HARMONIC MAJORIZATION OF A SUBHARMONIC FUNCTION ON A CONE OR ON A CYLINDER

H. Yoshida
To Professor N. Yanagihara on his 60th birthday

For a subharmonic function u defined on a cone or on a cylinder which is dominated on the boundary by a certain function, we generalize the classical Phragmén-Lindelöf theorem by making a harmonic majorant of u and show that if u is non-negative in addition, our harmonic majorant is the least harmonic majorant. As an application, we give a result concerning the classical Dirichlet problem on a cone or on a cylinder with an unbounded function defined on the boundary.

1. Introduction. Let \mathbb{R} and \mathbb{R}_{+}be the sets of all real numbers and all positive real numbers, respectively. The m-dimensional Euclidean space is denoted by $\mathbb{R}^{m}(m \geq 2)$ and O denote the origin of it. By ∂S and \bar{S}, we denote the boundary and the closure of a set S in \mathbb{R}^{m}. Let $|P-Q|$ denote the Euclidean distance between two points $P, Q \in \mathbb{R}^{m}$. A point on $\mathbb{R}^{m}(m \geq 2)$ is represented by $(X, y), X=$ $\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)$. We introduce the spherical coordinates (r, Θ), $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m-1}\right)$, in \mathbb{R}^{m} which are related to the coordinates (X, y) by

$$
\begin{cases}x_{1}=r\left(\prod_{j=1}^{m-1} \sin \theta_{j}\right), \quad y=r \cos \theta_{1}, \\ x_{m+1-k}=r\left(\prod_{j=1}^{k-1} \sin \theta_{j}\right) \cos \theta_{k} & (m \geq 3,2 \leq k \leq m-1), \\ x_{1}=r \cos \theta_{1}, \quad y=r \sin \theta_{1} \quad(m=2),\end{cases}
$$

where $0 \leq r<+\infty$ and $-\frac{1}{2} \pi \leq \theta_{m-1}<\frac{3}{2} \pi(m \geq 2), 0 \leq \theta_{j} \leq \pi$ ($m \geq 3,1 \leq j \leq m-2$). The unit sphere and the surface area $2 \pi^{m / 2}\{\Gamma(m / 2)\}^{-1}$ of it are denoted by \mathbb{S}^{m-1} and $s_{m}(m \geq 2)$, respectively. The upper half unit sphere $\left\{(1, \Theta) \in \mathbb{S}^{m-1} ; 0 \leq \theta_{1}<\frac{\pi}{2}\right.$ (if $m=2$, then $\left.\left.0<\theta_{1}<\pi\right)\right\}$ is also denoted by $\mathbb{S}_{+}^{m-1}(m \geq 2)$. For simplicity, a point $(1, \Theta)$ on \mathbb{S}^{m-1} and a set $S, S \subset \mathbb{S}^{m-1}$, are often identified with Θ and $\{\boldsymbol{\Theta} ;(1, \boldsymbol{\Theta}) \in S\}$, respectively. For two
sets $E_{1} \subset \mathbb{R}_{+}$and $E_{2} \subset \mathbb{S}^{m-1}$, the set

$$
\left\{(r, \Theta) \in \mathbb{R}^{m} ; r \in E_{1},(1, \Theta) \in E_{2}\right\}
$$

in \mathbb{R}^{m} is denoted by $E_{1} \times E_{2}$. Given a domain Ω on $\mathbb{S}^{m-1}(m \geq 2)$, the set $\mathbb{R}_{+} \times \Omega$ is called a cone and denoted by $C(\Omega)$. The special cone $C\left(\mathbb{S}_{+}^{m-1}\right)(m \geq 2)$ called the half-space will be denoted by \mathbb{T}_{m}. For a positive number r, the set $\{r\} \times \mathbb{S}^{m-1}$ is denoted by $S_{m}(r)$ and $S_{m}(r) \cap \mathbb{T}_{m}$ by $S_{m}^{+}(r)$.

In our previous paper [12, Theorem 5.1], we gave a harmonic majorant of a certain subharmonic function $u(P)$ defined on a cone $C(\Omega)$ with a domain Ω having smooth boundary, such that

$$
\begin{equation*}
\varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P) \leq 0 \tag{1.1}
\end{equation*}
$$

for every $Q \in \partial C(\Omega)-\{O\}$. It can be regarded as one of the generalizations of the classical Phragmén-Lindelöf theorem. We also showed in [12, Corollary 5.2] that if the function $u(P)$ is non-negative in addition, our harmonic majorant is the least harmonic majorant. In this paper, we shall consider generalizations of these results, by replacing 0 of (1.1) with a general function $g(Q)$ on $\partial C(\Omega)-\{O\}$. They were motivated by the following Theorems A, B, C and D, which are special cases of our results (see Remark 5).

Nevanlinna [10] proved

Theorem A. Let $g(t)$ be a continuous function on \mathbb{R} such that

$$
\begin{equation*}
\int^{\infty} \frac{|g(t)|+|g(-t)|}{t^{2}} d t<+\infty \tag{1.2}
\end{equation*}
$$

and let $f(z)$ be a regular function on \mathbb{T}_{2} such that

$$
\varlimsup_{\operatorname{Im}(z)>0, z \rightarrow t} \log |f(z)| \leq g(t)
$$

for any $t \in \partial \mathbb{T}_{2}$. If

$$
\begin{equation*}
\underline{\lim _{r \rightarrow \infty}} \frac{1}{r} \int_{0}^{\pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \sin \theta d \theta=0 \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\log |f(z)| \leq \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{g(t)}{(t-x)^{2}+y^{2}} d t \tag{1.4}
\end{equation*}
$$

for any $z=x+i y \in \mathbb{T}_{2}$.

In the slightly different form from Theorem A, Boas [2, pp. 92-93] also stated

Theorem B. Make the same assumption as in Theorem A. If

$$
\underline{\lim }_{r \rightarrow \infty} \frac{1}{r} M_{\log |f|}(r)<+\infty \quad\left(M_{\log |f|}(r)=\sup _{|z|=r, \operatorname{Im}(z)>0} \log |f(z)|\right)
$$

then

$$
\begin{equation*}
\log |f(z)| \leq \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{g(t)}{(t-x)^{2}+y^{2}} d t+a_{f} y \tag{1.5}
\end{equation*}
$$

for any $z=x+i y \in \mathbb{T}_{2}$, where

$$
a_{f}=\frac{2}{\pi} \lim _{r \rightarrow \infty} \frac{1}{r} \int_{0}^{\pi} \log \left|f\left(r e^{i \theta}\right)\right| \sin \theta d \theta
$$

Keller [7] proved an analogous result for a harmonic function on \mathbb{T}_{3}.

Theorem C. Let $g(Q)$ be a continouus function on $\partial \mathbb{T}_{3}$ such that

$$
\begin{aligned}
\int_{r^{-2}\left(\int_{-\pi / 2}^{3 \pi / 2}\left|g\left(r, \frac{\pi}{2}, \theta_{2}\right)\right| d \theta_{2}\right) d r}<+\infty & \\
& \left(Q=\left(r, \frac{\pi}{2}, \theta_{2}\right) \in \partial \mathbb{T}_{3}\right) .
\end{aligned}
$$

Let $h(P)$ be a harmonic function on \mathbb{T}_{3} such that

$$
\varlimsup_{P \in \mathrm{~T}_{3}, P \rightarrow Q} h(P) \leq g(Q)
$$

for any $Q \in \partial \mathbb{T}_{3}$.
(I) There exists

$$
b_{h^{+}}=\lim _{r \rightarrow \infty} \frac{1}{r} \int_{S_{3}^{+}(r)} h^{+}(P) \cos \theta_{1} d \sigma_{\widehat{P}}, \quad 0 \leq b_{h^{+}} \leq+\infty
$$

where $h^{+}(P)=\max \{h(P), 0\} \quad\left(P \in S_{3}^{+}(r)\right)$ and $d \sigma_{\widehat{P}}=\sin \theta_{1} d \theta_{1} d \theta_{2}$ is the surface element on \mathbb{S}^{2} at the radial projection $\widehat{P}=\left(1, \theta_{1}, \theta_{2}\right)$ of $P=\left(r, \theta_{1}, \theta_{2}\right) \in S_{3}^{+}(r)$.
(II) For any $P \in \mathbb{T}_{3}$,

$$
h(P) \leq \frac{y}{2 \pi} \int_{\partial \mathbb{T}_{3}} g(Q)|P-Q|^{-3} d Q+\frac{3}{2 \pi} b_{h^{+}} y,
$$

where $d Q$ is the area element on $\partial \mathbb{T}_{3}$.

With respect to the least harmonic majorant of a subharmonic function on \mathbb{T}_{m}, Kuran [8, Theroem 3] proved

Theorem D. Let $c<0$ and let $u(X, y)$ be subharmonic on

$$
\left\{(X, y) \in \mathbb{R}^{m} ; X \in \mathbb{R}^{m-1}, y>c\right\}
$$

such that $u \geq 0$ on \mathbb{T}_{m}.
(I) If

$$
\begin{equation*}
\int_{\mathbb{R}^{m-1}}\left(1+|X|^{2}\right)^{-1 / 2 m} u(X, 0) d X<+\infty \tag{1.6}
\end{equation*}
$$

then there exists the limit

$$
l_{u}=\lim _{r \rightarrow \infty} 2 m s_{m}^{-1} r^{-m-1} \int_{S_{m}^{\dagger}(r)} y u(Q) d \sigma_{Q}, \quad 0 \leq l_{u} \leq+\infty,
$$

where $|X|=\sqrt{x_{1}^{2}+\cdots+x_{m-1}^{2}}, d X$ is the $(m-1)$-dimensional volume element at $X=\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{R}^{m-1}(m \geq 2)$ and $d \sigma_{Q}$ is the surface element of the sphere $S_{m}(r)$ at $Q=(X, y) \in S_{m}^{+}(r)$. Further if

$$
\begin{equation*}
l_{u}<+\infty, \tag{1.7}
\end{equation*}
$$

then

$$
\begin{align*}
& l_{u} y+2 s_{m}^{-1} y \int_{\mathbb{R}^{m-1}}|P-Q|^{-m} u(X, 0) d X \tag{1.8}\\
&\left(P=(X, y) \in \mathbb{T}_{m}, Q=(X, 0) \in \partial \mathbb{T}_{m}\right)
\end{align*}
$$

is the least harmonic majorant of $u(P)$ on \mathbb{T}_{m}.
(II) If u possesses a harmonic majorant on \mathbb{T}_{m}, then (1.6) and (1.7) hold.

