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A COMPARISON ALGEBRA ON A CYLINDER
WITH SEMI-PERIODIC MULTIPLICATIONS

SEVERINO T. MELO

A necessary and sufficient Fredholm criterion is found for a C*-
algebra of bounded operators on a cylinder, which contains operators
of the form LΛ M , where Λ = (1 - Δ ) ~ 1 / 2 and L is an Mth order
differential operator whose coefficients are periodic at infinity.

0. Introduction. Let Ω denote the cylinder RxB, where B is a com-
pact Riemannian manifold, AQ its Laplacian and β? the Hubert space
L 2 (Ω). Cordes [3] found a necessary and sufficient Fredholm criterion
for operators in the C*-subalgebra of JZffi) generated by: (i) mul-
tiplications by functions that extend continuously to [-00, +oo] x B,
(ii) Λ = (1 - Δ Ω ) " 1 / 2 and (iii) operators of the form Z)Λ, where
D is either d/dt, t € R, or a first order differential operator on B
with smooth coefficients. Here we extend this algebra by adjoining the
multiplications by 2π-periodic continuous functions to the generators,
and a similar Fredholm criterion is obtained.

The commutator ideal %& of the extended algebra ^ is proven to
be *-isomorphic to ^ 2 * ® ^ ® ^ , where && denotes the algebra
of singular integral operators on the circle and Xτ and 3Z* denote
the algebras of compact operators on L2(Z) and L2(B), respectively.
This allows us to define on Ή& an operator-valued symbol, the " y-
symbol", such that ker γ n kerσ equals the compact ideal of S?{3ίf).
Here σ denotes the complex-valued symbol on &&> that arises from
the Gelfand map of the commutative C*-algebra ^/<8^ . We prove
that A e ^ is Fredholm if and only if γA and OA are invertible.

The simpler case when the compact manifold reduces to a point
is considered in [5]. There, a unitary map W from L2(R) onto
L 2 (5 1 )®L 2 (Z) is defined, such that the conjugate W%W~X of the
commutator ideal equals S^Sf®^. Here, we conjugate %&> with
W®IB, where 7B denotes the identity operator on L2(B), and obtain

If L is a differential operator on Ω whose coefficients are contin-
uous and approach periodic functions at infinity, the operator A =
LAM belongs to ^ , where M is the order of L. We can apply
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the criterion above to A and prove that L is a Fredholm operator
if and only if it is uniformly elliptic and a certain family of elliptic
differential operators on the compact manifold Sι x B is invertible.
This applies also for matrices of such operators.

These results can be extended in a standard way to non-compact
manifolds with cylindrical ends (cf. [2], VIII-3,4). Fredholm prop-
erties of elliptic-differential operators on such manifolds have been
studied, for example, by Lockhart-McOwen [6] and Taubes [8]. The
case where the coefficients are periodic on the ends is included in
Taubes' results.

1. Definition of the algebra ^> and a description of its commutator
ideal. Let Ω denote the Riemannian manifold R x l , where 1 de-
notes an n -dimensional compact manifold with metric tensor locally
given by hjk, and let %? denote the Hubert space L 2(Ω), with Ω
being given the surface measure

= Vhdtdxι -dxn

9

where h is the determinant of the n x ^-matrix ((A/fc))i</,£<«• The
metric on Ω is given by ds2 = dt2 + hjkdxJ' dxk, and the Laplace
operator is locally given by

Oxk>

where {{hjk)) = {{hjk))~{, and the summation convention from 1 to
n is being used.

The symmetric operator ΔQ with domain CQ°(Ω) is essentially self-
adjoint, since Ω is complete (cf. [2], IV). We denote by H the closure
of 1 - Δ Q and by Λ its inverse square root, Λ = H~χl2 . Since H > 1,
we have Λ e 2C(βf). The algebra ^ is defined as the smallest C*-
subalgebra of &{%*) containing the following operators (or classes of
operators):

(1) αeC°°(B); 6

eV'JeZ; Λ; j j U and Z)XΛ,

Dx being a first order differential operator on B, locally given by
-ibJ(x)d/dχJ , where bj(x), j = 1, . . . , n, are the components of
a smooth vector field on B. The operators §-tA and DXA, defined
on the dense subspace Λ~1(C^°(Ω)), can be extended to bounded
operators of 2C{βf) (cf. [2], for example). Bounded functions on Ω
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have been identified with the corresponding multiplication operators
in i ? ( X ) and CS(R) denotes the class of continuous functions on R
with limits at +00 and -00.

Our first objective is to obtain a necessary and sufficient criterion
for an operator in g^ to be Fredholm. Such a criterion has been
found by Cordes [3] for the algebra generated by the operators in (1)
except eijt, j e Z.

Taking advantage of the tensor product structure of X ,

r = L 2(R)®L 2(B),

we consider the conjugate of %* with respect to the unitary operator
F <g> 7B, where 7B denotes the identity operator on L2(B) and F the
Fourier transform on L2(R),

In order to simplify notation, A ® 7B is denoted by A and 7R <g> i? by
B , whenever A e -S*(L2(R)) or B e ^ ( L 2 ( B ) ) .

