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THE C*-ALGEBRAS GENERATED
BY PAIRS OF SEMIGROUPS OF ISOMETRIES

SATISFYING CERTAIN COMMUTATION RELATIONS

GEOFFREY PRICE

Arising in the computation of the Arveson-Powers index for *-
endomorphisms of 93(Jo) is the notion of a pair of one-parameter
semigroups of isometries %f = {Ut: t eΓ+} and S? = {St: t e Γ + }
satisfying the commutation relations S*Ut = e~λtI, for Γ the set
of real numbers. If Γ is any subgroup of R we show that the C*-
algebra 2lp generated by % and S? is canonically unique. %lγ is
simple if and only if Γ is dense in R.

I. Introduction. According to the von Neumann-Wold decomposi-
tion for an isometry V acting on a Hubert space S), 5) may be de-
composed into an orthogonal direct sum of reducing Hubert subspaces
#i 5 #2 for F , where V\% is a unitary operator and F|$ is a pure
isometry. In [6], L. A. Coburn characterized the C*-algebra C*(V)
generated by an isometry. If V is completely unitary then as is well
known, C*(V) is isometrically *-isomorphic to C(σ(V))9 the alge-
bra of complex-valued continuous functions on the spectrum of V.
If V has a non-trivial pure isometric part, C*(V) contains a closed
two-sided ideal which is isomorphic to the compact operators 3£. The
quotient algebra C*(V)/Jf is isomorphic to the algebra of continuous
functions on the circle, [6].

Generalizations of this result (see [4], [7]-[10], [12]) made by Coburn
and other authors have taken various forms. For example, the study
of C*-algebras generated by a semigroup of isometries has led to in-
teresting developments in the theory of an index for algebras of op-
erators. This theory is modelled on the theory of Fredholm operators
in 93 (#), and has led to some interesting connections between the
notions of topological and analytic index, [8]-[10].

In [12], R. G. Douglas analyzed the structure of the C*-algebras %
generated by one-parameter semigroups of isometries %£ = {Vγ: γ e
Γ + } , where Γ is a subgroup of the real numbers. Without making any
assumptions about the continuity of the mapping γ —> Vγ, Douglas
showed that the C*-algebra 2lΓ is canonically unique. This analysis
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was carried out via a characterization of the (commutative) quotient
algebras 2t Γ /C Γ , where CΓ is the closed two-sided ideal generated by
the commutators in 2lp He determined also that 2lp and 2lΓ' are
isomorphic if and only if the corresponding groups Γ, P are order
isomorphic. (A similar analysis, using ^-theoretic techniques, has
recently been carried out on the commutator ideals, [13], see also [19].)
This uniqueness result stands in marked contrast to the abundance of
isometric representations of the semigroups Γ+ , as shown in [14].

The Cuntz algebras On , n e (oo, 2, 3, . . . ) , are a highly non-
commutative generalization of C*(V). For n < oo, On is defined
as the C*-algebra generated by n isometries S\, . . . , Sn on a Hubert
space which satisfy the relations S*Sj = <5z;7, and Σ " = 1 S/S* = / .
These identities characterize On uniquely, up to isomorphism. On is
a simple C*-algebra; in fact, it possesses the remarkable property that
for any non-zero X in On , there are A, B eθn satisfying AXB = I,
[11, Theorem 1.13] (see also Theorem 3.9 below).

If one replaces the second equation above with the inequality
Σw=i SiS* < / , then the C*-algebra generated by the polynomials in
the Si's is an extension of On by the compact operators ([11, Proposi-
tion 3.1], see also Theorem 2.4 below). Taking n = 1, the C*-algebra
generated by a (non-unitary) isometry fits into this framework.