As an application, we shall give a result concerning the classical Dirichlet problem on a cone with an unbounded function defined on the boundary. Our method in this paper can be applied to a subharmonic function $u(X, y)$ defined on an infinite cylinder

$$
\left\{(X, y) \in \mathbb{R}^{m} ; X \in D, y \in \mathbb{R}\right\}
$$

where D is a bounded domain in $\mathbb{R}^{m-1}(m \geq 2)$. We shall state some results in the cylindrical case.
2. Preliminaries. Let Λ_{m} be the spherical part of the Laplace operator

$$
\Delta_{m}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{m-1}^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad(m \geq 2)
$$

relative to the system of spherical coordinates:

$$
\Delta_{m}=\frac{m-1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+r^{-2} \Lambda_{m}
$$

Given a domain Ω on \mathbb{S}^{m-1}, consider the Dirichlet problem

$$
\begin{align*}
\left(\Lambda_{m}+\lambda\right) F=0 & \text { on } \Omega, \tag{2.1}\\
F=0 & \text { on } \partial \Omega .
\end{align*}
$$

We denote the least positive eigenvalue of it by $\lambda_{\Omega}^{(1)}$ and write $f_{\Omega}(\Theta)$ for the normalized positive eigenfunction corresponding to $\lambda_{\Omega}^{(1)}$, when they exist. Thus

$$
\begin{equation*}
\int_{\Omega} f_{\Omega}^{2}(\Theta) d \sigma_{\Theta}=1 \tag{2.2}
\end{equation*}
$$

where $d \sigma_{\Theta}$ is the surface element on \mathbb{S}^{m-1}. Two solutions of the equation

$$
t^{2}+(m-2) t-\lambda_{\Omega}^{(1)}=0
$$

are denoted by $\alpha_{\Omega},-\beta_{\Omega}\left(\alpha_{\Omega}, \beta_{\Omega}>0\right)$.
Let $\Phi(r, \Theta)$ be a function on $C(\Omega)$. For any given $r\left(r \in \mathbb{R}_{+}\right)$, the integral

$$
\int_{\Omega} \Phi(r, \Theta) f_{\Omega}(\Theta) d \sigma_{\Theta}
$$

is denoted by $N_{\Phi}(r)$, when it exists. The finite or infinite limits

$$
\lim _{r \rightarrow \infty} r^{-\alpha_{\Omega}} N_{\Phi}(r) \text { and } \lim _{r \rightarrow 0} r^{\beta_{\Omega}} N_{\Phi}(r)
$$

are denoted by μ_{Φ} and η_{Φ}, respectively, when they exist. The maximum modulus $M_{\Phi}(r)(0<r<+\infty)$ of $\Phi(r, \Theta)$ is defined as

$$
M_{\Phi}(r)=\sup _{\Theta \in \Omega} \Phi(r, \Theta)
$$

We denote $\max \{\Phi(P), 0\}$ and $\max \{-\Phi(P), 0\}$ by $\Phi^{+}(P)$ and $\Phi^{-}(P)$, respectively.

This paper is essentially based on some results in Yoshida [11]. Hence, in the subsequent consideration, we make the same assumption on Ω as in it: if $m \geq 3$, then Ω is a $C^{2, \sigma_{-} \text {-domain }(0<\sigma<1) ~}$ on S^{m-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g., see Gilbarg and Trudinger [4, pp. 88-89] for the definition of $C^{2,} \sigma_{\text {-domain). Then }}$ there exist two positive constants L_{1} and L_{2} such that

$$
\begin{equation*}
L_{1} \operatorname{dis}(\Theta, \partial \Omega) \leq f_{\Omega}(\Theta) \leq L_{2} \operatorname{dis}(\Theta, \partial \Omega) \quad(\Theta \in \Omega) \tag{2.3}
\end{equation*}
$$

(by modifying Miranda's method [9, pp. 7-8], we can prove this inequality).

Remark 1. Let $\Omega=\mathbb{S}_{+}^{m-1}$. Then $\alpha_{\Omega}=1, \beta_{\Omega}=m-1$ and

$$
\begin{aligned}
f_{\Omega}(\Theta) & =\left(\begin{array}{cc}
\left(2 m s_{m}^{-1}\right)^{1 / 2} \cos \theta_{1} & (m \geq 3) \\
\frac{2}{\pi} \sin \theta & (m=2)
\end{array}\right) \\
& =\left(2 m_{m}^{-1}\right)^{1 / 2} \frac{y}{r} \quad(m \geq 2) .
\end{aligned}
$$

Let $X=\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)$ be a point of $\mathbb{R}^{m-1}(m \geq 2)$. Given a bounded domain D in $\mathbb{R}^{m-1}(m \geq 2)$, consider the Dirichlet problem

$$
\begin{aligned}
\left(\Delta_{m-1}+\lambda\right) F=0 & \text { on } D, \\
F=0 & \text { on } \partial D .
\end{aligned}
$$

Let λ_{D} be the least positive eigenvalue of it and let $f_{D}(X)$ be the normalized eigenfunction corresponding to λ_{D}. As in the conical case, we assume that the boundary ∂D of $D \subset \mathbb{R}^{m-1}(m \geq 3)$ is sufficiently smooth. The set

$$
D \times \mathbb{R}=\left\{(X, y) \in \mathbb{R}^{m} ; X \in D, y \in \mathbb{R}\right\}
$$

in \mathbb{R}^{m} is called a cylinder and denoted by $\Gamma(D)(m \geq 2)$. Let $\Psi(X, y)$ be a function on $\Gamma(D)$. The integral

$$
\int_{D} \Psi(X, y) f_{D}(X) d X
$$

of $\Psi(X, y)$ is denoted by $N_{\Psi}^{\Gamma}(y)$ when it exists, where $d X$ denotes the $(m-1)$-dimensional volume element. The finite or infinite limits

$$
\lim _{y \rightarrow \infty} e^{-\sqrt{\lambda_{D}} y} N_{\Psi}(y) \quad \text { and } \quad \lim _{y \rightarrow-\infty} e^{\sqrt{\lambda_{D}} y} N_{\Psi}(y)
$$

are denoted by μ_{Ψ}^{Γ} and η_{Ψ}^{Γ}, respectively, when they exist.
Let $G_{\Omega}(P, Q)$ (resp. $G_{D}(P, Q)$) be the Green function of a cone $C(\Omega)$ (resp. a cylinder $\Gamma(D)$) with pole at $P \in C(\Omega)$ (resp. $P \in$ $\Gamma(D)$), and let $\partial G_{\Omega}(P, Q) / \partial n$ (resp. $\left.\partial G_{D}(P, Q) / \partial n\right)$ be the differentiation at $Q \in \partial C(\Omega)-\{O\}$ (resp. $Q \in \partial \Gamma(D)$) along the inward normal into $C(\Omega)$ (resp. $\Gamma(D)$). It follows from our assumption on Ω (resp. D) that $\partial G_{\Omega}(P, Q) / \partial n$ (resp. $\left.\partial G_{D}(P, Q) / \partial n\right)$ is continuous on $\partial C(\Omega)-\{O\}$ (resp. $\partial \Gamma(D))$ (see Gilbarg and Trudinger [4, Theorem 6.15]).

Let $g(Q)$ be a locally integrable function on $\partial C(\Omega)-\{O\}$ (resp. $\partial \Gamma(D))$ such that

$$
\begin{align*}
& \int^{+\infty} r^{-\alpha_{\Omega}-1}\left(\int_{\partial \Omega}|g(r, \Theta)| d \sigma_{\Theta}\right) d r<+\infty \tag{2.4}\\
& \int_{0} r^{\beta_{\Omega}-1}\left(\int_{\partial \Omega}|g(r, \Theta)| d \sigma_{\Theta}\right) d r<+\infty
\end{align*}
$$

(resp.

$$
\begin{equation*}
\left.\int_{-\infty}^{+\infty} e^{-\sqrt{\lambda_{D}}|y|}\left(\int_{\partial D}|g(X, y)| d \sigma_{X}\right) d y<+\infty\right) \tag{2.5}
\end{equation*}
$$

where $d \sigma_{\Theta}$ (resp. $d \sigma_{X}$) is the surface area element of $\partial \Omega$ (resp. ∂D) at $\Theta \in \partial \Omega$ (resp. $X \in \partial D$). If $m=2$ and $\Omega=(\gamma, \delta)$ (resp. $D=(\gamma, \delta))$, then

$$
\begin{aligned}
\int_{\partial \Omega}|g(r, \Theta)| & d \sigma_{\Theta} \quad\left(\text { resp } . \int_{\partial D}|g(X, y)| d \sigma_{X}\right) \\
& =|g(r, \gamma)|+|g(r, \delta)| \quad(\text { resp } \cdot|g(\gamma, y)|+|g(\delta, y)|)
\end{aligned}
$$

The Poisson integral $\mathrm{PI}_{g}(P)$ (resp. $\mathrm{PI}_{g}^{\Gamma}(P)$) of g relative to $C(\Omega)$ (resp. $\Gamma(D)$) is defined as follows:

$$
\begin{aligned}
\operatorname{PI}_{g}(P)= & \frac{1}{c_{m}} \int_{\partial C(\Omega)-\{O\}} g(Q) \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \\
& \left(\operatorname{resp} \cdot \operatorname{PI}_{g}^{\Gamma}(P)=\frac{1}{c_{m}} \int_{\partial \Gamma(D)} g(Q) \frac{\partial}{\partial n} G_{D}(P, Q) d \sigma_{Q}\right),
\end{aligned}
$$

where

$$
c_{m}= \begin{cases}2 \pi & (m=2) \\ (m-2) s_{m} & (m \geq 3)\end{cases}
$$

and $d \sigma_{Q}$ is the surface area element on $\partial C(\Omega)-\{O\}$ (resp. $\partial \Gamma(D)$).
Remark 2. Let $\Omega=\mathbb{S}_{+}^{m-1}$. Then

$$
G_{\Omega}(P, Q)= \begin{cases}|P-Q|^{2-m}-|P-\bar{Q}|^{2-m} & (m \geq 3) \\ -\log |P-Q|+\log |P-\bar{Q}| & (m=2),\end{cases}
$$

where $\bar{Q}=(x,-y)$, that is, \bar{Q} is the mirror image of $Q=(x, y)$ with respect to $\partial \mathbb{T}_{m}$. Hence, for two points $P=(X, y) \in \mathbb{T}_{m}$ and $Q \in \partial \mathbb{T}_{m}$,

$$
\frac{\partial}{\partial n} G_{\Omega}(P, Q)= \begin{cases}2(m-2)|P-Q|^{-m} y & (m \geq 3) \\ 2|P-Q|^{-2} y & (m=2)\end{cases}
$$