We seek to describe what are Bk := F~lAkF, where A^9 k —
1, . . . , 6, denote the operators listed in (1), in that order. The operator-
valued functions Λ(τ) := ( I + ^ - Δ B ) " 1 / 2 , τλ(τ) and Dxλ(τ), τ e R,
are all in CB(R, -S|), as proven in [3], page 220, and thus determine
operators in &{%?) by multiplication in the real variable. Here .SJ
denotes the algebra of bounded operators on L2(B) and CB(R, «SB)
the bounded continuous ^-valued functions on R. With this inter-
pretation, we get Bk , k = 1, . . . , 6, respectively given by

(2) αeC°°(B); b(D),beCS(B); Tj9jez;

Λ(τ); -τλ(τ) and Dxλ(τ),

where b(D) := F~ιbF and Tj denotes the translation (Tju)(τ) =
u(τ + j ) .

Let JfM denote the ideal of compact operators on L2(B) and
C O ( R , ^ B ) denote the ^-valued continuous functions on R that
vanish at infinity. All commutators [Bk , B[], k, / Φ 3, are contained
in the algebra

:= CO(R, Jfo

where 3ί{^) denotes the ideal of compact operators of 2?^), as
proven in [3], Proposition 1.2. Next we investigate what are the
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commutators [#3, Bk], k = 1, . . . , 6. We easily get [B$, B\] =
[B3, B2] = 0. It is also clear that, for any K(τ) e CB(R, .gj), we
have

(3) [Tk, K(τ)] = (tf(τ + *) - t f ( τ ) ) 7 i , fcGZ.

PROPOSITION 1.1. The commutators of the generators in (2)—and

of their adjoints—of the algebra C<? := F~l(^F are contained in

N

J2 Kj(τ)Tj + K; N eN9 Kj eCO(R9 3%), K
j=-N

Proof Let us first prove that K(τ + j) - K{τ) e CO(M? 5fc), for
K(τ) = Λ(τ), τλ(τ) or Z)jcλ(τ). It follows from the fact that -Δ B

on L2(B) has an orthonormal basis of eigenfunctions, with eigenvalues
0 < λ\ < λ2 < - - , λn -> 00 as n —• 00, that, for each T G I , Λ(τ)
is unitarily equivalent to the multiplication operator (1 + τ 2 + λn)~χl2

on L2(N). Hence: Λ(τ) e CO(R, Jfa),

||τ[Λ(τ + 7) - A(τ)]||L2(B) < ^ |τ[(j + (τ + ) 2 ) " 1 / 2 - (s + τ2)~^2]\

and

^ ί τ + j ) - 1||L2(M) <

Note that the right-hand sides of the two previous inequalities go to
zero as τ -» ± 0 0 . Furthermore, as

lim (1 + τ 2 + λn)
ιl2{\ + (τ + j)2 + 4 Γ 1 / 2 - 1 = 0 ,

n—KX)

we have that Λ(τ)~1Λ(τ + j) - 1 e3^, for each T G I . We then get:

(T + j)λ(τ + j) - τλ(τ) = τ(Λ(τ + j) - Λ(τ)) + jλ(τ + j) e CO(R, ^i)

and

D x λ ( τ + j ) - D x λ ( τ ) = D x λ ( τ ) [ λ ( τ ) - ι λ ( τ + j ) -l]e C O ( E , 3TB).

By the remarks preceding the statement of the proposition, this
proves that the commutators of the generators (2) are indeed con-
tained in Ψ3&. Concerning the adjoints, let us note that the classes
of Bk \ k = 1, . . . , 5, are self-adjoint and that, as proven in [3],
Dxλ - ADX e CO(R,«%). Hence

(4) (Dxλ)* - Dxk = ADX - D*λ e CO(R, JfB).
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Here, Z>* denotes the formal adjoint of Dx. The commutators of
any A(τ) G CO(R, 3£%) with the generators Bk, k = 1 , 3 , 4 , 5 , 6 ,
are clearly contained in ^SKT. For K(τ) of the special form K(τ) =
a(τ)K, a G CO(R) and K e <%k, the commutator [b(D), A(τ)] =
[/?(/)), α(τ)] ® K is compact, since [&(/)), a(τ)\ is compact (cf. [4],
Chapter III, for example), for b e CS(R). The vector space generated
by all A(τ) = a(τ)K as above is dense in CO(R, 31*) and thus we
have

(5) [b(D), A:(τ)] G 3r{&), for fe G CS(R), K(τ) G CO(R, 3TB).

This concludes the proof. D

Denoting by W&> the commutator ideal of g^ and by %& the com-
mutator ideal of Ή& , it is obvious that ^ = F~X%&F.

PROPOSITION 1.2. The commutator ideal %& of the algebra Ψ& is
obtained by closing the set of operators:

N

E bj(D)Kj(τ)Tj + K;
j=-N

6 ; G C S ( R ) , 7V€ N , A}

Proof. The algebra g^ is a "Comparison Algebra", in the sense of
[2], Chapter V, with "generating classes":

(6) s/% := Cg°(Ω) U C°°(B) U {eijt ; j G Z } U {^(ί) = ί(l + /2)" 1 / 2}

and ^ equal to the vector space generated by the first order linear
partial differential expressions on B with smooth coefficients and by
the expression d/dt. Indeed, ^ can alternatively be defined as the
C*-algebra generated by all multiplications by functions in j / and
by all DA, D e 3*. It follows then from Lemma V-l-1 of [2] that
X{%") c %& and therefore 3Γ(%') c &&>. Moreover, it was proven in
[3], Proposition 1.5, that CO(R, 31*) is contained in the commutator
ideal of the C*-algebra generated by B4, B5 and B6 . Thus we get