In this work we study a problem which is a combination, in a sense,
of the two generalizations discussed briefly above. For a subgroup Γ
of R, let ^ r = {Uy: y e Γ+} and Sf = {Sγ: γ e Γ+} be a pair of
semigroups of isometries on a separable Hubert space. We assume
that ^ r a n d ^ r a r e related by the Weyl commutation relations

(1) S;U7 = e-λU9 7 G Γ + ,

for some fixed λ > 0. Here again we make no assumptions about the
continuity of the mappings γ —• Sy and γ -> Uγ. We should point out
that from (1) it follows that each Sγ must contain a nontrivial pure
isometric part, for γ > 0, since the assertion that Sγ is unitary leads
to the equation 1-= \\Uγ\\ = ||e""λ3ΊSy|| = e~λγ, which is absurd. By
symmetry, Uγ also contains a pure isometric part. We show below in
Theorem 2.4 that if Γ is a discrete subgroup of R, then the C*-algebra
Sir generated by all operators Uγ, Sγ, for γ € Γ + , is an extension, as
above, of the algebra Oχ by the ideal of compact operators. If Γ is
dense, then 2tΓ is simple: in fact, 2lp is strongly simple in the sense
shared by the Cuntz algebras that for any X φ 0 there are operators
A, B in 2lΓ such that AXB = I (Theorem 3.9). We also show that the
C*-aigebras 2lΓ are canonically unique, Theorem 3.12. Our methods
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of proof of these results rely heavily on some techniques used by J.
Cuntz, [11], and R. G. Douglas, [12].

The principal motivation for studying this algebra comes from the
recent work of R. T. Powers and the author, [17], relating the in-
dex theories of Powers and W. B. Arveson on £Ό-semigroups of *-
endomorphism of <B(#), [l]-[3], [15]-[17]. Let a = {at: t > 0} be
a one-parameter semigroup of *-endomorphisms of 2$ (£j). Then a
is an £Ό-semigroup if each at is unital, if α,(<B(ί))) is properly con-
tained in Q3(i3), and if the mapping t -* at(A) is continuous in the
weak operator topology for all A in ®(β). A strongly continuous
one-parameter semigroup ^ = {Ut: t > 0} of operators (not neces-
sarily isometries) in ©(#) is said to intertwine a, [1], if for all t > 0
and for all A in 2l(#), UtA = at(A)Ut. It may occur that a has
no intertwining semigroups, [16], However, when intertwining semi-
groups ^ and S? do exist, it follows, [2], that there is a complex
number c(%, S") such that, for all /,

(2) SΪUt = exp(tc{&9S*))L

Modifying S? and % through multiplication by scalar-valued semi-
groups, one may assume that ^ and S? are semigroups of isometries
satisfying (1), [17].

Let % be the family of all strongly continuous intertwining semi-

groups of a. Arveson's index for a is obtained by calculating the

dimension of the Hilbert space completion of the space of functions

{/: % —> C: / is finitely non-zero and Σ^^ /{<¥) = 0} in the posi-

tive semidefinite inner product (f9g) = Σ
The Powers' index is obtained by calculating the multiplicity of a
certain representation of the dense *-subalgebra 2)(<5) of ®(Λ),
where Ί)(δ) is the domain of the infinitesimal generator δ of the one-
parameter semigroup a, [15]. The key problem involved in showing
that these two versions of index agree is to analyze the structure of a
pair of strongly continuous flows of isometries satisfying (1) (see [17]
for a proof of the existence of these flows and an analysis of their
structure).

We end this section by remarking that W. B. Arveson has defined
and analyzed the structure of a separable C*-algebra, called the spec-
tral C*-algebra, associated with an £Ό-semigroup a of endomor-
phisms. These algebras, which are, along with the index, an outer con-
jugacy invariant for £Ό-semigroups, are constructed from the product
systems E corresponding to a, [3]. As noted by Arveson, this family
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of algebras contains the Wiener-Hopf C*-algebra as a degenerate case
in much the same way that the Toeplitz C* -algebra studied by Coburn
is the degenerate case of the Cuntz algebras.

II. The discrete case. In this section we consider the structure of
the C*-algebra C*(Uί9 St) generated by a pair of isometries Ut, St

acting on a separable Hubert space and satisfying the relation (1), for
fixed t. As we shall see in the next section, the proof of the simplicity
of 2tp, for Γ a dense subgroup of R, depends greatly on the special
case considered here.