3. Statement of results. The following Theorem 1 is a fundamental result in this paper.

Theorem 1. Let $g(Q)$ be a locally integrable function on $\partial C(\Omega)-$ $\{O\}$ satisfying (2.4) and let $u(P)$ be a subharmonic function on $C(\Omega)$ such that

$$
\begin{equation*}
\varlimsup_{P \in C(\Omega), P \rightarrow Q}\left\{u(P)-\mathrm{PI}_{g}(P)\right\} \leq 0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varlimsup_{P \in C(\Omega), P \rightarrow Q}\left\{u^{+}(P)-\mathrm{PI}_{|g|}(P)\right\} \leq 0 \tag{3.2}
\end{equation*}
$$

for any $Q \in \partial C(\Omega)-\{O\}$. Then all of the limits $\mu_{u^{+}}, \eta_{u^{+}}, \mu_{u}$ and $\eta_{u}\left(0 \leq \mu_{u^{+}}, \eta_{\mu^{+}} \leq+\infty,-\infty<\mu_{u}, \eta_{u} \leq+\infty\right)$ exist, and if

$$
\begin{equation*}
\mu_{u^{+}}<+\infty \quad \text { and } \quad \eta_{u^{+}}<+\infty, \tag{3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
u(P) \leq \mathrm{PI}_{g}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\boldsymbol{\Theta}) \tag{3.4}
\end{equation*}
$$

for any $P=(r, \Theta) \in C(\Omega)$.
Remark 3. It is evident that (3.3) follows from

It is proved in Yoshida [12, Remark 9.1] that if

$$
\varlimsup_{P \in C_{m}(\Omega), P \rightarrow Q} u(P) \leq 0,
$$

for any $Q \in \partial C(\Omega)-\{O\},(3.5)$ also follows from (3.3).
Remark 4. If $u(P)$ is a positive harmonic function on $C(\Omega)$, then (3.3) is always satisfied. To see it, apply (I) of Lemma 2 (which will be stated in $\S 4)$ to $-u(P)$. We immediately obtain that $-\infty<$ $\mu_{-u}, \eta_{-u} \leq+\infty$, so that $\mu_{u^{+}}=\mu_{u}<+\infty$ and $\eta_{u^{+}}=\eta_{u}<+\infty$.

The following Theorem 2 generalizes a result of Yoshida [11, Theorem 5].

Theorem 2. Let $g(Q)$ be a continuous function on $\partial C(\Omega)-\{\bar{O}\}$ satisfying (2.4) and let $u(P)$ be a subharmonic function on $C(\Omega)$ such that

$$
\begin{equation*}
\varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P) \leq g(Q) \tag{3.6}
\end{equation*}
$$

for any $Q \in \partial C(\Omega)-\{O\}$. Then all of the limits $\mu_{u^{+}}, \eta_{u^{+}}, \mu_{u}$ and $\eta_{u}\left(0 \leq \mu_{u^{+}}, \eta_{u^{+}} \leq+\infty,-\infty<\mu_{u}, \eta_{u} \leq+\infty\right)$ exist, and if

$$
\begin{equation*}
\mu_{u^{+}}<+\infty \quad \text { and } \eta_{u^{+}}<+\infty \tag{3.7}
\end{equation*}
$$

then

$$
\begin{equation*}
u(P) \leq \mathrm{PI}_{g}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta) \tag{3.8}
\end{equation*}
$$

for any $P=(r, \Theta) \in C(\Omega)$.

Corollary 1. Let $g(Q)$ be a continuous function on $\partial \mathbb{T}_{m}(m \geq 2)$ such that

$$
\begin{equation*}
\int^{+\infty} r^{-2}\left(\int_{\partial s_{+}^{m-1}}|g(r, \Theta)| d \sigma_{\Theta}\right) d r<+\infty \tag{3.9}
\end{equation*}
$$

Let $u(P)$ be a subharmonic function on \mathbb{T}_{m} such that

$$
\begin{equation*}
\varlimsup_{P \in \mathbb{T}_{m}, P \rightarrow Q} u(P) \leq g(Q) \tag{3.10}
\end{equation*}
$$

for any $Q \in \partial \mathbb{T}_{m}$. Then both of the limits $\mu_{u^{+}}\left(0 \leq \mu_{u^{+}} \leq+\infty\right)$ and $\mu_{u}\left(-\infty<\mu_{u} \leq+\infty\right)$ exist, and

$$
\begin{equation*}
u(P) \leq 2 s_{m}^{-1} \int_{\partial \mathbb{T}_{m}} g(Q)|P-Q|^{-m} d \sigma_{Q}+\left(2 m s_{m}^{-1}\right)^{1 / 2} \mu_{u^{+}} y \tag{3.11}
\end{equation*}
$$

for any $P=(X, y) \in \mathbb{T}_{m}$. If

$$
\varliminf_{r \rightarrow \infty} r^{-1} M_{u}(r)<+\infty
$$

then

$$
\begin{equation*}
u(P) \leq 2 s_{m}^{-1} \int_{\partial \mathbb{T}_{m}} g(Q)|P-Q|^{-m} d \sigma_{Q}+\left(2 m s_{m}^{-1}\right)^{1 / 2} \mu_{u} y \tag{3.12}
\end{equation*}
$$

for any $P=(X, y) \in \mathbb{T}_{m}$.
REMARK 5. Let $f(z)$ be a regular function on \mathbb{T}_{2}. Put $m=2$ and $u(P)=\log |f(z)|$ in Corollary 1. Then (3.9) is equal to (1.2). Since (1.3) gives

$$
\mu_{\log ^{+}|f|}=0
$$

(1.4) follows from (3.11). Since

$$
\mu_{\log |f|}=\frac{2}{\pi} \lim _{r \rightarrow \infty} \frac{1}{r} \int_{0}^{\pi} \log \left|f\left(r e^{i \theta}\right)\right| \sin \theta d \theta=\frac{\pi}{2} a_{f}
$$

(3.12) gives (1.5). Thus we obtain Theorems A and B.

Next, to obtain Theorem C, put $m=3$ and $u=h$ in Corollary 1. From (3.11), we have

$$
h(P) \leq \frac{y}{2 \pi} \int_{\partial \mathrm{T}_{3}} g(Q)|P-Q|^{-3} d \sigma_{\Theta}+\left(\frac{3}{2 \pi}\right)^{1 / 2} \mu_{h^{+}} y
$$

for any $P=(X, y) \in \mathbb{T}_{3}$. Since

$$
\mu_{h^{+}}=\left(\frac{3}{2 \pi}\right)^{1 / 2} b_{h^{+}}
$$

(Remark 1 with $m=3$), we immediately obtain Theorem C.
Example 1. Let $\lambda_{\Omega}^{(2)}$ be the second least positive eigenvalue of (2.1) and let $F_{\Omega}(\Theta)$ be a normalized eigenfunction corresponding to $\lambda_{\Omega}^{(2)}$. Let A_{Ω} be the positive solution of the equation

$$
t^{2}+(m-2) t-\lambda_{\Omega}^{(2)}=0
$$

The harmonic function

$$
H(P)=r^{A_{\Omega}} F_{\Omega}(\Theta) \quad\left(P=(r, \Theta) \in C_{m}(\Omega)\right)
$$

on $\partial C(\Omega)$ has the property

$$
\begin{equation*}
\lim _{P \in C(\Omega), P \rightarrow Q} H(P)=0, \tag{3.13}
\end{equation*}
$$

for any $Q \in \partial C(\Omega)-\{O\}$. Since $\lambda_{\Omega}^{(2)}>\lambda_{\Omega}^{(1)}$, it is evident that

$$
\lim _{r \rightarrow \infty} r^{-\alpha_{\Omega}} M_{H}(r)=+\infty .
$$

Hence it follows from Remark 3 that

$$
\begin{equation*}
\mu_{H^{+}}=+\infty . \tag{3.14}
\end{equation*}
$$

This $H(P)$ shows that (3.6) with a continuous function on $\partial C(\Omega)-$ $\{O\}$ satisfying (2.4) does not always give (3.7). Further, let $g(Q)$ be a continuous function on $\partial C(\Omega)-\{O\}$ satisfying (2.4). Put

$$
I(P)=H(P)+\mathrm{PI}_{g}(P)
$$

on $C(\Omega)$. Then we see from (3.13) that $I(P)$ is a harmonic function on $C(\Omega)$ satisfying

$$
\lim _{P \in C(\Omega), P \rightarrow Q} I(P)=g(Q)
$$

for any $Q \in \partial C(\Omega)-\{O\}$ (see Lemma 3 and Lemma 6). Hence (3.6) is valid for the function $g(Q)$ on $\partial C(\Omega)-\{O\}$. However it is easy to see that (3.8) is not true. Since $F_{\Omega}(\Theta)$ is orthogonal to $f_{\Omega}(\Theta)$ and

$$
N_{H}(r)=0 \quad(0<r<+\infty)
$$

it follows from Lemma 3 that

$$
\mu_{I}=\mu_{H}+\mu_{\mathrm{PI}_{g}}=0, \quad \eta_{I}=\eta_{H}+\eta_{\mathrm{PI}_{g}}=0
$$

Since

$$
I^{+}(P) \geq H^{+}(P)-\mathrm{PI}_{|g|}(P)
$$

on $C(\Omega)$, we see from (3.14) and Lemma 3 that

$$
\mu_{I^{+}} \geq \mu_{H^{+}}=+\infty
$$

Hence this $I(P)$ shows that (3.8) does not always follow without (3.7).
Example 2. There exists a subharmonic function $u(P)$ such that (3.7) is satisfied and (3.6) holds for no locally integrable function $g(Q)$ on $\partial C(\Omega)-\{O\}$ satisfying (2.4). Let ξ be a number satisfying $0<$ $\xi<\frac{\pi}{2}$ and let

$$
\Omega=\left\{\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m-1}\right) \in \mathbb{S}^{m-1} ;\left|\theta_{1}\right|<\xi<\frac{\pi}{2}\right\}
$$

Consider the subharmonic function

$$
v(r, \Theta)=r^{\alpha} \Omega
$$

on $C(\Omega)$ and any locally integrable function $g(Q)$ on $\partial C(\Omega)-\{O\}$ such that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} v(r, \Theta) \leq g(Q)
$$

at every $Q=(r, \Theta) \in \partial C(\Omega)-\{O\}$. Then we always have

$$
\int^{+\infty} r^{-\alpha_{\Omega}-1}\left(\int_{\partial \Omega}|g(r, \Theta)| d \sigma_{\Theta}\right) d r=+\infty
$$

On the other hand, we have that

$$
\lim _{r \rightarrow \infty} r^{-\alpha_{\Omega}} M_{v}(r)=1
$$

so that $\mu_{v^{+}}<+\infty$.
Let W be a domain in \mathbb{R}^{m} and let $g(Q)$ be a function on ∂W. A harmonic function on W satisfying

$$
\lim _{P \in W, P \rightarrow Q} h(P)=g(Q)
$$

for any $Q \in \partial W$ is called the solution of the classical Dirichlet problem on W with g. In comparison with a result of Keller [7, Satz in p. 25], from Theorem 2 we obtain the following Theorem 3 which gives a kind of uniqueness of solutions of the classical Dirichlet problem on an unbounded domain $C(\Omega)$. It must be remarked that the classical Dirichlet problem on unbounded domains has no unique solution (e.g. see Helms [6, p. 42 and p. 158]).