All commutators of the generators (2) and their adjoints are con-
tained in £?p9o, by Proposition 1.1. Again using (3), (4) and (5), it
is easy to verify that <g/>so is invariant under right or left multiplica-
tion by the operators in (2) and their adjoints. Two facts then follow:
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(i) all commutators of the algebra (finitely) generated by the opera-

tors in (2) and their adjoints are contained in fp?o and therefore all

commutators of §̂ > are contained in the closure of <§>?o > and (ii) the

closure of <g>5o is a n ideal of ^ . By definition of commutator ideal,

Iζ^ is contained in the closure of fp 9 o. •

Let CO(R) denote the set of continuous functions on R vanishing
at infinity and let % denote the set of bounded operators on L2(R)

N

j=-N

aj G CO(R), K e

COROLLARY 1.3. With % denoting the closure of % defined above,
we have:

where ® denotes the operator-norm closure of the algebraic tensor prod-
uct

Proof. The vector-space generated by

{(b(D)a(τ)Tj + K ) ® K \ b e C S ( R ) , a e C O ( R ) , ; e z ,

is dense in i>o a n d i n ^ ®^i π

In the rest of this section, we define a unitary map

W:L2{R)->L2(Sι;L2(Z))

and find a useful description for (W ® 7B)
 1

Given w G L2(R), denote:

for each ^ e l . The sequence u°((p) belongs to L2(Z) for almost
every φ, by Fubini's Theorem, since L2(R) can be identified with
L2([0, l ) x z ) . Let

iV: L 2 (S ! , dθ) -> L 2(Z), S1 = {̂ /β 19 G R},

denote the discrete Fourier transform:

(7) (Fdu)j = ^= [2K u(e)e-W dθ 9 J 6 Z .
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For each φ G R, define

(8) Yφ:=Fde-^θF~ι.

The operators Yφ define a smooth function on R, taking values in the
unitary operators on L2(Z) and satisfying (YkU)j = Uj+k, for k G Z
and w € £2(Z), and Ŷ  Yω = Γ^+ ω, for φ, ωeR.

We now define the map (with S1 = {e2πiφ φ

(9) W:L2(R)-+L2(8ι,dφ;L2(Z))9

Let CS(Z) denote the set of sequences b(j), j G Z , with limits as
j —• +oo and j —• — oo and let ft(/?^) denote F^xb(M)F(ι, where
fc(Af) denotes the operator multiplication by Z? on L 2(Z). We then
denote by < 5 ^ the C*-subalgebra of ^ \=S?(L2{§1)) generated by
b(Dθ), b G ̂ 5^(Z), and by the multiplications by smooth functions
on S 1 . It is easy to check that, with Λ§i := (1 - Δgi)"1/2,

Since the polynomials in s are dense in CS(Z), &Sf coincides with
the C*-subalgebra of «5̂ i generated by -i jgλj and C°°{§1). In
other words, <9S* is the unique comparison algebra over S 1 . It there-
fore contains the compact ideal 3£^ and all its commutators are com-
pact (cf. [2], Chapters V and VI).

The following theorem was proven in [5] (Theorem 2.6). See also
[7], Theorem 1.2.

THEOREM 1.4. With the above notation, we have:

(10) wiw~x =sfsr®$ί9

where ^i denotes the set of compact operators on L2(Z). Furthermore,
for b G CS(R), a G CO(R) and j G Z, we have:

Aθ(e2πiΨ) . = Y φ a ^ φ _ M ) γ _ φ e C ( § 1 9 jgβ

and

(11) W(b(D)aTj)W-ι=b(Dθ)Y9a(φ-λf)Y-9-j + K9

κ eJr§ιxz

PROPOSITION 1.5. The map

gp . C^Q7 ~&\ Φ "75\ Φ

i n WAW~X
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is an onto ^-isomorphism. For AeB&> of the form A = b{D)K{τ)Tj,
with b e CS(R), K(τ) e CO(R, Jfa) and j ez, we have:

, X Z X B .
(12) WAW~X =b(Dθ)YφK(φ-M)Y-φ_j+K, with K G

For each φ G R Λere, K{φ - M) denotes the compact operator on
L2(Z)®L2(B) defined by the sequence K(φ - j) e X*, y G Z. The first
term of the right-hand side of (12) defines therefore a
continuous function on S1 = {^2πί> φ G R}.

Prao/. By Corollary 1.3 and (10),

and, by (11), formula (12) holds for K{τ) of the form a{τ) ®K,
a G CO(R) and K e 3Z*- We can then find a sequence Km(τ) G
CO(R, JfB) such that Km(τ) -> AΓ(τ), uniformly in τ G R, and (12)
is valid for each Km(τ). Then

Y9Km(φ - M)Y-φ-j -> YφK(φ -

in JίίxB, uniformly in e2πιφ G S 1 . Since the supremum-norm of a
function on S1 taking values in β2

?(L2(Z)®L2(B)) equals the norm of
the corresponding multiplication operator on L2(S1) ® L2(Z) ® L2(B),
the convergence above also holds in -S^L 2 ^ 1 ) ®L2(Z) ®L2(B)). D

Let M s L denote the maximal-ideal space of SZSf/J^i and let

denote the composition of the Gelfand map with the canonical pro-
jection. We then have (cf. [2], for example): M^x = S1 x {-1, +1}
and

and
g ) forOGCS(Z).