We begin this section by introducing some notation which shall be
used throughout the paper. We denote by % = {Ut: t > 0} and by
&> = {St: t > 0} a pair of semigroups of isometries on a separable
Hubert space f) which satisfy, for a fixed positive λ > 0, the commu-
tation relations (1). An explicit construction in [17] shows that such
pairs do indeed exist. Let & be the *-algebra of polynomials in the
operators Ut, St, t > 0. Using (1) and the fact that Ut, St are
isometries, one may always write any polynomial P e 3? as a linear
combination of terms of the form

(3) A = U1S1 -U1 Si s; u; - s;u;

for non-negative real numbers l\, r y . We say that a term in this form
is a word in reduced form. Associated with A are its (left and right)
lengths, l(A), r(A), where I (A) = E Ϊ i // and r(A) = Σ V y A s

we shall see (Lemma 3.1) a polynomial P has one and only one ex-
pression as a linear combination of words in reduced form (where we
agree to use the semigroup laws UtUs = Ut+S9 StSs = St+S to com-
bine the terms in A as much as possible), so that the length functions
are well-defined on reduced words. We say that a word A is even if
l(A) = r(A). By Φo(-P) we denote the summand of P consisting of
linear combinations of all even words of P. P is said to be even if
Φo(-P) = P. Let ĉ b be the subspace of all even polynomials in &.
Using the commutation relations (1) one sees that &>$ is actually a
*-subalgebra of &.

DEFINITION 2.1. For t > 0, let Ft be the even polynomial

Let Fo = I. For ί > 0, let Jt = \-Ft.
Using the commutation relations and the isometric properties of U

and iS*, Lemma 2.2.1 below is easily verified. The other assertions
follow directly from 2.2.1.
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L E M M A 2.2. The operators Ft, Jt are projections in & satisfying
the following identities, for s>t>0\

(1) FtUs = Us, and FtSs = Ss,
(2) JtUs = 0 = JtSs,
(3) FtFs = FsFt = Fs, and
(4) JtJs = JsJt = Js.

L E M M A 2.3. Jtφ0,for t>0.

Proof. It suffices to show that for some isometry W in S6, W*FtW
φ / , since I = Ft + Jt. Let W = C/ί/2^/2, then JΓ*(7, = e~λtl2l =
W*St, so

W*FtW = [e~λt(2 - 2e~λt)/{\ - e~2λt)]I φl. D

We may now determine the structure of the algebra C*(Ut, St) =

%t We shall show below that this algebra is not simple. To see

this, define positive numbers a — at = j(\/l + e~λt + \Λ - e~λt) and

b = bt = j(\ZY+~e~^ - \/l - e~λt) 9 and define operators

(4) TtΛ =(aUt-bSt)/(a2-b2) and 7),2 = (aSt-bUt)/(a2-b2).

% is clearly generated as a C* -algebra by the operators Ttj, i =
1,2, and it is straightforward to show that the Ttj are isometries
which satisfy the following identities:

Hence we may apply [11, Proposition 3.1] to obtain the following
result.

THEOREM 2.4. For t > 0, let 21, be the C*-subalgebra of <B(f)) gen-
erated by the isometries Ut and St. Then the projection Jt generates
a two-sided closed ideal in % isomorphίc to the C*-algebra of compact
operators X, and QLt/X is isomorphic to the Cuntz algebra Oι.

As one might suspect from this result, the Cuntz algebra Oι plays a
significant role in understanding the structure of the C*-algebras Sir.

III. Simplicity of 2tp for semigroups Γ. In this section we show that
if Γ is a dense subgroup of the real numbers, then the C*-algebra
2lp generated by the semigroups of isometries %γ and Sf is simple.
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(Unless stated otherwise, we take Γ = R in this section.) Our main
tool is to construct a conditional expectation from 2lp to the C*-
subalgebra of 2lp generated by the even polynomials ^ 0 I n order
to show that this construction is well-defined, we need the following
lemma.

LEMMA 3.1. Any polynomial P € & has a unique expression as a
linear combination of words in reduced form.

Proof. To prove the lemma it suffices to show that if P = 0 is
a linear combination Σg

i=0 CiAi of words in reduced form, then each
coefficient c, must be 0. If not, let / = min/{//e(v4/), r(Aι)} . Without
loss of generality we may assume / = lle(Ai), for some i. Next let r
(> /) be the minimum length r(Aj), where j ranges over all indices
such that l(Aj) = I. We may assume l(A0) = I and r = r(A0).
Using the semigroup properties UsUt = Us+t, SsSt = Ss+t, we may
construct partitions {0, l\, l\ + l2, . . . , h + h ln} of [0, /] and
{0, rx, r\ + Γ2, . . . , r\ H \-rm} of [0, r] such that every term Aι of
P having lengths l{Aΐ) = I and r(Ai) = r may be written as a scalar
multiple of a word of the form

(6) "W fW^Λ ^A
for ai,bjE {1,2} and WίΛ = Ut, Wt2 = St,ΐoraτιyt>0.