Theorem 3. Let $g(Q)$ be a continuous function on $\partial C(\Omega)-\{O\}$ satisfying (2.4)
(I) The Poisson integral $\mathrm{PI}_{g}(P)$ is a solution of the classical Dirichlet problem on $C(\Omega)$ with g.
(II) Let $h(P)$ be any solution of the classical Dirichlet problem on $C(\Omega)$ with g. Then all of the limits $\mu_{h}, \eta_{h}\left(-\infty<\mu_{h}, \eta_{h} \leq+\infty\right)$, $\mu_{|h|}$ and $\eta_{|h|}\left(0 \leq \mu_{|h|}, \eta_{|h|} \leq+\infty\right)$ exist, and if

$$
\begin{equation*}
\mu_{|h|}<+\infty \quad \text { and } \quad \eta_{|h|}<+\infty, \tag{3.15}
\end{equation*}
$$

then

$$
\begin{equation*}
h(P)=\operatorname{PI}_{g}(P)+\left(\mu_{h} r^{\alpha_{\Omega}}+\eta_{h} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta) \tag{3.16}
\end{equation*}
$$

for any $P=(r, \Theta) \in C(\Omega)$.

Remark 6. The harmonic function $I(P)$ in Example 1 is one of the solutions of the classical Dirichlet problem on $C(\Omega)$, which do not satisfy (3.15). In fact, (3.14) gives

$$
\mu_{|I|}=\mu_{\left|\mathrm{PI}_{g}+H\right|}=+\infty,
$$

because

$$
\mu_{\left|\mathrm{PI}_{g}\right|}=0
$$

from Lemma 3 and

$$
\mu_{\left|\mathrm{PI}_{g}+H\right|} \geq \mu_{|H|}-\mu_{\left|\mathrm{PI}_{g}\right|} \geq \mu_{H^{+}}-\mu_{\left|\mathrm{PI}_{g}\right|}=\mu_{H^{+}} .
$$

Corollary 2. Let $g(Q)$ be a continuous function on $\partial C(\Omega)-\{O\}$ satisfying (2.4). If $h(P)$ is a positive harmonic function on $C(\Omega)$ which is the solution of the classical Dirichlet problem on $C(\Omega)$ with g, then (3.16) holds.

The following Theorem 4 generalizes a result of Yoshida [12, Corollary 5.2].

Theorem 4. Let u be subharmonic on a domain containing $\overline{C(\Omega)}$ $\{O\}$ and let

$$
u \geq 0 \quad \text { on } C(\Omega) .
$$

(I) If $\tilde{u}=u \mid \partial C(\Omega)-\{O\}$ (the restriction of u to $\partial C(\Omega)-\{O\})$ satisfies (2.4), then both of the limits μ_{n} and $\eta_{u}\left(0 \leq \mu_{n}, \eta_{u} \leq+\infty\right)$ exist. Further, if

$$
\begin{equation*}
\mu_{u}<+\infty \quad \text { and } \quad \eta_{u}<+\infty \tag{3.17}
\end{equation*}
$$

then

$$
h_{u}(P)=\operatorname{PI}_{\tilde{u}}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta) \quad(P=(r, \Theta) \in C(\Omega))
$$

is the least harmonic majorant of u on $C(\Omega)$.
(II) If u possesses a harmonic majorant on $C(\Omega)$, then \tilde{u} satisfies (2.4) and (3.17) holds.

Remark 7. When $u(P)$ satisfies the additional condition

$$
\lim _{P \in C(\Omega), P \rightarrow Q} u(P)=0
$$

for any $Q \in \partial C(\Omega)-\{O\}$, we extend $u(P)$ to $\mathbb{R}^{m}-\{O\}$ by defining $u(P)=0$ for any $P \in \mathbb{R}^{m}-C(\Omega)-\{O\}$. Then $u(P)$ is subharmonic on $\mathbb{R}^{m}-\{O\}$. From Remark 3 and (I) of Theorem 4, we obtain a result of Yoshida [12, Corollary 5.2].

Corollary 3. Let u be subharmonic on a domain containing $\overline{\mathbb{T}_{m}}$ ($m \geq 2$) and let

$$
u \geq 0 \quad \text { on } \mathbb{T}_{m} .
$$

(I) If $\tilde{u}=u \mid \partial \mathbb{T}_{m}$ satisfies

$$
\begin{equation*}
\int^{+\infty} r^{-2}\left(\int_{\partial \mathrm{s}_{+}^{m-1}} \tilde{u}(r, \Theta) d \sigma_{\Theta}\right) d r<+\infty \tag{3.18}
\end{equation*}
$$

then the limit $\mu_{u}\left(0 \leq \mu_{u} \leq+\infty\right)$ exists. Further, if

$$
\begin{equation*}
\mu_{u}<+\infty, \tag{3.19}
\end{equation*}
$$

then

$$
\begin{equation*}
2 s_{m}^{-1} y \int_{\partial \mathbb{T}_{m}} \tilde{u}(Q)|P-Q|^{-m} d \sigma_{Q}+\left(2 m s_{m}^{-1}\right)^{1 / 2} \mu_{u} y \tag{3.20}
\end{equation*}
$$

is the least harmonic majorant of u on \mathbb{T}_{m}.
(II) If u possesses a harmonic majorant on \mathbb{T}_{m}, then \tilde{u} satisfies (3.18) and (3.19) holds.

Remark 8. Theorem D immediately follows from Corollary 3. In fact, u is bounded above on any compact subset of $\overline{T_{m}}$. Hence (3.19) is equivalent to (1.6). We also see from Remark 1 that

$$
l_{u}=\left(2 m s_{m}^{-1}\right)^{1 / 2} \mu_{u}
$$

and (3.20) is equal to (1.8).
Finally we shall state some results in the cylindrical case.
Theorem 5. Let $g(Q)$ be a continuous function on $\partial \Gamma(D)$ satisfying (2.5) and let $u(P)$ be a subharmonic function on $\Gamma(D)$ such that

$$
\varlimsup_{P \in \Gamma(D), P \rightarrow Q} u(P) \leq g(Q)
$$

for any $Q \in \partial \Gamma(D)$. Then all of the limits $\mu_{u^{+}}^{\Gamma} \eta_{u^{+}}^{\Gamma} \mu_{u}^{\Gamma}$ and $\eta_{u}^{\Gamma}(0 \leq$ $\left.\mu_{u^{+}}^{\Gamma}, \eta_{u^{+}}^{\Gamma} \leq+\infty,-\infty<\mu_{u}^{\Gamma}, \eta_{u}^{\Gamma} \leq+\infty\right)$ exist, and if

$$
\mu_{u^{+}}^{\Gamma}<+\infty \quad \text { and } \quad \eta_{u^{+}}^{\Gamma}<+\infty
$$

then

$$
u(P) \leq \operatorname{PI}_{g}(P)+\left(\mu_{u}^{\Gamma} e^{\sqrt{\lambda_{D} y}}+\eta_{u}^{\Gamma} e^{-\sqrt{\lambda_{D}} y}\right) f_{D}(X)
$$

for any $P=(X, y) \in \Gamma(D)$.

Theorem 6. Let $g(Q)$ be a continuous function on $\partial \Gamma(D)$ satisfying (2.5).
(I) The Poisson integral $\mathrm{PI}_{g}^{\Gamma}(P)$ is a solution of the classical Dirichlet problem on $\Gamma(D)$ with g.
(II) Let $h(P)$ be any solution of the classical Dirichlet problem on $\Gamma(D)$ with g. Then all of the limits $\mu_{h}^{\Gamma}, \eta_{h}^{\Gamma}\left(-\infty<\mu_{h}^{\Gamma}, \eta_{h}^{\Gamma} \leq+\infty\right)$, $\mu_{|h|}^{\Gamma}$ and $\eta_{|h|}^{\Gamma}\left(0 \leq \mu_{|h|}^{\Gamma}, \eta_{|h|}^{\Gamma} \leq+\infty\right)$ exist, and if

$$
\mu_{|h|}^{\Gamma}<+\infty \quad \text { and } \quad \eta_{|h|}^{\Gamma}<+\infty,
$$

then

$$
\begin{equation*}
h(P)=\operatorname{PI}_{g}^{\Gamma}(P)+\left(\mu_{h}^{\Gamma} e^{\sqrt{\lambda_{D}} y}+\eta_{h}^{\Gamma} e^{-\sqrt{\lambda_{D}} y}\right) f_{D}(X) \tag{3.21}
\end{equation*}
$$

for any $P=(X, y) \in \Gamma(D)$.

Corollary 4. Let $g(Q)$ be a continuous function on $\partial \Gamma(D)$ satisfying (2.5). If $h(P)$ is a positive harmonic function on $\Gamma(D)$ which
is the solution of the classical Dirichlet problem on $\Gamma(D)$ with g, then (3.21) holds.

