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CHERN CLASSES AND COHOMOLOGY FOR RANK 2
REFLEXIVE SHEAVES ON P 3

M A R G H E R I T A R O G G E R O A N D P A O L O VALABREGA

The paper shows that, if F is a nonsplit rank 2 reflexive sheaf on
P 3 , then the knowledge of the numbers dn = h2(F(n)) - h\F(n))
gives an explicit algorithm to compute the Chern classes C\, Cι, c?>
and the dimensions h°(F(n)), for all n (in particular the first integer
a such that the sheaf F(a) has some nonzero section). If the sheaf
is a vector bundle it is also proved that the knowledge of the numerical
sequence {hι(F(n))} together with the first Chern class gives all the
information as above. In some special cases, i.e. when hx(F(n)) Φ
0 for at most three values of n, an algorithm is also produced to
compute the first Chern class from the sequence {hι(F(n))} . Vector
bundles with natural cohomology are also discussed.

It must be remarked that, if one knows not only the dimensions
hι (F(n)), for all n, but also the whole structure of the Rao-module
Q)Hι(F(n)), then the first Chern class C\ is uniquely determined
(as it is shown in a paper by P. Rao).

nl . F is a rank 2 nonsplit reflexive sheaf on P 3 = P . Its Chern
classes are c\, Cι, c$ if it is normalized, then c\ = 0 or - 1 . Once
and for all h\F(n)) = dimF(n)), ί = 0, 1, 2, 3.

Now we give a list of well-known properties useful throughout the
paper.

1. If C\ (F) = c\, the associated normalized reflexive sheaf is de-
fined as Fn = F(e) where

{ y for c\ even,

— - z — for Ci odd.
2. With every reflexive sheaf F there are two associated numbers:

a = a{F) = smallest integer n such that h°(F(n)) Φ 0,

ax = a\(F) = smallest integer n > a such that

h°(F(n))>h°(Op(n-a)).

Since F is not split, then every general nonzero section of F(a)
gives rise to a zero locus which is necessarily a curve in P (see [HI],
n.l and [H2], n.4); this is false for a split sheaf. The same is true for
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F(n), n> ax (see [GRV], Th. 0.1: it is stated for bundles, but it is
easy to check it holds for any reflexive sheaf, exactly with the same
proof: actually we shall use it only for bundles).

3. If a section of F{n) gives rise to a curve, then F and the ideal
sheaf I of the curve are connected by the following exact sequence
(see [HI], n.l and [H2], n.4):

(*) 0 -> OP -> F(n) -+ I(2π + ci) -> 0.

It follows that, if in addition F is normalized, then h°(F(n)) > 1
implies that n > 0, because n < 0 means that the curve lies on a
surface of degree 2n + c\ < 0, which is absurd.

In particular a\ > 0 and h°(F(a)) = 1 if a < 0, because in both
cases there is a curve (see 2 above).

4. The Euler-Poincare function of F is

χ(F(n)) = (n + 3)(n + 2)(/ι + l)/3 + CI(Λ + 2)(Λ

5. The normalized sheaf F is stable if a{F) = a > 0, properly
semistable if a = c\ = 0, unstable otherwise; a general sheaf is stable,
properly semistable, unstable according to the corresponding property
for the normalized sheaf Fn .

6. If F is a nonsplit vector bundle, then hι{F(n)) Φ 0 for some n
(Horrocks' theorem: see [BH], n.5, Lemma 1). Actually it is true: if
c\ is even, then hι(F(e- 1)) φ 0; if c\ is odd, then h\F(n)) φ 0 for
n = e— 1, ε, ε + 1 . This depends upon [CV1], Theorems 1.3 and 1.6;
in fact it is enough to consider, for n » 0, a smooth irreducible curve
C zero locus of a section of F{n)\ then, by (*) above hι(F(m)) =
hι(l(n + m + cι), for all m .

Moreover hι(F(n)) φ 0 for all w such that α - 2 < « < α i - 2
([CV2], Cor. 8).

7. For a reflexive sheaf i 7 the condition hι(F(n)) = 0 for every
n is far from forcing the sheaf to split; in fact every locally complete
intersection curve C is zero locus of a section of some reflexive sheaf
F ([H2], Th. 4.1), but C may as well be arithmetically normal, which
implies (by (*) above): hι(F(n)) = hι(I(n)) = 0 for every n. If_C
is not a complete intersection, then F cannot split ([HI], Cor. 1.2)1

8. A condition that forces a reflexive sheaf to be a bundle is given
in [R], Theorem 2.3: the normalized sheaf F is a vector bundle if
and only if h2(F(p)) = 0 for some p < - 2 for a general sheaf this
condition becomes: h2(F(p)) = 0 for some p < - 2 + ε.
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If

h2(F(p)) = 0 foτίP εp = ε - 3 if Ci is even,

4 or ε — 3 or ε - 2 if ci is odd

then the sheaf is a split bundle ([R], Cor. 3.2).
9. The dual F" of F is the reflexive sheaf F{-c{) ([HI], #2

and [H2], Prop. 1.10: recall that the first Chern class can be defined
through the determinant itself). Moreover, if F is a vector bundle,
Serre's duality says that hι{F{ή)) = h3~ι{F(-n — c\ — 4)) for every
n and / = 0, 1. If F is an arbitrary reflexive sheaf, then the above
equality holds only for / = 0 ([H2], Prop. 2.5), while for / = 1 we
have the following exact sequence

(**) 0 -> H\F{-n - cx - 4)) -* H2{F{n)) -> H° Ext1 (F(n), 0P(-4))

- # 2(F(-fl - cx - 4)) - Hι(F(n)) -+ 0

together with the equality: h°Ext (F(n), Ofc>(-4)) = 3̂ ( s e e [H2],
Prop. 1.10, Th. 2.5, claim and proof of Prop. 2.6, Cor. 2.2: the
sequence (**) is given with duals but F v = F(-C\)).