Now if Ak is any summand of P such that ((A^) > / or r{Aιc) > r,
then C = X*AιcY is a scalar multiple of a word in reduced form with
/(C) > 0 or r(C) > 0, for X any word of the form Wlχ >fl( W^^
and Y any word of the form Wr b • • Wr u . Using Lemma 2.2.2,

1 ' 1 m ' m

there is a positive scalar tk sufficiently small such that JtC = 0 or
CJt = 0 for 0 < t < tk. Let ί be the minimum of the lengths t^,
where k ranges over the summands of P such that l(Ak) > / or
r{Ak)>r.

Consider the operators Zti\ = Ut — e~λtSt and Zty2 = St — e~λtUt.
It is straightforward to show that the Ztj are scalar multiples of
isometries and satisfy Z* χWul = 0, Z * 2 ^ , i = 0, and Z* tWtj =
(1 - e~λt)I. We may suppose that ^o has the form (6). Let X =
Z/ a '"zι a Jt> Y = zr b " ' Zr b Jt Then X*A0Y is a non-zero

l ' l / ί ' n l ' l w ' m

scalar multiple of Jt, but XM y Ύ = 0 for all other j . But then
0 = X*PY = X*AQY , a contradiction, which yields the result. D

Using the uniqueness result above, and following [11], we note that
if % = {Ut: t > 0} and 5? = {St: t > 0} are a pair of semigroups
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of isometries on a separable Hubert space £j which satisfy^ 1), then
the algebra & of polynomials in the operators in % and 5? is alge-
braically isomorphic to &. Hence we may define a norm || ||o on
&> by setting, for P e 3d ,

||P||o = suρ{||π(P)||: π is a separable representation of ^ } .

We shall denote by 5f the C*-algebra obtained by completing & in
the || ||o-norm, and by -26 w e shall denote the completion of the
subalgebra &b of even polynomials in &>, see [11, 1.9].

The result above also shows that there is a unique way of extend-
ing the mappings Ut^eιγίUt and St-+eιytSt to *-homomorphisms
ay of 9°, for all γ e R. We observe that ay(P) = P for all γ e R
if, and only if, P e ^ o We also note that the mappings aγ are in
fact *-automorphisms of &, since clearly a-γ o aγ = i = aγ o a-γ.
Moreover, if π is a separable ^representation of 3° then so is π o α y ,
whence ||P||o = | |α7(P)||o for all p € ^ . Hence there is a unique ex-
tension of ctγ (which we also denote by aγ) to a *-automorphism of
Jϊf, and from the obvious group law ayoa7o = αy+y0 on 9°, the family
a = {α7: γ e M} is a one-parameter group of automorphisms of ^ .
a is in fact a strongly continuous family; clearly | |α 7(P) — P\\Q —• 0
as y -> 0 for P e & (note that α y (^) = exp(iγ[l(A) - r(a)])A
for reduced words A). For general I in y , the convergence
||αy(X) - X\\Q —• 0 as y —• 0 follows from the uniform density of
3° in S?. Summing up, we have:

LEMMA 3.2. Let S? be the C*-algebra obtained as the completion of
9° in the norm || | |o. Then there exists a unique strongly continuous
one-parameter group a = {aγ: γ e M.} of ^-automorphisms on Sf
defined by aγ{Ut) = eltWt and aγ{St) = eitySt.

THEOREM 3.3. For any Xe£?> MmT^^lT)-1 ^τaγ{X)dy con-
verges uniformly to an element ΦQ{X) E -25. The linear mapping
Φo: S? —• 3$ is a conditional expectation from S? to 3$.