ThEOREM 7. Let u be subharmonic on a domain containing $\overline{\Gamma(D)}$ and let

$$
u \geq 0 \quad \text { on } \Gamma(D)
$$

(I) If $\tilde{u}=u \mid \partial \Gamma(D)$ (the restriction of u to $\partial \Gamma(D)$) satisfies (2.5), then both of the limits μ_{u}^{Γ} and $\eta_{u}^{\Gamma}\left(0 \leq \mu_{u}^{\Gamma}, \eta_{u}^{\Gamma} \leq+\infty\right)$ exist. Further, if

$$
\begin{equation*}
\mu_{u}^{\Gamma}<+\infty \quad \text { and } \quad \eta_{u}^{\Gamma}<+\infty \tag{3.22}
\end{equation*}
$$

then

$$
\operatorname{PI}_{\tilde{u}}^{\Gamma}(P)+\left(\mu_{u}^{\Gamma} e^{\sqrt{\lambda_{D}} y}+\eta_{u}^{\Gamma} e^{-\sqrt{\lambda_{D}} y}\right) f_{D}(X) \quad(P=(X, y) \in \Gamma(D))
$$

is the least harmonic majorant of u on $\Gamma(D)$.
(II) If u possesses a harmonic majorant on $\Gamma(D)$, then \tilde{u} satisfies (2.5) and (3.22) holds.
4. Proof of Theorem 1. For a domain $\Omega \subset \mathbb{S}^{m-1} \quad(m \geq 2)$ and a number $t(0<t<+\infty)$, the sets

$$
\begin{aligned}
& \left\{(r, \Theta) \in \mathbb{R}^{m} ; 0<r \leq t, \Theta \in \partial \Omega\right\} \quad \text { and } \\
& \left\{(r, \Theta) \in \mathbb{R}^{m} ; r \geq t, \Theta \in \partial \Omega\right\}
\end{aligned}
$$

are denoted by $S_{\Omega}^{-}(t)$ and $S_{\Omega}^{+}(t)$, respectively. For two numbers t_{1} and $t_{2}\left(0<t_{1}<t_{2}<+\infty\right)$, let $S_{\Omega}\left(t_{1}, t_{2}\right)$ denote the set

$$
\left\{(r, \Theta) \in \mathbb{R}^{m} ; t_{1} \leq r \leq t_{2}, \quad \Theta \in \partial \Omega\right\}
$$

For a point $Q \in \mathbb{R}^{m}$, the set $\left\{P \in \mathbb{R}^{m} ;|P-Q|<\rho\right\} \quad(\rho>0)$ is represented by $U_{\rho}(Q)$. We write $G_{\Omega}^{j}(P, Q)$ for the Green function of

$$
C^{j}(\Omega)=\left(j^{-1}, j\right) \times \Omega \quad(j \text { is a positive integer })
$$

with pole at P. For an upper semicontinuous function $\phi(Q)$ on $\partial C^{j}(\Omega)$, the Perron-Wiener-Brelot solution of the Dirichlet problem with respect to $C^{j}(\Omega)$ is denoted by $H_{\phi}^{j}(P)$ (e.g. see Helms [6]). Since the harmonic measure $\omega(P, E)$ of $E \subset \partial C^{j}(\Omega)$ with respect to $C^{j}(\Omega)$ is equal to

$$
c_{m}^{-1} \int_{E} \frac{\partial}{\partial n} G_{\Omega}^{j}(P, Q) d \sigma_{Q}
$$

(see Dahlberg [3, Theorem 3]), we know that $H_{\phi}^{j}(P)$ is equal to

$$
c_{m}^{-1} \int_{S\left(j^{-1}, j\right) \cup\left(\left\{j^{-1}\right\} \times \Omega\right) \cup(\{j\} \times \Omega)} \phi(Q) \frac{\partial}{\partial n} G_{\Omega}^{j}(P, Q) d \sigma_{Q} .
$$

To prove Theorem 1, we need some lemmas.
Lemma 1. There exist two positive constants k_{1} and k_{2} (resp. k_{3} and $\left.k_{4}\right)$ such that

$$
\begin{aligned}
k_{1} r^{\alpha_{\Omega}} t^{-\beta_{\Omega}-1} f_{\Omega}(\Theta) \quad & \left(\text { resp. } k_{3} r^{-\beta_{\Omega} t^{\alpha_{\Omega}-1}} f_{\Omega}(\Theta)\right) \\
\leq \frac{\partial}{\partial n} G_{\Omega}(P, Q) \leq & \leq k_{2} r^{\alpha_{\Omega}} t^{-\beta_{\Omega}-1} f_{\Omega}(\Theta) \\
& \left(\text { resp. } k_{4} r^{-\beta_{\Omega}} t_{\Omega}^{\alpha_{\Omega}-1} f_{\Omega}(\Theta)\right)
\end{aligned}
$$

for $P=(r, \Theta) \in C(\Omega)$ and $Q=(t, \Phi) \in \partial C(\Omega)-\{O\}$ satisfying $0<r<\frac{1}{2} t$ (resp. $0<t<\frac{1}{2} r$).

Proof. These immediately follow from Azarin's inequalities [1, Lemma 1] and (2.3).

Lemma 2 (Yoshida [12, Theorem 3.31]). Let $u(P)$ be a subharmonic function on $C(\boldsymbol{\Omega})(m \geq 2)$ such that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P) \leq 0
$$

for any $Q \in \partial C(\Omega)-\{O\}$.
(I) Both of the limits μ_{u} and $\eta_{u}\left(-\infty<\mu_{u}, \eta_{u} \leq+\infty\right)$ exist.
(II) If $\eta_{u} \leq 0$, then $r^{-\alpha_{\Omega}} N_{u}(r)$ is non-decreasing on $(0,+\infty)$.
(III) If $\mu_{u} \leq 0$, then $r^{\beta_{\Omega}} N_{u}(r)$ is non-increasing on $(0,+\infty)$.

Lemma 3. Let $g(Q)$ be a locally integrable function on $\partial C(\Omega)-\{O\}$ satisfying (2.4). Then $\mathrm{PI}_{|g|}(P)$ (resp. $\mathrm{PI}_{g}(P)$) is a harmonic function on $C(\Omega)$ such that both of the limits $\mu_{\mathrm{PI}_{|g|}}$ and $\eta_{\mathrm{PI}_{|g|}}$ (resp. $\mu_{\mathrm{PI}_{g}}$ and $\eta_{\mathrm{PI}_{g}}$) exist, and

$$
\mu_{\mathrm{P}_{|g|}}=\eta_{\mathrm{PI}_{|g|}}=0 \quad\left(\text { resp. } \mu_{\mathrm{PI}_{g}}=\eta_{\mathrm{PI}_{g}}=0\right)
$$

Proof. Take any $P=(r, \Theta) \in C(\Omega)$ and two numbers R_{1}, R_{2} $\left(R_{1}<\frac{1}{2} r, R_{2}>2 r\right)$. Then by Lemma 1

$$
\begin{align*}
& c_{m}^{-1} \int_{S_{\Omega}^{+}\left(R_{2}\right)}|g(Q)| \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \tag{4.1}\\
& \quad \leq k_{5} \int_{R_{2}}^{+\infty} t^{-\alpha_{\Omega}-1}\left(\int_{\partial \Omega}|g(t, \Phi)| d \sigma_{\Phi}\right) d t
\end{align*}
$$

where $k_{5}=k_{2} c_{m}^{-1} r^{\alpha} f_{\Omega}(\Theta)$, and

$$
\begin{align*}
& c_{m}^{-1} \int_{S_{\Omega}^{-}\left(R_{1}\right)}|g(Q)| \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \tag{4.2}\\
& \quad \leq k_{6} \int_{0}^{R_{1}} t^{\beta_{\Omega}-1}\left(\int_{\partial \Omega}|g(t, \Phi)| d \sigma_{\Phi}\right) d t
\end{align*}
$$

where $k_{6}=k_{4} c_{m}^{-1} r^{-\beta_{\Omega}} f_{\Omega}(\Theta)$. Hence we see from (2.4) that $\mathrm{PI}_{|g|}(P)$ and $\mathrm{PI}_{g}(P)$ are finite for any $P \in C(\Omega)$. Thus $\mathrm{PI}_{g}(P)$ and $\mathrm{PI}_{|g|}(P)$ are harmonic on $C(\Omega)$.
Let $\nu_{R, P}^{(1)}(E)$ and $\nu_{R, P}^{(2)}(E) \quad(0<R<+\infty, P \in C(\Omega))$ be two positive measures on $\partial \dot{C}(\Omega)-\{O\}$ such that

$$
\nu_{R, P}^{(1)}(E)=c_{m}^{-1} \int_{E \cap S_{\Omega}^{+}(R)} \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q}
$$

and

$$
\nu_{R, P}^{(2)}(E)=c_{m}^{-1} \int_{E \cap S_{\Omega}^{-}(R)} \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q}
$$

for every Borel subset E of $\partial C(\Omega)-\{O\}$. Then $\mathrm{PI}_{|g|}(P)$ is the sum of two positive harmonic functions:

$$
\begin{equation*}
\mathbf{P I}_{|g|}(P)=h_{1, R}(P)+h_{2, R}(P), \tag{4.3}
\end{equation*}
$$

where

$$
h_{1, R}(P)=\int_{\partial C(\Omega)-\{O\}}|g| d \nu_{R, P}^{(1)}
$$

and

$$
h_{2, R}(P)=\int_{\partial C(\Omega)-\{O\}}|g| d \nu_{R, P}^{(2)} .
$$

Let $r_{1}\left(r_{1}>0\right)$ be a number and let ε be any positive number. From (2.4) we can choose a number $r^{*}\left(r^{*}>2 r_{1}\right)$ so large that

$$
\begin{equation*}
\int_{S_{\Omega}^{+}\left(r^{*}\right)}|g(t, \Phi)| t^{-\beta_{\Omega}-1} d \sigma_{Q} \leq \frac{c_{m}}{2 k_{2}} \varepsilon \quad(Q=(t, \Phi)) . \tag{4.4}
\end{equation*}
$$

By applying Lemma 1, we see from (4.4) that

$$
N_{h_{1, r^{*}}}\left(r_{1}\right) \leq \frac{1}{2} \varepsilon r_{1}^{\alpha_{\Omega}}
$$

and hence

$$
\begin{equation*}
r_{1}^{-\alpha_{\Omega}} N_{h_{1, r^{*}}}\left(r_{1}\right) \geq-\frac{1}{2} \varepsilon . \tag{4.5}
\end{equation*}
$$