Let C(MSL 9 «^ZXB) denote the ^ X B -valued functions on
Here 3?ZXM denotes the compact ideal of L2(Z)(g>L2(B),

THEOREM 1.6. There exists an onto ^-isomorphism
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such that if γ denotes the composition of Ψ with the canonical projec-
tion g#> -> g^/JΓ(;r) and Ae%#> is such that B = F~ιAF is of the
form B = b(D)K(τ)Tjf where b e CS(R), K(τ) e CO(R, JfB) and
j G Z , we then have:

, ±1) = b(±oo)Y9K(φ -

Proof. Let Ψ be given by

XZXB

where in the first step we take A + 3f(jr) e g^/^pΓ) to F~ιAF +
, next to

WF~ιAFW~ι 4-

and in the last step we use the onto *-isomorρhism (see [1]):

K2 + ̂ XZXM >-+ σ%L(φ, ±l)K{

Defined this way, Ψ has the desired properties, by Proposition 1.5
and its proof. D

2. Definition of two symbols on g^>. Our first task in this section
is to give a precise description of the symbol space of %>, i.e., the
maximal-ideal space of the commutative C*-algebra ^ > / ^ > . The
symbol space of 8% the C* -algebra generated by the operators listed
in (1) except the periodic functions eijt, was described in [3]:

THEOREM 2.1 (Theorem 2.3 of [3]). The symbol space MofW can
be identified with the bundle of unit spheres of the cotangent bundle of
the compact manifold with boundary [—oo, +oo]xB, where [—oo, +oo]
denotes the compactification of R obtained by adding the points -oo
and +oo. The σ-symbols of the generators A\, A2, A4, A5 and A^
are given below as functions of the local coordinates (t, x τ , ξ), where
(t, τ) G [-ex), +oo] x R*, (x9ξ) e Γ*B and τ2 + hJkξjξk = 1:

σAι=a(x)9 σAi
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When periodic functions are adjoined to the algebra, the points over
|ί| = oo become circles. More precisely, we have:

THEOREM 2.2. The symbol space MP of %* is homeomorphic to
the closed subset o / M x S 1 described in local coordinates by

{((ί, x;τ9ξ), eιθ) ;(t,x;τ,ξ)eM,θeRandθ = t if\t\ < oc}.

Using this description of M/>, the σ-symbols of the generators in (1)
are respectively given by

a(x), b(t), e»\ 0, τ and V{x)ξ}.

Proof. Let Y2π denote the closed algebra generated by {eιjt j e
Z}, i.e., the 2π-periodic continuous functions on R. Its maximal-
ideal space is S 1, with eιθ e S1 defining the multiplicative linear
functional /'-> f{θ).

With If denoting the commutator ideal of &, the maximal-ideal
space of &/%? is M, as described in Theorem 2.1. By definition of
the Gelfand map, a point (t, x τ , ξ) defines the multiplicative linear
functional

The following maps are canonically defined:

(13) iΛ^

and

(14) i 2 : P 2 « - ^ .

(It is obvious that ? C ^ )
Let us denote by i the product of the dual maps of i\ and ii, i.e.,

(15) i Mp-.MxS1,

w ι-» (w o i{, ? w o i2),

where w denotes a multiplicative linear functional on ^ / ^ .
As the images of i\ and i2 generate g^/<g^, / is an injective

map, clearly continuous, which proves that Nip is homeomorphic to
a compact subset of M x S 1 . Now we proceed to investigate which
points of M x S 1 belong to the image of i. This dual-map argument
is essentially "Herman's Lemma" (cf. [4]).

As in the proof of Proposition 1.2, here again we use general results
on comparison algebras. It follows from Theorem VII-1-5 of [2] that
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for every point of the cosphere-bundle of Ω , (t9 x;τ9ξ) E S*Ω9

there is a multiplicative linear functional on ^ / < g ^ that takes any

function a, belonging to the closed algebra generated by A* in (6), to

a(x, t) and Z)Λ,

D +

to τ + bj(x)ξj . This multiplicative linear functional must correspond

to the point

«t,x;τ,ξ),eit)eMx§1,

with |ί | < oo.

Suppose now that ((t,x;τ9ξ), eiΘ) is in the image of i and that

\t\ < oc. Let ω denote the corresponding multiplicative linear func-

tional on %&>/%&> and χ denote a function in C Q ° ( Ω ) with χ{t) = 1.

It is clear that χ(-)e1^ + £&> belongs to the image of i\ and thus, by

(15),

On the other hand, since eι(') + %&> belongs to the image of z*2 > we get:

e^ + %<?) = ω(χ( ) + ^)ω(e^ + %?) = eiθ.

We then obtain eiθ = eu .

For t = ±oc and any eiθ £ S1, let us consider the sequence tm =

θ ± 2πm. Since MP is closed and

((tm,x', τ,ζ), eιtm) -+{{t9x\τ9ξ)9 eιθ) as m - ^ o o ,

we conclude that ((t,x;τ,ξ), eiθ) e MP . D

REMARK 2.3. We have just proved above that

VίP:={{(t,x;τ,ξ),eiθ)eMP;\t\<oo}

is dense in MP .

Next we define the y-symbol.