Proof. If A is an even reduced word then aγ(A) = A, so Φ
A. If A is uneven, α ^ ) = exp(/y[/(-4) - r(A)])A, so Φo(̂ 4) = 0.
Hence Φo(-P) exists for P G ^ , ΦO(P) is the sum of the even terms
comprising P, so ΦQ(P) E ̂ O Since & is uniformly dense in i ? it
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is clear that ΦQ(AΓ) exists for all I G ^ , and moreover,

||Φo(X)||o= Hm(2Γ) / <*y(X)dy\
J-T I

-i ίT „

-1

T

T

Clearly Φ o preserves positivity.
Now suppose (Pn) is a sequence of polynomials converging uni-

formly to X. Then \\Φo(X)-Φo(Pn)\\o < l l * - f t | | o , so Φ0(X) is
the uniform limit of even polynomials of &. Hence Φo(^Q £ -25.
Conversely, if X G .25, then since X = limw_oo Pn for a sequence
of even polynomials, Φo(ΛΓ) = lim^ooOoCP/i) = lim^oo P,, = X, so
that Φo is surjective and Φ 0 o φ 0 = φ 0 . Hence Φo is a conditional
expectation on y. D

Using some elementary results on almost periodic functions we
show (see also [12]) that the mapping ΦQ is one-to-one on the positive
elements. We shall assume J? to be unitally embedded in © ( # ) for
some Hubert space fj. If P e £P is written as a linear combination
of reduced words, P = Σ J = 1 CjAj, then from the expression aγ(P) =

ΣQj=\ CjeiyξjAj, where ξj = l(Aj) - r{Aj), it is clear that the map-
ping γ —• (ay(P)f, g) is an almost periodic function of γ, for any
f,geff. For I E ^ , consider the function <p(γ) = (aγ(X)f, g)
and define φm(γ) = (aγ(Pm)f9 g) for some sequence of polynomials
{Pm} converging uniformly to X. Then for y e l ,

Mr) - <Pm{y)\ = \(*γ(X)f, g) - (aγ(Pm)f, g)\

so that φ is the uniform limit of a sequence of almost periodic func-
tions. Hence φ is itself almost periodic, [5, Theorem 49.V]. Now if X
is a non-zero positive element of & we may choose a vector / = g in
9)' such that ^(0) = (Xf, /) > 0. But then φ(γ) is a non-negative,
almost periodic function which is not identically equal to 0, so that
its mean, Tt(φ), is strictly positive, [5, Theorem 72]. But

m(φ)= lim(2Γ)-1 Γ φ(γ)dγ
T^oo J_τ

= lim (2Γ)"1 / ( α 7 ( X ) / , f)dy = (Φ0(X)/, / ) ,
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so that Φo(^O is a non-zero positive element of O2Q - Hence we have
established the following (cf. [12, Proposition 2]).

PROPOSITION 3.4. The condition expectation Φ o : 3* -* =26 w one-
to-one on the positive elements of 3?.

As in the previous section let % and S? be a pair of semigroups
of isometries acting on the Hubert space ft, and let 21 be the C*-
algebraic completion of & in 9$(£j). We shall show that the comple-
tion of ĉ b i n ®C©) i s isometrically *-isomorphic to the completion
<S6 of ^o in -£\ To begin this, suppose P = ]Cy=i rf/^ is the
unique decomposition of an even polynomial P in 21 into a sum
of (even) terms in reduced form. Let L = max{l(Aj): 1 < j < q}
(= max{r(yly): 1 < j < q}). For each 7 , if Aj has the form (3), then
let Rj be the partition of [0, L] formed as the union of the partitions

{ 0 , L - ( / 1 + .. + / 2 / / _ 1 ) , L - ( / 1 + ... + / 2 / , _ 2 ) , . . . , L - / 1 , L } and

{0, L - (n + + rlv-χ), L - (n + + r 2 l / - 2 ) , - - , L - rx, L}.

Let i? be the union of all of the partitions Rj, 1 < j < q. Then
there are positive real numbers c\, c 2 , . . . , cn , for some n, such that

R = {0, L - (a + - - - + cπ_i), L - (a + + cw_2),..., L - a, L)

(and 0 = L - (c\ H h cΛ)). Then clearly any Aj may be written in
the form

where α, , fe, E {1, 2} depend on Aj, for 1 < / < /c7, where kj < n
k

satisfies χ \ i j c/ = l(Aj) (= r(^47 )), and as above, W 9̂1 = Ut, W ?̂2 =
»S/. If kj < n, then we may rewrite Aj as

From Definition 2.1, the second term above may be rewritten as a
linear combination of four terms, each of the form

If kj• + 1 = n we do nothing; otherwise, we rewrite each of the four
terms as the sum of two terms

*c a ' ' ' **r a Wr a ±ic **n u Wn u
1 ' 1 kj ' kj kJ + \> kJ + \ kj+2 Ckj + l>ϋkj + l Ckj ' θkj
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Continuing this process, we may rewrite P as a linear combination
of terms each of which takes one of the following three forms:

(7-1) Jcx

(7.2) WCι,ai...WCr,aJCr+Wc*A...W*A, 0<r<n,

(7.3) Wc^- -WCn,aWlκ...Wlh.