Since

$$
r^{-\alpha_{\Omega}} N_{h_{1, r^{*}}}(r)
$$

is non-decreasing from (II) of Lemma 2, (4.5) gives that

$$
\begin{equation*}
0 \leq r^{-\alpha_{\Omega}} N_{h_{1, r^{*}}}(r) \leq \frac{1}{2} \varepsilon \quad\left(r \geq r_{1}\right) \tag{4.6}
\end{equation*}
$$

By using Lemma 1 again, we obtain that

$$
N_{h_{2, r^{*}}}(r) \leq k_{4} r^{-\beta_{\Omega}} \int_{0}^{r^{*}} t^{\beta_{\Omega}-1}\left(\int_{\partial \Omega}|g(t, \Phi)| d \Phi\right) d t \quad\left(r>2 r^{*}\right)
$$

By (2.4) we can choose a number $r_{2}\left(r_{2}>2 r^{*}\right)$ so large that

$$
\begin{equation*}
0 \leq r^{-\alpha_{\Omega}} N_{h_{2, r^{*}}}(r) \leq \frac{1}{2} \varepsilon \quad\left(r \geq r_{2}\right) \tag{4.7}
\end{equation*}
$$

We finally conclude from (4.3), (4.6) and (4.7) that

$$
0 \leq r^{-\alpha_{\Omega}} N_{\mathrm{P} \mathbf{I}_{|g|}}(r) \leq \varepsilon \quad\left(r \geq r_{2}\right)
$$

which gives the eixstence of $\mu_{\mathrm{PI}_{|g|}}$ and

$$
\begin{equation*}
\mu_{\mathrm{PI}_{|g|}}=0 . \tag{4.8}
\end{equation*}
$$

In the same way we can also prove the existence of $\eta_{\mathrm{PI}_{|g|}}$ and

$$
\begin{equation*}
\eta_{\mathrm{PI}_{|g|}}=0 . \tag{4.9}
\end{equation*}
$$

Since

$$
N_{\mathrm{PI}_{|g|}}(r) \geq N_{\left|\mathrm{PI}_{g}\right|}(r) \geq\left|N_{\mathrm{PI}_{g}}(r)\right| \quad(0<r<+\infty)
$$

it immediately follows from (4.8) and (4.9) that both limits $\mu_{\mathrm{PI}_{g}}$ and $\eta_{\mathrm{PI}_{g}}$ exist and are zero.

Lemma 4 (Yoshida [12, Theorem 5.1] and Remark 3). Let $u(P)$ be a subharmonic function on $C(\Omega)(m \geq 2)$ such that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P) \leq 0
$$

for every $Q \in \partial C(\Omega)-\{O\}$. If (3.3) is satisfied, then

$$
u(r, \Theta) \leq\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta) \quad \text { on } C(\Omega)
$$

Proof of Theorem 1. Consider two subharmonic functions

$$
U(P)=u(P)-\mathrm{PI}_{g}(P) \quad \text { and } \quad U^{*}(P)=u^{+}(P)-\mathrm{PI}_{|g|}(P)
$$

on $C(\Omega)$. Then we have from (3.1) and (3.2) that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} U(P) \leq 0 \quad \text { and } \quad \varlimsup_{P \in C(\Omega), P \rightarrow Q} U^{*}(P) \leq 0
$$

for every $Q \in \partial C(\Omega)-\{O\}$. Hence it follows from (I) of Lemma 2 that four limits $\mu_{U}, \eta_{U}, \mu_{U^{*}}$ and $\eta_{U^{*}}\left(-\infty<\mu_{U}, \eta_{U}, \mu_{U^{*}}, \eta_{U^{*}} \leq\right.$ $+\infty)$ exist. Since

$$
N_{U}(r)=N_{u}(r)-N_{\mathrm{PI}_{g}}(r) \quad \text { and } \quad N_{U^{*}}(r)=N_{u^{+}}(r)-N_{\mathrm{PI}_{|8|}}(r),
$$

Lemma 3 gives the existence of four limits $\mu_{u}, \eta_{u}, \mu_{u^{+}}$and $\eta_{u^{+}}$, and that

$$
\begin{equation*}
\mu_{U}=\mu_{u}, \quad \eta_{U}=\eta_{u}, \quad \mu_{U^{*}}=\mu_{u^{+}}, \quad \eta_{U^{*}}=\eta_{u^{+}} . \tag{4.10}
\end{equation*}
$$

Since

$$
U^{+}(P) \leq u^{+}(P)+\left(\mathrm{PI}_{g}\right)^{-}(P) \quad \text { on } C(\Omega),
$$

it also follows from Lemma 3 and (3.3) that

$$
\mu_{U^{+}} \leq \mu_{u^{+}}<+\infty, \quad \eta_{U^{+}} \leq \eta_{u^{+}}<+\infty .
$$

Hence by applying Lemma 4 to U, we can obtain from (4.10) that $U(P) \leq \mathrm{PI}_{g}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta) \quad$ on $C(\Omega) \quad(P=(r, \Theta))$, which is (3.4).
5. Proofs of Theorems 2 and 3, Corollaries 1 and 2. The following lemma is not obvious for unbounded functions.

Lemma 5. Let $g(Q)$ be an upper semicontinuous function on $\partial C(\Omega)$ $-\{O\}$ satisfying (2.4). Then

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} \operatorname{PI}_{g}(P) \leq g(Q)
$$

for any $Q \in \partial C(\Omega)-\{O\}$,
Proof. Let $Q^{*}=\left(r^{*}, \Theta^{*}\right)$ be any point of $\partial C(\Omega)-\{O\}$ and let ε be any positive number. Take a number $\delta\left(0<\delta<r^{*}\right)$. From (2.4), we can choose a number $R_{2}^{*}, R_{2}^{*}>2\left(r^{*}+\delta\right)$ (resp. $R_{1}^{*}, 0<R_{1}^{*}<$ $\left.\frac{1}{2}\left(r^{*}-\delta\right)\right)$ so large (resp. small) that

$$
\begin{aligned}
& \int_{R_{2}^{*}}^{+\infty} t^{-\alpha_{\Omega}-1}\left(\int_{\partial \Omega}|g(t, \Phi)| d \sigma_{\Phi}\right) d t<\frac{c_{m}}{8 k_{2} K_{\Omega}}\left(r^{*}+\delta\right)^{-\alpha_{\Omega}} \varepsilon \\
& \left(\text { resp. } \int_{0}^{R_{1}^{*}} t^{\beta_{\Omega}-1}\left(\int_{\partial \Omega}|g(t, \Phi)| d \sigma_{\Phi}\right) \left\lvert\, d t<\frac{c_{m}}{8 k_{4} K_{\Omega}}\left(r^{*}-\delta\right)^{\beta_{\Omega} \varepsilon}\right.\right),
\end{aligned}
$$

where

$$
K_{\Omega}=\max _{\Theta \in \Omega} f_{\Omega}(\Theta) .
$$

From (4.1) and (4.2), we obtain that

$$
\begin{equation*}
c_{m}^{-1} \int_{S_{\Omega}^{+}\left(R_{2}^{*}\right)}|g(Q)| \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q}<\frac{\varepsilon}{8} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{m}^{-1} \int_{S_{\Omega}^{-}\left(R_{\mathrm{t}}^{*}\right)}|g(Q)| \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q}<\frac{\varepsilon}{8} \tag{5.2}
\end{equation*}
$$

for any $P=(r, \Theta) \in C(\Omega) \cap U_{\delta}\left(Q^{*}\right)$. Let φ be a continuous function on $\partial C(\Omega)-\{O\}$ such that $0 \leq \varphi \leq 1$ on $\partial C(\Omega)-\{O\}$ and

$$
\varphi= \begin{cases}1 & \text { on } S_{\Omega}\left(R_{1}^{*}, R_{2}^{*}\right), \\ 0 & \text { on } S_{\Omega}^{+}\left(2 R_{2}^{*}\right) \cup S_{\Omega}^{-}\left(\frac{1}{2} R_{1}^{*}\right) .\end{cases}
$$

Since the positive harmonic function $G_{\Omega}(P, Q)-G_{\Omega}^{j}(P, Q)$ on $C^{j}(\Omega)$ converges monotonically to 0 as $j \rightarrow \infty$, we can find an integer j_{0} $\left(j_{0}^{-1}<2^{-1} R_{1}^{*}, j_{0}>2 R_{2}^{*}\right)$ such that

$$
\begin{align*}
& c_{m}^{-1} \int_{S_{\Omega}\left(2^{-1} R_{1}^{*}, 2 R_{2}^{*}\right)}|\varphi(Q) g(Q)| \tag{5.3}\\
& \quad \times\left|\frac{\partial}{\partial n} G_{\Omega}^{j_{0}}(P, Q)-\frac{\partial}{\partial n} G_{\Omega}(P, Q)\right| d \sigma_{Q}<\frac{\varepsilon}{4}
\end{align*}
$$

for any $P=(r, \Theta) \in C(\Omega) \cap U_{\delta}\left(Q^{*}\right)$. It follows from (5.1), (5.2) and (5.3) that

$$
\begin{align*}
& c_{m}^{-1} \int_{\partial C(\Omega)-\{O\}} g(Q) \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \tag{5.4}\\
& \leq c_{m}^{-1} \int_{S_{\Omega}\left(2^{-1} R_{1}^{*}, 2 R_{2}^{*}\right)} \varphi(Q) g(Q) \frac{\partial}{\partial n} G_{\Omega}^{j_{0}}(P, Q) d \sigma_{Q} \\
& \quad+\left\lvert\, c_{m}^{-1} \int_{S_{\Omega}\left(2^{-1} R_{1}^{*}, 2 R_{2}^{*}\right)} \varphi(Q) g(Q) \frac{\partial}{\partial n} G_{\Omega}^{j_{0}}(P, Q) d \sigma_{Q}\right. \\
& \left.\quad-c_{m}^{-1} \int_{S_{\Omega}\left(2^{-1} R_{1}^{*}, 2 R_{2}^{*}\right)} \varphi(Q) g(Q) \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \right\rvert\, \\
& \quad+2 c_{m}^{-1} \int_{S_{\Omega}^{+}\left(R_{2}^{*}\right)}|g(Q)| \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \\
& \quad+2 c_{m}^{-1} \int_{S_{\Omega}^{-}\left(R_{1}^{*}\right)}|g(Q)| \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \\
& \quad<c_{m}^{-1} \int_{S_{\Omega}\left(2^{-1} R_{1}^{*}, 2 R_{2}^{*}\right)} \varphi(Q) g(Q) \frac{\partial}{\partial n} G_{\Omega}^{j_{0}}(P, Q) d \sigma_{Q} \\
& \quad+\frac{3}{4} \varepsilon
\end{align*}
$$

for any $P=(r, \Theta) \in C(\Omega) \cap U_{\delta}\left(Q^{*}\right)$. Consider the upper semicontinuous function

$$
\begin{aligned}
& V(Q)= \begin{cases}\varphi(Q) g(Q) & \text { on } S_{\Omega}\left(2^{-1} R_{1}^{*}, 2 R_{2}^{*}\right), \\
0 & \text { on } Z\end{cases} \\
& \left(Z=S_{\Omega}\left(j_{0}^{-1}, 2^{-1} R_{1}^{*}\right) \cup S_{\Omega}\left(2 R_{2}^{*}, j_{0}\right) \cup\left(\left\{j_{0}^{-1}\right\} \times \Omega\right) \cup\left(\left\{j_{0}\right\} \times \Omega\right)\right)
\end{aligned}
$$

on $\partial C^{j_{0}}(\Omega)$. Since

$$
\varlimsup_{p \in C(\Omega), P \rightarrow Q^{*}} H_{V}^{j}(P) \leq \varlimsup_{Q \in \partial C(\Omega)-\{O\}, Q \rightarrow Q^{*}} V(Q)=g\left(Q^{*}\right)
$$