The C*-algebra ^j^{^) has the closed two-sided ideal

<g&lJ?{%f), which was proven to be *-isomorphic to C(MSL , ^zxi)

in Theorem 1.6. Every A e %&> determines a bounded operator of

by E+3f(jr) -+ AE + 3f(<r), thus defining

T'.
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Let us define

(16) y : ^

for Ψ defined in Theorem 1.6.
For E G £^>, JE is the operator multiplication by JE £

C ( M 5 J L , «^XB) (see Theorem 1.6). Let C ( M 5 L ? ^ X B ) denote
the continuous functions on M$χ taking values in =2ZXB :=

β2
ί?(L2(Z x B)). Identifying functions in C(M$L , -2ZXB) with the cor-

responding multiplication operator of &(C(JΪSL > <^ZXB)) > w e c a n saY
then that γ is an extension of γ.

PROPOSITION 2.4. There exists a *-homomorphism

where

given on the generators (1), according to notation established in § 1 and
in Theorem 1.6, by:

(17) γAι =a(x); γAj

7Λ, = Y-j ΪA4 = Yφλ(φ - M)Y-φ

γAs = YφK(φ - M)Y-φ 9 where K(τ) = ~τΛ(τ) , T G 1 and

γAβ = YφL(φ - M)Y-φ , w^r^ L(τ) = D xΛ(τ), τ € R.

Furthermore, γ restricted to the C*-algebra C%>, generated by the
operators in (1) except b e CS(R), is an isometry.

Proof, Let us calculate y, defined in (16), for the generators
A\9 ... , A& of (1). By Proposition 1.2, it is enough to calculate the
result of a left multiplication by Ap, p = 1, . . . , 6, on operators
Eegp such that F~ιEF are of the form c(D)K(τ)Tι, c e CS(R),
K e CO(R,^ i ) and / e Z. For such an J?, we get F~ι(ApE)F,
p = 1, . . . , 6, equal to, modulo compact operators,

c(D)a(x)K(τ)Tι, )

Γ/ and c(D)DxA(τ)K(τ)Tι,

respectively. Here we have used (3) and

[c(D),Bk] €#(*), ^ = 4 , 5 , 6
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(cf. [3], Proposition 1.2). By Theorem 1.6, we get:

yΛχE{φ, ±1) = c(±oo)YφK(φ -

= a{x)yE{φ,±\) (K = aK),

yAiE{φ, ±1) = (cb)(±oo)YφK(φ - M)Y_φ_ι = b(±oo)γE(φ , ±oo),

γAiE(φ, ±1) = c(±oo)YφK(φ + j - M)Y_φ_J.ι = Y , - ^ , ±1),

y ^ ( p , ±1) = c(±oo)Yφ(AK)(φ - M)Y_φ_ι

= YφA(φ-M)Y-φγE(φ,±l)

and analogously for p = 5 and 6. This proves formulas (17).
For any A e %» such that F~ιAF = J(τ) e CO(R?«%), it is also

clear, using (5), that

Hence, by (4), γA* also belongs to C(MSL ,
The norm of the operator of 5?(C{MSL , ^ZXB)) given by multipli-

cation by a function in C{M$L -> -2ZXB) is equal to the sup-norm of
this function. In other words, the C*-algebra C(M,$χ, -2ZXB) is iso-
metrically imbedded in £?{C(MSL J ̂ X B ) ) - As the image of a dense
subalgebra of % is contained in C(Msχ, -2ZXB) > w e conclude that y
maps ^ into C(M5-L, ^ X B ) .

Using the identification

it can be straightforwardly verified that, for A(τ) e CB(R,.S|),
WA(τ)W~ι e QS 1 , ^ Z X B ) and it is given by YφA(φ - M)Y-φ . This
means that for k = 1, 4, 5, 6, we have

γAk = WF~xAkFW-χ and γA*

It is also clear that WTjW~ι = YL7 and, hence,

γA = WF-χA{WF~1)-1, for A G g£,

proving that

ll^llc(M5L,^ZXB) = Mll^(x) and y^ = (y^)* for A G

This finishes the proof, since it is obvious that yA+ = (γA )*.
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The σ-symbol and the y-symbol, defined in Theorem 2.2 and
Proposition 2.4 respectively, are related by:

PROPOSITION 2.5. For every A e %>, \\(TA\MPXWP\\ < \\YA\\> i e»

9x\τ9ξ)9 eiθ)\ \t\ = oo} < sxxp{\\γA(m)\\<?ZXB \ m e MSL}.

Proof. Since the commutators of A2 with the other generators in
(1) and their adjoints are compact (cf. [3], Proposition 1.2), the set
of operators of the form

N

(18) A = ^bj(t)Aj + K9

7=1

bj e CS(R), Aj e Wβ, K e J f p r ) , N e N,

is dense in ^ . As θκ = 0 and γx = 0 for K e X{%?), it suffices to
assume A of the form (18) with K = 0.

For such an A , Theorem 2.2 implies:

;v
σA((t9x;τ9ξ)9e

iθ) = Σbj{t)σΛj{{t9x\ τ,ξ),eiθ).

7 = 1

Letting A± denote the operators Σf=\ bj(±oo)Aj, it is clear then that

M ( + o o , x ; τ , ξ ) 9 e i θ ) = σ A + ( ( ± o o , x ; τ , ζ ) 9 e i θ ) a n d

M ί - o o 9 x \ τ 9 ξ ) 9 e i θ ) = σA ( ( ± o o 9 x \ τ 9 ξ ) 9 e i θ )

hence:

(19)

The map σ: ^ —• C(Mp) was defined as the composition of
the Gelfand map (an isometry) with the canonical projection %&> —•

. It then follows that

As A± G ̂  , where y is an isometry,

( 2 ° ) I I ^
By Proposition 2.4,

TV

Σbji+oo)γAj(φ,+l) = γA+(φ9+l)
7=1
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and
γA(φ, -l) = γA-(φ, -1).