Using the identities (4), we may further decompose (7.2) and (7.3) so
that P may be rewritten as a linear combination of terms, each of
which takes one of the following three forms:

(8.1) Jct,

(8.2) TCi>ar--TCr>aJCr+Tlib/--T*iA, 0<r<n,

Note that any two distinct terms above (with either the same or dif-
ferent forms) have product 0; this follows from Lemma 2.2.2. Using
the commutation relations and (5) shows that for fixed r, 0 < r < n,
the 4r terms in &> having the form (8.1) if r = 0, (8.2) if 0 < r < n,
and (8.3) if r = n, are matrix units for a 2 r x 2 r matrix subalgebra
Mr of &>. Since BC = 0 for any elements B e 9Jtr and C e fflr0,
for r Φ ΓQ, the totality of terms of the form in (8) are matrix units for
a finite-dimensional C*-subalgebra of &. Since P lies in this alge-
bra, we may reassemble P as a sum of polynomials Σ" = o Pr > where
Pr € 97lr. Since the subalgebras 9Jtr are mutually orthogonal, it is now
clear that \\P\\ = max{||Pr||: 0 < r < n}. Hence we have:

PROPOSITION 3.5. Let % and S? be a pair of one-parameter semi-
groups ofisometries on a Hilbert space S), satisfying (1). Let 3? be
the algebra of polynomials in these isometries. If P e ^Q there is a
finite-dimensional C*-subalgebra of & containing P.

Using the decomposition of P above we see that for any even poly-
nomial P , ||P|| is the same in any representation of the semigroups
% and ^ , by the uniqueness of the C*-algebraic norm on finite-
dimensional matrix algebras. In particular, if 21 is the C*-algebraic
completion of % and 5? in %$($)), as above, with norm || ||, then
for all Pe&Ό, \\P\\ = \\P\\0 (cf. [11, 1.9]). This yields the following
result.

THEOREM 3.6. Let % and S? be a pair of one-parameter semigroups
of isometries on ®Cδ) satisfyingthe commutation relations (1), and let
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21 be the C*-algebra obtained as the uniform closure of the polynomial
algebra 3? in the isometrίes Ut, St, t > 0. Let 2l0 be the C*-
subalgebra of 21 obtained as the completion of the even polynomials
ĉ o in the norm. Then there exists a *-ίsometric isomorphism from 2lo
to .gg.

THEOREM 3.7. Let W, <9*, and 21 be as above. For any element
P G ^ ( C 21) there exists a projection Q G ^ O > depending on P, such
that QPQe^o and \\QPQ\\ = \\Φ0(P)\\.

Proof. Let P = Σ%\ djAj be a decomposition of P into a lin-
ear combination of words in reduced form. If Φo(P) = 0, then we
may choose Q = 0. Hence, we may assume P Φ 0 and that there
are even reduced words Aj in the decomposition of P. Let L > 0
be the maximum length (L — I (A) — r{A)) among all of the even
words. Note that if Φo(̂ P) is just a scalar multiple of / , then L = 0.
First suppose L > 0. For each reduced word (even or uneven) Aj,
form a partition Rj of [0, L] as follows: if Aj has the form (3), let

nj + 1 be the first index such that Σ/4i //>-£/, let ra7 + 1 be the

first index such that Σ™ϊ{ rι > L, and set i?y to be the union of
the partitions {0, L - (l{ + + / „ ) , . . . , L - l u L) and {0, L -
(ri + + rm ), . . . , L - rλ, L} . Let i? = {0, L - (cx + + cn-X)9

... , L — C\, L} be the union of these partitions, and let cn = L -

(c\ H h c π _i). As in the proof of Proposition 3.5, each of the even
terms may be decomposed into a linear combination of terms of the
form (7), which in turn may be rewritten as a linear combination of
the terms appearing in (8).