(e.g. see Helms [6, Lemma 8.20]), we finally obtain from (5.4) that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q^{*}} \cdot c_{m}^{-1} \int_{\partial C(\Omega)-\{0\}} g(Q) \frac{\partial}{\partial n} G_{\Omega}(P, Q) d \sigma_{Q} \leq g\left(Q^{*}\right)
$$

From Lemma 5, immediately follows
Lemma 6. If $g(Q)$ is a continuous function on $\partial C(\Omega)-\{O\}$ satisfying (2.4), then

$$
\lim _{P \in C(\Omega), P \rightarrow Q} \operatorname{PI}_{g}(P)=g(Q)
$$

for every $Q \in \partial C(\Omega)-\{O\}$.
Proof of Theorem 2. First, we see from Lemma 6 that

$$
\lim _{P \in C(\Omega), P \rightarrow Q} \mathrm{PI}_{g}(P)=g(Q) \quad \text { and } \quad \lim _{P \in C(\Omega), P \rightarrow Q} \mathrm{PI}_{|g|}(P)=|g(Q)|
$$

for every $Q \in \partial C(\Omega)-\{O\}$. Hence we see from (3.6) that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q}\left\{u(P)-\mathrm{PI}_{g}(P)\right\} \leq 0
$$

and

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q}\left\{u^{+}(P)-\mathrm{PI}_{|g|}(P)\right\} \leq 0
$$

for every $Q \in \partial C(\Omega)-\{O\}$. Theorem 1 immediately gives Theorem 2.

Proof of Corollary 1. Put $\Omega=\mathbb{S}_{+}^{m-1}$ in Theorem 2. Since $g(Q)$ is continuous at $Q=O$ of $\partial \mathbb{T}_{m},|g(Q)|$ is bounded in the neighborhood of $Q=O$. Hence we see from Remark 1 and (3.9) that $g(Q)$ is admissible on $\partial \mathbb{T}_{m}$ and from (3.10) that $\eta_{u} \leq \eta_{u^{+}}=0$. If $\mu_{u^{+}}=+\infty$, then (3.11) is evidently satisfied. When $\mu_{u^{+}}<+\infty$, (3.11) also follows
from (3.8), Remark 1, Remark 2 and the inequality $\mu_{u} \leq \mu_{u^{+}}$. It is easily seen that Remark 3 and (3.8) give (3.12).

Proof of Theorem 3. It follows from Lemma 3 and Lemma 6 that $\mathrm{PI}_{g}(P)$ is one of the solutions. To prove (II), put $u(P)=h(P)$ and $-h(P)$ in Theorem 2. Then Theorem 2 gives the existence of all limits $\mu_{h}, \eta_{h}, \mu_{h}^{+}, \eta_{h}^{+}$,

$$
\begin{equation*}
\mu_{(-h)^{+}}=\mu_{h^{-}} \quad \text { and } \quad \eta_{(-h)^{+}}=\eta_{h^{-}} \tag{5.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mu_{h^{+}}+\mu_{h^{-}}=\mu_{|h|} \quad \text { and } \quad \eta_{h^{+}}+\eta_{h^{-}}=\eta_{\mid h h^{+}}, \tag{5.6}
\end{equation*}
$$

it follows that both limits $\mu_{|h|}$ and $\eta_{|h|}$ exist. Suppose that h satisfies (3.15). Then we see from (5.5) and (5.6) that $\mu_{h^{+}}, \mu_{(-h)^{+}}, \eta_{h^{+}}$and $\eta_{(-h)^{+}}<+\infty$. Hence, by applying Theorem 2 to $u(P)=h(P)$ and $-h(P)$ again, we obtain from (3.8) that

$$
h(P) \leq \operatorname{PI}_{g}(P)+\left(\mu_{h} r^{\alpha_{\Omega}}+\eta_{h} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta)
$$

and

$$
h(P) \geq \operatorname{PI}_{g}(P)+\left(\mu_{h} r^{\alpha_{\Omega}}+\eta_{h} r^{-\beta_{\Omega}}\right) f_{\Omega}(\boldsymbol{\Theta}),
$$

respectively, which give (3.16).

Proof of Corollary 2. It follows from Remark 4 that

$$
\mu_{|h|}=\mu_{h^{+}}<+\infty \quad \text { and } \quad \eta_{|h|}=\eta_{h^{+}}<+\infty .
$$

Thus Theorem 3 implies Corollary 2.

6. Proof of Theorem 4.

Lemma 7. Let $g(Q)$ be a non-negative lower semicontinuous function on $\partial C(\Omega)-\{O\}$ satisfying (2.4) and let $u(P)$ be a non-negative subharmonic function on $C(\Omega)$ such that

$$
\begin{equation*}
\varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P) \leq g(Q) \tag{6.1}
\end{equation*}
$$

for every $Q \in \partial C(\Omega)-\{O\}$. Then both of the limits μ_{u} and η_{u} $\left(0 \leq \mu_{u}, \eta_{u} \leq+\infty\right)$ exist, and if $\mu_{u}<+\infty$ and $\eta_{u}<+\infty$, then

$$
u(P) \leq \operatorname{PI}_{g}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta)
$$

for any $P=(r, \Theta) \in C(\Omega)$.

Proof. To apply Theorem 1, we shall show that (3.1) and (3.2) hold. Since $-g(Q)$ is upper semicontinuous on $\partial C(\Omega)-\{O\}$, it follows from Lemma 5 that

$$
\begin{equation*}
{\underset{P \in C}{ } \lim _{(\Omega), P \rightarrow Q}}^{\mathrm{PI}_{g}(P) \geq g(Q)} \tag{6.2}
\end{equation*}
$$

for every $Q \in \partial C(\Omega)-\{O\}$. Hence we see from (6.1) and (6.2) that

$$
\begin{aligned}
& \quad \varlimsup_{P \in C(\Omega), P \rightarrow Q}\left\{u(P)-\mathrm{PI}_{g}(P)\right\} \\
& \quad \leq \varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P)-\varliminf_{P \in C(\Omega), P \rightarrow Q}^{\lim _{(\Omega)}} \mathrm{PI}_{g}(P) \leq g(Q)-g(Q)=0
\end{aligned}
$$

for every $Q \in \partial C(\Omega)-\{O\}$, which provides (3.1). Since g and u are non-negative, (3.2) also holds. Thus we obtain Lemma 7 from Theorem 1.

Lemma 8. Let u be subharmonic on a domain containing $\overline{C(\Omega)}-$ $\{O\}$ such that $\tilde{u}=u \mid \partial C(\Omega)-\{O\}$ satisfies (2.4) and

$$
u \geq 0 \quad \text { on } C(\Omega) .
$$

Then

$$
\mathrm{PI}_{\tilde{u}}(P) \leq h(P) \quad \text { on } C(\Omega)
$$

for every harmonic majorant h of u on $C(\Omega)$.

Proof. Take any $P^{*}=\left(r^{*}, \Theta^{*}\right) \in C(\Omega)$. Let ε be any positive number. In the same way as in the proof of Lemma 5, we can choose two numbers R_{1} and $R_{2}\left(2 R_{1}<r<2^{-1} R_{2}\right)$ such that

$$
\begin{equation*}
c_{m}^{-1} \int_{S_{\Omega}^{+}\left(R_{2}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}\left(P^{*}, Q\right) d \sigma_{Q}<\frac{\varepsilon}{3} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{m}^{-1} \int_{S_{\Omega}^{-}\left(R_{1}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}\left(P^{*}, Q\right) d \sigma_{Q}<\frac{\varepsilon}{3} . \tag{6.4}
\end{equation*}
$$

Further, take an integer $j_{0}\left(j_{0}^{-1}<R_{1}\right.$ and $\left.j_{0}>R_{2}\right)$ such that

$$
\begin{align*}
& c_{m}^{-1} \int_{S_{\Omega}\left(R_{1}, R_{2}\right)} \tilde{u}(Q)\left\{\frac{\partial}{\partial n} G_{\Omega}\left(P^{*}, Q\right)\right. \tag{6.5}\\
&\left.-\frac{\partial}{\partial n} G_{\Omega}^{j_{0}}\left(P^{*}, Q\right)\right\} d \sigma_{Q}<\frac{\varepsilon}{3}
\end{align*}
$$

Since

$$
c_{m}^{-1} \int_{S_{\Omega}\left(R_{1}, R_{2}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}^{j_{0}}(P, Q) d \sigma_{Q} \leq H_{u}^{j_{0}}(P)
$$

for any $P \in C^{j_{0}}(\Omega)$, we have from (6.3), (6.4) and (6.5) that

$$
\begin{align*}
& \mathrm{PI}_{\tilde{u}}\left(P^{*}\right)-H_{u}^{j_{0}}\left(P^{*}\right) \tag{6.6}\\
& \quad \leq c_{m}^{-1} \int_{S_{\Omega}\left(R_{1}, R_{2}\right)} \tilde{u}(Q)\left\{\frac{\partial}{\partial n} G_{\Omega}\left(P^{*}, Q\right)\right. \\
& \left.\quad-\frac{\partial}{\partial n} G_{\Omega}^{j_{0}}\left(P^{*}, Q\right)\right\} d \sigma_{Q} \\
& \quad+c_{m}^{-1} \int_{S_{\Omega}^{+}\left(R_{2}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}\left(P^{*}, Q\right) d \sigma_{Q} \\
& \quad+c_{m}^{-1} \int_{S_{\Omega}^{-}\left(R_{1}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}\left(P^{*}, Q\right) d \sigma_{Q}<\varepsilon .
\end{align*}
$$

Here, note that $H_{u}^{j_{0}}(P)$ is the least harmonic majorant of $u(P)$ on $C^{j_{0}}(\boldsymbol{\Omega})$ (see Hayman [5, Theorem 3.15]). If h is a harmonic majorant of u on $C(\Omega)$, then

$$
H_{u}^{j_{0}}\left(P^{*}\right) \leq h\left(P^{*}\right) .
$$

Thus we obtain from (6.6) that

$$
\operatorname{PI}_{\tilde{u}}\left(P^{*}\right)<h\left(P^{*}\right)+\varepsilon,
$$

which gives the conclusion of Lemma 8.