Furthermore, for any A e ffβ>, it is clear from (17) that γA(φ, +1) =
yA(φ, -1) and, therefore,

(21) \\γA\\ = m a x { | | ^ + | | , \\γA-\\}

We are finished by (19), (20) and (21). D

If γA = 0, then, CA\M\W = 0. The converse is also true:

PROPOSITION 2.6. An operator At^fa belongs to the kernel of γ if
and only if σΛ vanishes on Mp\Wp. Furthermore, we have:

(22) ker γ n kercr = &{&).

Proof. Let ^δ denote the C*-algebra generated by multiplications
by functions in Cg°(Ω) and by the operators of the form Z>Λ, where
D is a first order linear differential operator on Ω with smooth coef-
ficients of compact support. Given A$, one of these generators just
described, we can find χ e CQ°(R) such that χAo = AQ and then
γA^ = γχγAo = 0, by Proposition 2.4. So, we have ^δ Q kerγ .

Using the nomenclature of [2], ^ is the minimal comparison alge-
bra associated with the triple {Ω, dS, H} . It can be easily concluded
from [2], Lemma VII-1-2, that A e ^ belongs to 3^ if and only if
σA vanishes on M/>\W/>, proving that <9Q C ker γ, by Proposition 2.5.

Since kerσ = g^ and ker γ = 3$, the equality in (22) follows from
[2], Theorem VII-1-3. D

3. A Fredholm criterion and an application to differential oper-
ators. We will now give a necessary and sufficient criterion for an
iVxiV-matrix whose entries are operators in W&>, regarded as a bounded
operator on L 2 (Ω, C^), N > 1, to be Fredholm. Let us denote
L 2 (Ω, c*) by βfN and by &£ the C*-subalgebra of

V* := {((AJk));Ajk e%?9l<j,k< N}.

It is easy to see that the compact ideal of J2f(^N) coincides with the
matrices with entries in 3£{%?), i.e.,

))\Kjke

Let us define two symbols on &£:
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where A = ((Ajk))\<j,k<N € &JΪ. The following proposition follows
immediately from the definitions above and Proposition 2.6.

PROPOSITION 3.1. The γN-symbol of an operator Ae&β is identi-
cally zero if and only if its σN-symbol vanishes on Mp\Wp. Further-
more, we have:

(23) k e r σ Λ Γ n k e r y i v = ^ Λ Γ .

THEOREM 3.2. For an operator A = ((^jk))\<j ,k<N Ξ && t0 be
Fredholm, it is necessary and sufficient that

(i) σ% be invertible, i.e., the NxN-matrix ((σA (m))) beinvertible
for all m e Mp, and

(ii) γ% be invertible, i.e., the N x N-matrix, with entries in
((7A Λm))) be invertible for all me MSL.

Proof. Suppose that A is Fredholm and let B be such that 1 - AB
and 1 - BA are compact. We have B e Φg, since «^'/3tN is a
C*-subalgebra of ^(^N)/^N. We then get

<AB = OF-BA = Q and γ?-AB = γfLBA = O

and, hence,

1 = « = « and l = yZyg = ygyZ.
Conversely, suppose that (i) and (ii) above are satisfied. Since

yN: ^ / -> C ( M 5 L , N x TV-matrices with entries in ^(L2(Z)®L2(B)))
is a *-homomorphism (by Proposition 2.4), its range is a C*-algebra.
There must be then a 5 e &£ such that y^ = (γ%)~1. Since
1 - AB G kery^, 1 - o^a^ vanishes on M/>\Wp, by Proposition
3.1. As the map σ is surjective, so is σN. An operator Q e &J? can
therefore be found such that its symbol GQ equals the continuous
function vanishing on Mp\Wp

(σN\-l nN

\°A ) " σB
By Proposition 3.1 again, Q e kery^ and, then,

VN _ N

Since we also have

σ\-A(B+Q) ~ ϊ ~ σAσB - σAσQ — u — σ\-(B+Q)A '

the operator B + Q is an inverse for A, modulo a compact operator,
by equation (23). D
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In order to apply this result to differential operators, it is convenient
to conjugate the y-symbol with the discrete Fourier transform. We
define:

(24) Γ : ^ - S X B

A ^ TA{m) = F-{γA{m)Fd , m e MSL,

where Fd: L2(Sι) -> L2(Z), S1 = {eiθ θ e R}, was defined in (7),
and, as usual, Fd also denotes Fd ® /B .

Next we calculate Γ^ for the generators of ^ . It is obvious that,
for a GC°°(B),

(25) Γa(φ, ±1) = a, (e2** 9 ±1)

and, for b G CS(R),

(26) Γ ^ , ±1) = b(±oo), independent of φ.

For j G Z , F~{Y-jFd equals the operator multiplication by eijθ on

S1 = {eιθ, 0 G R}, and then, by (24) and (17),

(27) Γe+ιJί(φ , ±1) = ^ , for all (e2*1* , ±1) G

Let a G C(Ω) be of the form

(28) a(t, x) = α+(ί, x)/+(ί, x) + α-(ί, x)/-(ί , x)

where α± are continuous and 2π-periodic in t, ao G CO(Ω) and
/± G CS(R) satisfy χ±(±oc) = 1, χ + + χ- = 1. By the continuity of
Γ, (25), (26) and (27), it follows that

(29) Γa(φ , ±1) = a±(θ, x), for (e2πi* , ±1) G M 5 L .