Suppose A = Aj is an uneven term in the decomposition of P. If
I (A) > L and r(A) > L, A may be rewritten in the form

(9.1) wCι,aι...wCκ,awvw?tA-w;ιfbι

where W and V are words in reduced form such that l(W) > 0
or l(V) > 0, and r{W) = r(V) = 0. If I (A) < L (respectively,

r(A) < L), I (A) = Σίi Ci (resp., r(A) = Σ!ΪLI CΪ ) f o r s o m e kj < N >
then by using a procedure similar to that used in the proof of Theorem
3.6, we may decompose A into a linear combination of terms taking
one of the forms below (where W is a reduced word with l(W) > 0
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and r(W) = 0)

(9.2) JCW\ i

(9.2') WJCι, ii

(9.3) Wc a ••• W C r , a r J c W * W * b ••• W* b , 0 < r < n ,

(9 30 W • W W J W* • W* 0 < v < n

From the proof of Proposition 3.5, Φo(-P) decomposes into a sum
Σr=o ?r of even polynomials, where each Pr is in turn a linear com-
bination of terms each of which has the form of one of the elements
in (8). Also we have shown that | |Φ 0(P)| | = max | | P r | | . Choose r such
that \\Φ0{P)\\ = \\Pr\\. If r = 0, set Q = Qo = JCχ. If 0 < r < n, set

Then it is clear, using the relations (5), that Qr is a projection. It
is also straightforward to show, appealing to Lemma 2.2.2 (and re-
calling that Ttχ is a linear combination of Ut and St) that if B is
any term in (9) arising from the decomposition of an uneven reduced
term in the expression for P, that QBQ = 0. Hence QAjQ = 0 for
all uneven terms Aj . Using the argument establishing that PrPrQ for
r Φ ΓQ in the proof of the proposition above, we also conclude that
QrPrfir = 0 for v φ ΓQ . Finally, if B is any term in the decomposi-
tion of Pr, then it is easy to see, using (5), that QrBQr = B, whence
QrPrQr = Pr. Assembling these equations we obtain QrPQr = Pr

Now suppose r = n. Then we modify an argument in [11] to show
that there is a projection Qn e ^ 0 such that \\QnPQn\\ = \\Pn\\ Con-
sider the matrix units (8.3) constructed in the proof of the proposition
for the 2n x 2n matrix algebra Wln For any ε > 0 it is straightforward
to verify that if

2

then Q is a projection in ^ , and the mapping D —• QDQ on UKn

is an isomorphism from 9Jln to another matrix subalgebra, QfflnQ,
of c^. It is also easy to verify that if B is any even term of the
form in (8.1) or (8.2), then QBQ = 0 by using Lemma 2.2.2. Now
suppose B is one of the terms of the form in (9) arising from the
decomposition of an uneven term Aj of P. It is clear, again from
Lemma 2.2.2, that for any term B of the form in (9.2), (9.3), (9.2'),
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or (9.30, QBQ = 0. Suppose B is a term of the form (9.1). We
have

= γJ£WV*Jε,

where γ is some scalar whose value is determined by (4) and the
commutation relations (1). Since 1{W) > 0 or l(V) > 0, we may
use Lemma 2.2 to prescribe a value of ε sufficiently small such that
JεWV*Jε = 0. But this shows that there is an ε > 0 small enough
so that, choosing Q = Qn of the form indicated above, QnBQn = 0.
Combining all of these results shows that QnAjQn = 0 for all uneven
terms in the decomposition of P; that QnPrQn = 0 for 0 < r < n
and, since D —• QnDQn is an isomorphism on Mn, ||Q«^«Q«|| =

\\Pn\\. Ώ

COROLLARY 3.8. IfPe<?>, \\Φ0(P)\\ < \\P\\.

Proof. This is clear since ||Φo(-P)|| = HG^GII for some projection

Q. •

Using the results above allows us to prove that & is simple. We
show in fact that 3* is simple in the very strong sense that the Cuntz
algebras QQ are simple. The proof of the following theorem uses some
techniques in [11, Theorem 1.13].

THEOREM 3.9. For any non-zero element X of 3 there exist
A, B e£f such that AXB = 1.