Proof of Theorem 4. Let $P=(r, \Theta)$ be any point of $C(\Omega)$ and let ε be any positive number. By the Vitali-Carathéodory theorem (e.g. see [11, p. 56]), we can find a lower semicontinuous function $g_{\varepsilon}(Q)$ on $\partial C(\Omega)-\{O\}$ such that

$$
\begin{equation*}
\tilde{u}(Q) \leq g_{\varepsilon}(Q) \quad \text { on } \partial C(\Omega)-\{O\} \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{PI}_{g_{\varepsilon}}(P)<\operatorname{PI}_{\tilde{u}}(P)+\varepsilon . \tag{6.8}
\end{equation*}
$$

Since

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} u(P) \leq \tilde{u}(Q) \leq g_{\varepsilon}(Q)
$$

for any $q \in \partial C(\Omega)-\{O\}$ from (6.7), it follows from Lemma 7 that two limits μ_{u}, η_{u} exist and if $\mu_{u}<+\infty$ and $\eta_{u}<+\infty$, then

$$
\begin{equation*}
u(P) \leq \operatorname{PI}_{g_{t}}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\boldsymbol{\Theta}) . \tag{6.9}
\end{equation*}
$$

Hence we have from (6.8) and (6.9) that

$$
u(P) \leq \mathrm{PI}_{\tilde{u}}(P)+\varepsilon+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta)
$$

Since ε was arbitrary, we obtain

$$
u(P) \leq \mathrm{PI}_{\tilde{u}}(P)+\left(\mu_{u} r^{\alpha_{\Omega}}+\eta_{u} r^{-\beta_{\Omega}}\right) f_{\Omega}(\Theta)
$$

for any $P=(r, \Theta) \in C(\Omega)$. This shows that $h_{u}(P)$ is a harmonic majorant of u on $C(\Omega)$.

To prove that h_{u} is the least harmonic majorant of u on $C(\Omega)$, let $h(P)$ be any harmonic function on $C(\Omega)$ such that

$$
\begin{equation*}
u(P) \leq h(P) \quad \text { on } C(\Omega) . \tag{6.10}
\end{equation*}
$$

Consider the harmonic function

$$
h^{*}(p)=h_{u}(P)-h(P) \quad \text { on } C(\Omega) .
$$

Since

$$
h^{*}(P) \leq h_{u}(P) \quad \text { on } C(\Omega),
$$

we see from Lemma 3 that $h^{*}(P)$ satisfies (3.3). We also see from Lemma 8 that

$$
\varlimsup_{P \in C(\Omega), P \rightarrow Q} h^{*}(P)=\varlimsup_{P \in C(\Omega), P \rightarrow Q}\left\{\mathrm{PI}_{\tilde{u}}(P)-h(P)\right\} \leq 0
$$

for any $Q \in \partial C(\Omega)-\{O\}$. We have from Lemma 3 and (6.10) that

$$
\mu_{h^{*}}=\mu_{h_{u}}-\mu_{h}=\mu_{u}-\mu_{h} \leq \mu_{u}-\mu_{u}=0
$$

and similarly $\eta_{h^{*}} \leq 0$. Thus we obtain from Lemma 4 that

$$
h^{*}(P) \leq 0 \quad \text { on } C(\Omega),
$$

which shows that $h_{u}(P)$ is the least harmonic majorant of $u(P)$ on $C(\Omega)$.

To prove (II), let $h_{1}(P)$ be a harmonic majorant of $u(P)$ on $C(\Omega)$. Since

$$
\mu_{u} \leq \mu_{h_{1}}<+\infty \quad \text { and } \quad \eta_{u} \leq \eta_{h_{1}}<+\infty
$$

from Remark 4, we immediately have (3.17). Fix $P_{0}=\left(1, \Theta_{0}\right), \Theta_{0} \in$ Ω. Take any two numbers $R_{1}, R_{2}\left(0<R_{1}<2^{-1}, 2<R_{2}<+\infty\right)$ and choose a sufficiently large integer $j^{*}, j^{*}>\operatorname{Max}\left(R_{1}^{-1}, R_{2}\right)$, such that

$$
c_{m}^{-1} \int_{S_{\Omega}\left(R_{1}, 2^{-1}\right)} \tilde{u}(Q)\left\{\frac{\partial}{\partial n} G_{\Omega}\left(P_{0}, Q\right)-\frac{\partial}{\partial n} G_{\Omega}^{j^{*}}\left(P_{0}, Q\right)\right\} d \sigma_{Q} \leq 1
$$

and

$$
c_{m}^{-1} \int_{S_{\Omega}\left(2, R_{2}\right)} \tilde{u}(Q)\left\{\frac{\partial}{\partial n} G_{\Omega}\left(P_{0}, Q\right)-\frac{\partial}{\partial n} G_{\Omega}^{j^{*}}\left(P_{0}, Q\right)\right\} d \sigma_{Q} \leq 1
$$

Since $H_{u}^{j^{*}}(P)$ is the least harmonic majorant of $u(P)$ on $C^{j^{*}}(\Omega)$,

$$
\begin{aligned}
h_{1}\left(P_{0}\right) & \geq H_{u}^{j^{*}}(P) \geq c_{m}^{-1} \int_{S_{\Omega}\left(j^{*-1}, j^{*}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}^{j^{*}}\left(P_{0}, Q\right) d \sigma_{Q} \\
& \geq\left\{\begin{array}{l}
c_{m}^{-1} \int_{S_{\Omega}\left(R_{1}, 2^{-1}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}^{j^{*}}\left(P_{0}, Q\right) d \sigma_{Q} \\
c_{m}^{-1} \int_{S_{\Omega}\left(2, R_{2}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}^{j^{*}}\left(P_{0}, Q\right) d \sigma_{Q}
\end{array}\right.
\end{aligned}
$$

Hence it follows from Lemma 1 that

$$
\begin{aligned}
+\infty & >h_{1}\left(P_{0}\right)+1 \\
& \geq\left\{\begin{array}{c}
c_{m}^{-1} \int_{S_{\Omega}\left(R_{1}, 2^{-1}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}\left(P_{0}, Q\right) d \sigma_{Q} \\
\geq k_{1} \int_{R_{1}}^{2^{-1}} r^{-\alpha_{\Omega}-1}\left(\int_{\partial \Omega} \tilde{u}(r, \Theta) d \sigma_{\Theta}\right) d r \\
c_{m}^{-1} \int_{S_{\Omega}\left(2, R_{2}\right)} \tilde{u}(Q) \frac{\partial}{\partial n} G_{\Omega}\left(P_{0}, Q\right) d \sigma_{Q} \\
\geq k_{3} \int_{2}^{R_{2}} r^{\beta_{\Omega}-1}\left(\int_{\partial \Omega} \tilde{u}(r, \Theta) d \sigma_{\Theta}\right) d r
\end{array}\right.
\end{aligned}
$$

which shows that \tilde{u} satisfies (2.4).
7. Proofs of Theorems 5, 6 and 7. These proofs proceed in the completely parallel way to the proofs of Theorems 2,3 and 4 , on the basis of two results of Yoshida [12, Theorems 7.2 and 7.5] and the following inequality corresponding to Lemma 1 :

$$
\begin{aligned}
k_{1}^{\prime} e^{-\sqrt{\lambda_{D}}\left(y^{*}-y\right)} f_{D}(X) & \left(\text { resp. } k_{3}^{\prime} e^{-\sqrt{\lambda_{D}}\left(-y^{*}+y\right)} f_{D}(X)\right) \\
\leq \frac{\partial}{\partial n} G_{D}(P, Q) \leq & k_{2}^{\prime} e^{-\sqrt{\lambda_{D}}\left(y^{*}-y\right)} f_{D}(X) \\
& \left(\text { resp. } k_{4}^{\prime} e^{-\sqrt{\lambda_{D}}\left(-y^{*}+y\right)} f_{D}(X)\right)
\end{aligned}
$$

for $P=(X, y) \in \Gamma(D)$ and $Q=\left(X^{*}, y^{*}\right) \in \partial \Gamma(D)$ satisfying $y^{*}>$ $y+1$ (resp. $y^{*}<y-1$), where k_{1}^{\prime} and k_{2}^{\prime} (resp. k_{3}^{\prime} and k_{4}^{\prime}) are two positive constants.

References

[1] V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Mat. Sb., 66 (108) (1965), 248-264; English transl. in Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.
[2] R. P. Boas, Entire Functions, Academic, New York, 1954.
[3] B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal., 65 (1977), 275-288.
[4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of the Second Order, Springer, Berlin, 1977.
[5] W. K. Hayman and P. W. Kennedy, Subharmonic Functions, vol. 1, Academic, London, 1976.
[6] L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, New York, 1969.
[7] H. Keller, Über das Anwachsen von Potentialfunktionen im dreidimensionalen Raum, Ann. Acad. Sci. Fenn. Ser. A, 83 (1950), 35 pp.
[8] U. Kuran, Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc., (3) 21 (1970), 614-636.
[9] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, Berlin, 1970.
[10] R. Nevanlinna, Über die Eigenschaften meromorpher Funktionen in einem Winkelraum, Acta Soc. Sci. Fenn., 50 No. 12 (1922), 45 pp.
[11] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, New York, 1986.
[12] H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc., (3) 54 (1987), 267-299.

Received October 26, 1988, and in revised form October 31, 1989.
Chiba University
1-33 Yayol-cho
Chiba-city 260, Japan