Note that (28) gives Γ^ , YA and Γ^ , for Ap as defined on
page 283.

Now we calculate F~{K(φ - M)Fd , for φ G M and K(τ) = Λ(τ),
-τΛ(τ) or Z)^Λ(τ), which is needed for obtaining Γ^ , p = 4, 5, 6.
Let us use again that -Δ B has an orthonormal basis of eigenfunctions
wm, m G N, with eigenvalues 0 < λ\ < λι < , λm —> oo as
m —• oc, and define the unitary map

u i—• ( w m , W)WEN

By the spectral theorem, the conjugate U(l + (φ - j)2 - AB)~ι/2U~ι

equals the operator multiplication by (l + (φ-j)2+λm)~1/2 on L2(N),
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for each 'GZ, φ eR. The operator A(φ - M) e -2zχB acts on

by

A(φ - M)u = ((1 + (φ - j)2 + Δ B Γ 1 / 2 H y )y€z

and, thus,

(30) (/z ® l/)Λ(p - JI/)(/z (8) t/)" 1 = (1 + (φ - j)2 + λm)'xl2,

where, by (1 + (φ - j)2 + λm)~χl2, we now mean the corresponding
multiplication operator on L2(Z)®L2(N).

Let us adopt the notation:

(31) 1 + (φ - Dθ)
2 - ΔB := (Fd ® U)~l(l + (φ - j)2 + λm){Fd ® U).

It is easy to see that 1 + (φ - Dθ)
2 - ΔB is the unique self-adjoint

realization of the differential expression 1 + (φ + ifβ)2 -ΔB on S1 x B
(see Lemma 3.3). By (30) and (31) then, we obtain:

(32) (Fd ® hΓιλ(φ - M){Fd ® 7B) = (1 + (φ - Dθ)
2 - Δ B )" 1 / 2 ,

for every φ eR. Using that Yφ = F~le~i<i>eFd, φ e R and (17), it
follows that:

(33) Γ Λ ( p , ±1) = £Γ'>'(1 + (Dθ - φ)2 -

Since, for each j e z and each φ eR,

U(φ-j)(l + (φ-j)2-AB)-

equals the operator multiplication by

on L2(N), we obtain, in a way analogous to how (33) was obtained:

(34) TA4(φ, ±1) = e-W&e - φ)(l + (Dθ - φ)2 - Δ , ) " 1 / 2 ^ ,

Here we have assumed the notation:

:= (Fd ® UT\φ - y)(l + (φ - j)2 + λmγ'l2{Fd ® 17).

For the last type of generator, we need the following lemma.
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LEMMA 3.3. The subspace

{u e L2(Sι x B) (1 + (φ - DΘ)2 - AB)-ι/2u e C 0 0 ^ 1 x B)}

is dense in L2(βι x i ) , for every φ e R.

Proof. The statement is true for φ — 0, since

(7 ^ S> X ]B

is essentially self-adjoint on C 0 0 ^ 1 x B), by [2], Theorem IV-1-8, for
example. For φ e R,

is a Banach-space isomorphism, since it is unitarily equivalent to the
multiplication by the function on Z x N

which is bounded and bounded away from zero. D

For every v e C°°(Sι x B), it is clear that

DxFdv = FdDxυ,

where, on the right-hand side, Dx is regarded as a differential expres-
sion on S1 x 1 and, on the left-hand side, Dx acts, as a differential
operator on B, on each component Wj € C°°(B) of

w = (Wj)jez = Fdυ e L2(Z; L2(B)).

By Lemma 3.3, it therefore follows that

(35) Fd[Dx{\ + {φ- Dθ)
2 - Δ . ) - 1 / 2 ] ^ " 1

= Dx[Fd(\ + (φ- Dθ)
2 - Δ B ) " 1 / 2 ^ - 1 ] .

The right-hand side of (35) equals DzA(φ - M), by (32). We have,
hence:

(36) ΓAt(φ, ±1) = e-W[Dx(\ + (φ - Dθ)
2 - AB)-ι^2]e^θ.

Equations (29), (31), (32), (33), (34) and (36) prove:

PROPOSITION 3.4. The map Γ defined in (24) is given on the gen-
erators of Vg, (with m = {e2πif, ±1) € MSL and ΓA(φ, ±1) € -S^,χB,
S1 ={eiθ;θeR}) by:

Ta(φ, ±1) = a±(θ, x), for a as in (28)

ΓA(φ, ±1) = e-<>V + (Dθ - φ)2 - Δ , ) " 1 / 2 ^

Γ . 9_ (φ , ±1) = e-»θ(Dθ - φ)(l + (Dθ - φ)2 -
~'dtΛ

D A(φ, ±1) = e-^θDx(\ + (Dθ - φ)2 -
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REMARK 3.5. Because of the way Γ was defined, it is obvious that
condition (ii) of Theorem 3.2 can be replaced by

(ii;) The matrix Γ^(m) := ((Γ^ (m)))i<j 9k<N is invertible for all
m M

Our next and final objective is to find necessary and sufficient con-
ditions for a differential operator with semi-periodic coefficients on Ω
to be Fredholm. Most of the ideas and proofs in what follows are bor-
rowed from [2], §§VIL3 and IX.3, where the more general problem of
finding differential expressions within reach of a Comparison Algebra
is addressed.

