dense
in M2n+2. As teM2n is a Markov trace, and as M2n is isomorphic
to (Mn, eN^n), then M2nfn = Mnfn by Lemma 1.2 of [6]. Then by
going on in the same way, we see that the subspace

Afrt+ifoj+i e2n+\)fn(e2n ' ' ' )Mi+l

is strongly dense in M2n+2 . As (en+{ e2n+ι)fn(e2n - en+ι) is pro-
portional to fn+\, we have that Mn+\fn+\Mn+\ is strongly dense in
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Finally, let us mention the following observation which may be com-
pared to the original definition of index in the case of factors [5]:

PROPOSITION 5.11. Assume that N c M is a pair as in Theorem
5.10. Denote by tr̂ v the restriction to N of the Markov trace \ΐM •
Then the trace txN- on N' c B(L2(M)) defined by

\rN,(y') = [M:NΓι trM(cNy'*»') for y' in N',

is a normalized Markov trace of modulus [M : N] = [N': M'\ for the
pair M' c N'. Moreover one has for every ξ in L2(M):

Proof We have: D£,(W) = ((cNw)^)K' for w in Z(N). Hence

trN, oDN

M,{w) = [M : N]~ι Wφ

= [M:N][M:NΓιtrM(cNw)

= [M: N]trN (w) for w in Z(N).

Moreover, tr^(l) = [M : N]~ιtrM(c^) = [M : iV]"1 txM(Dtf(l))
1. Finally, if ξ G L2(M), we get by definition of cN = cN(L2(M)):

f f])^', hence
[M : iV]tr^(ef >) = tvM(cN(e(

ξ

Nψ) = tτN(e{

ζ

N>)). a

REFERENCES

[1] A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal., 35
(1980), 153-164.

[2] J. Dixmier, von Neumann Algebras, North-Holland, Amsterdam (1981).
[3] F. Goodman, P. de la Harpe and V. Jones, Coxeter-Dynkin diagrams and towers

of algebras, Chapters 1, 2, 3, preprint (1986 & 1987).
[4] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37

(1975), 271-283.
[5] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
[6] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Scient. Ec.

Norm. Sup., 4eme serie, 19 (1986), 57-106.
[7] , Iterating the Basic Construction, preprint, INCREST, (1986).
[8] S. Sakai, C*-Algebras and W*-Algebras, Springer, New York (1971).



70 PAUL JOLISSAINT

[9] H. Schaefer, Topological Vector Spaces, Springer, New York (1980).
[10] M. Takesaki, Theory of Operator Algebras I, Springer, New York (1979).

Received November 20, 1988 and in revised form March 30, 1989. Work supported
by the Swiss National Foundation for Scientific Research while the author was visiting
UC Berkeley.

UNIVERSITE DE GENEVE
SECTION DE MATHEMATIQUES
CASE POSTALE 240
2-4, RUE DE LlfeVRE
CH-1211 GENEVE 24, SWITZERLAND