Proof. We may assume without loss of generality that X > 0 for
if there are A',B' e& such that A'X*XBf = I we simply take A =
A'X*, B = Bf. Hence Φo(ΛQ is a positive (non-zero, by Proposition
3.4) element of O2Q - We may assume without loss of generality that

For positive ε < 1/4, let P e & be a self-adjoint polynomial
such that \X - P | | o < β. By Theorem 3.3, ||Φo(ΛΓ - P) | | o < ε, so
1 + ε > ||Φo(P)||o > 1 - β. Let Q be a projection in ^ 0 such that
QPQ e &>0 and | |βPβ | |o = ||Φo(^)llo From the proof of the preced-
ing theorem, either QPQ = yJc, for some c > 0 or there are positive
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real numbers C\, C2, . . . , cr, c, such that (λP<2 is a self-adjoint op-
erator in the 2r x 2 r matrix algebra ffl generated by matrix units
of the form TCχ^ , Tcr,arJcT*r b - T*c^^ Let E L i ̂  b e t h e

spectral decomposition of (λPQ in 9Jt, where the £*. are rank one
orthogonal projections in 971 and yx > yι > > yq. From the in-
equalities above, 71 > 1 - ε, and | |QPQ|| = y\. Let F G 9JI be a
partial isometry such that

VV*=EX and F * F = E[ = TCχΛ TCrAJcT^x T*CχΛ.

Setting Ĥ  = TCχ, 1 Tc^ x, we have W * F * Q P Q F ^ = γ{ W*E[ W =

yxjc. F ina l ly define Yt = ZcjlΛj\J\ -e~λc, i = 1 , 2 , w h e r e ZtJ

is defined as in Lemma 3.1. Then Yx and Yι are isometries satis-
fying Y;Y*FcYιY2 = 0, so setting Y = YXY2, Y*JCY = / . Hence
Y*W*QPQVW = yxl. Let £> = QVW. Then ||Z)||0 < 1, so

\\D*XD - I\\o < \\D*XD - D*PD\\0 + \\D*PD - I\\o

<\\X-P\\0 + \\γxI-I\\0<2ε,

so D*XD is invertible, and we are done. D

COROLLARY 3.10. S* is a simple C*-algebra.

We may now prove the following uniqueness result.

COROLLARY 3.11. Let % and 5? be a pair of one-parameter semi-
groups of isometries acting on a separable Hubert space fj and satisfy-
ing the commutation relations (1). Let 21 c 95(β) be the C*-algebraic
completion of the polynomial *-algebra 3? in the operators Ut, St,
t > 0. Then & and 21 are isomorphic.

Proof. From the definition of £f it follows that 21 must be a quo-
tient of &, i.e., 21 = π(&) = <57ker(π), for some representation π.
But ker(π) = 0. D

Suppose Γ is a subgroup of R, and ̂ Γ = {Ut: t e Γ + } , Sf =
{St: t G Γ+} are semigroups of isometries on a Hilbert spaces ft which
satisfy the commutation relations

Then we may consider the polynomial *-algebra 3Pγ generated by the
operators Ut, St, t G Γ+ , and we define 2lp to be the C*-algebraic
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completion of 9\ in the norm on 95(β). It is easy to see that the tech-
niques used to prove the results above for the case Γ = R may be ap-
plied virtually without change to show that % is a simple C* -algebra,
if Γ is dense in R. Combining Theorem 2.4 with these observations,
we arrive at the following extension of the results above.

THEOREM 3.12. Let Γ be a subgroup of R with corresponding C*-
algebra 2tp. If T is discrete, 2lp contains a maximal closed two-
sided ideal isomorphic to the C*-algebra of compact operators 3?, and
Qlr/3? is isomorphic to the Cuntz algebra Oχ.IfTis dense in R, then
2lp is a simple C*-algebra, and the C* -algebra generated by pairs of
semigroups ofisometries %γ, <5f acting on a Hubert space is canoni-
cally unique.

It would be interesting to obtain necessary and sufficient conditions
on a pair of dense semigroups Γ + , ΓJ of R+ for the corresponding
C*-algebras 2lp, 2lro to be isomorphic. In the situation where 9$r >
2$ro are the C*-algebras generated by single one-parameter semigroups
Vίγ 9 %γo of isometries, R. G. Douglas has shown in [12] that *BΓ and
Q3p are isomoφhic if and only if Γ and ΓQ are order isomorphic.
We suspect that the isomorphism classes of algebras Sip are also de-
termined by order isomorphism classes of semigroups.
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