PROPOSITION 3.6. Let L be an Mth order differential expression
on 1, with smooth coefficients. The operator LAM, defined initially
on the dense subspace Λ~M(Cg°(Ω)), can be extended to a bounded
operator A in &{%?). Moreover, we have that Ae%*> σA coincides
with the principal symbol of L on Wp (points of Mp over \t\ < oo)
and

ΓA(φ, ±1) = e-WLil + (Dθ - φ)2 -

Proof. It is easy to see that any Mth order differential expression on
a compact manifold equals a sum of products of at most M first-order
differential expressions. (See, for example, the proof of Proposition
VI-3-1 of [2].) It is therefore enough to consider L of the form

where D}•, j = 1, . . . , M, are first order expressions. For M = 1,
the proposition is true by Theorem 2.2 and Proposition 3.4.

Using that Λ2 = H~ι, H = 1 — ΔR — ΔB, it is easy to see that, for
u e Λ~2(Co°(Ω)), and D\ and Dι first order expressions, we have:

(37) D{D2A
2u = DιA

2D2u + DXK
2[H, D2]A2u.

The commutator [//, D2] is a second order expression on B and can
therefore be expressed as a sum of products of at most two first order
differential expressions:
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This shows that, on the dense subspace Λ ~ 2 ( C Q ° ( Ω ) ) , D1D2A2 equals
the operator

7=1

where D* denotes the formal adjoint of a differential expression D.
Since σΛ = 0, we get:

σDiD2A
2

which, restricted to Wp , coincides with the principal symbol of D\,
D2 , by Theorem 2.2. It also follows that:

X 2

7 = 1

By Proposition 3.4, we get:

= {DxKφ){D*2Kφ)* + DxKφ Σ(Ff ΛφTiGj Aφ)Aφ

7=1

where Aφ = Hφϊ/2, Hφ = 1 + (Dθ - φ)2 - Δ B . Since [H, D2] and
[Hφ, D2] are equal (as expressions on B), we get:

eiφθγ

DιD2AΨ' ±l)e-iψθ = DxK
2

φD2 + D,A2

φ[Hφ , D2]A2

φ = DXD2A
2

proving the proposition for L = D\D2.
Suppose now that the proposition is true for sums of products of at

most M first order differential expressions and let L — DχD2 Z>Λ/+I

be a product of first order expressions. Define: F = DXD2 and G =
DT, • • DM+\ . Using the formula

LAM+ιu = FA2GAM~ιu + FA2[H, G]AM+ιu,

the proposition follows for this L, by the same argument as
above. D
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Let {Uβ} be a finite atlas on B and {φβ} a subordinate partition
of unity, i.e. support φβ c Uβ. Let L be a differential operator on
Ω, acting on C^-valued functions, locally given on Uβ by

- — : = l - z r — • • • ( " | - a — > for α E N "
\idxj \ dxj V dxnj

where

and |α| = αi H h an . We will say that L has semi-periodic coeffi-
cients if the matrices

Aβj,a(t, x) := φβ(x)Aβj9a(t, x),

regarded as functions on Ω, have as entries functions of the type (28).
It is easy to see that this definition is independent of the choice of atlas
on B. We want to decide when

is a Fredholm operator, assuming that L has semi-periodic coeffi-
cients. Here M denotes the order of I , M = max{M7 + j , j =

We also denote by Λ the operator Λ ® IN on ̂ ( L 2 ( Ω , C^)),
where /# denotes the N x N identity matrix. Since Λ commutes
with §-t and L = ΣLβ , for Lβ := ψβL, we get:

= Σ «• *
After multiplying (\£_)a above by χβJ,a e C§°(ϋ», z i J > a W = l
for * in the support of Aβja, we still get the same operator and
/f^,y,α( χ ) ( 7 ^ ) α ί is n o w a differential expression defined on B. We
can therefore apply Proposition 3.6 and conclude that LAM e ̂ Jf.
Using, moreover, that σAM-\a\-j = 0 for \a\+j<M, we get:

AβJ,a(t,x)ξaτJ\ \t\ < oo.
β \a\+j=M

The right-hand side of the previous equation coincides with the princi-
pal symbol of L restricted to the co-sphere bundle of Ω. Invertibility
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of the σ-symbol is therefore equivalent to uniform ellipticity of L,
by Remark 2.3.

The operator-valued symbol ΓLAM is also given by Proposition 3.6
(and Proposition 3.4):

. a the 2π-periodic continuous functions such that

where we have used that Λ^ and ^ commute. We have denoted by

ontinuous functions such that

f. .oί^ * ) " " X-ίWβ,],<*(*> χ ) e C O ( Ω )

(See (28).)
Let lΛ(φ) denote the differential expressions on S1 x B

M

and define the operator

(39) L±{φ):=Y^L^{φ):HMiβι x B, C^) -* L2(Sι

Since Aφ is an isomorphism from

L^S 1 x l , C ^ ) onto HM(Sι x B , C ^ ) ,

the above considerations, together with Theorem 3.2 and Remark 3.5
prove the following theorem.

THEOREM 3.7. Let L denote an Mth order differential operator on
Ω of the form (38), with continuous semi-periodic coefficients, and let
L ± (^) denote the differential operators on Sx x B defined in (39).
Then

is Fredholm if and only if L is uniformly elliptic and ^(φ) are in-
vertiblefor all φ e [0, 1].
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