For a reflexive sheaf, we introduce, for every integer n in Z, the
number dn = </Λ(F) = h2(F(n)) - hι(F(n)) (see also [BH], n.3). For
/ι < 0, rfΛ(F) = h2(F(n)), because hι(F(n)) = 0. If F is a vector
bundle, then dn = hι(F(-n - c\ - 4)) - h{(F(n)), because of Serre's
duality (not true in general for a reflexive sheaf); therefore, dn(F) = 0
both for n < 0 and for >z > 0.

We start with the following key lemma:

LEMMA 1. Let F be a nonsplit reflexive sheaf

(i) if F is normalized and n<0, then h°(F(n)) = h°(Op(n-a))
(ϋ) ifF is general and n + a + cι<0t h°(F{n)) = h°{Op(n-a))\

(iii) if F is general and n + a + c{ > 0, then h°(F(n)) - χ(F{n))-
dn.

Proof, (i) if a > 0, then n < α, so both members are 0. If a < 0,
take a curve Y corresponding to the sheaf F(a), getting the exact
sequence (see above)

0 -> Op -> F(fl) -+ Ir(2fl + ci) ̂  0
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and also (twisting by n- a)

0 ι-> Op(n -a)\-> F(n) ι-> lγ(n + a + cx) ι-> 0.

It is now enough to remark (because c\ < 0 for a normalized sheaf)
that n + a + Cι < 0, which implies that no surface of degree n + a + c\
contains Y.

(ii) The same exact sequence as above works: now c\ is arbitrary
but n + a + C\ < 0 by hypothesis.

(iii) We have: h°(F(n)) = χ{F{n)) - dn + h°(F(-n - cx - 4)),
but the last term is 0 because -n-C\ -4 < a by hypothesis.

We want to show that the knowledge of the numbers dn gives some
information about F, i.e. about the Chern classes, the number a(F),
the property of being stable or unstable,....

First of all we give a criterion to decide whether F is stable or not,
based on the knowledge of the numbers dn 's and of C\, hence of the
normalized sheaf Fn = F(e) (see above). We recall that, for every

dn(F) = h\F(n)) - h\F{n)) = h2(F(ε)(n - e))

- hι(F(ε)(n - e)) = dn-ε(F(ε)) = dn-ε(Fn).

PROPOSITION 1. Let F be a nonsplit reflexive sheaf and n, m two
integers. Then

ndε + md-ι+ε - (2m + 3n) aL 2 + ε + (m + In) aL3+ε

2n + (m + 3n)(c{ + 2e) (stable sheaf),

n (properly semistable sheaf),

0 (unstable sheaf).

Proof. First we prove the claim when F is normalized, i.e. when
e = 0. By Lemma 1 we have, for h < 0:

h°(F(h)) = h°Op(h-a).

Moreover, if h > - 3 , then h3(F(h)) = h°(F(-h - ci - 4)) =
h°Op(-h-C\-4-a) because -λ-ci—4 < 0. Substitute now d^ with
χF(h)-h°F(h)+h3F(h) in ndo+md.ι-(2m + 3n)d-2 + (m+2n)d.3

and use Lemma 1 and duality; if we put: φ(ή) = n + 1 for n > 0,
φ(n) = 0 for n < 0, we get:

2/ι + (3/ι + m)cx + n(-φ(-a) - 2φ(-a - 1) + 2φ(-a - 1 - cλ)

+ φ(-a-2-cι))

+m(φ(-a - ci - 1) - φ(-a - 1)).
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Therefore, if F is stable {a > 0) the result is In + (3n + m)c\ if
it is property semistable {a = 0 and C\ = 0) the result is n if it is
unstable the result is 0.

Assume now that F is general; then it is enough to remark that
dn+ε(F) = dn(Fn) for all n and moreover c{ + 2ε = Cχ(F(e)) ([H2],
Cor. 2.2).

PROPOSITION 2. Lei F be a nonsplit rank 2 reflexive sheaf on P . If
it is stable then a - ε is the smallest positive integer n such that

^

If it is unstable then -a + ε - c\ is the smallest positive integer n
such that dn+ε - (n + 2) <L1 + β + (n + 1) rf_2+ε ^ 0

Proof. First assume that i 7 is normalized (ε = 0), that α > 0 and
ci = 0. Then we have (for any n>0):dn= χ{F{n)) - h°(F(n)), by
Lemma 1, (iii); therefore

<4 - (n + 2) rf-i + (n+ί) d-2

)) - h°(F(n)) ~{n + 2){χ{F{-\)))

+ 2n2 + 1 ln/3 + 2 - (Λ + 2)c2 - Λ°(F(/ι)) - (Λ + 2)(-c2)

which gives the result because the sheaf has no nonzero section up to
n = a - 1 and at least one nonzero section for n = a.

If Ci = 0 and a < 0, then, for all n such that 0 < n < -a, we
have:

rfΛ-(Λ + 2)</_1 + (/!+l)</_2

= /(F(/i)) - h°(F(n)) + h°(F(-n - 4))

- (n + 2)U(f(-l)) - h°(F(-l)) + h°(F(-3))).

Since 0 < n < -a 9 then we are able to use Lemma 1, (i) and (ii),
to see that the second member is simply

3. (n + 3\ (n - a +
\ 3 / " " \ 3

+ (/ι + 2)(/*°<9p(-3 - α) - Λ°Ot(-l - a))

which is easily seen to be 0 if n < -a and 1 if n = -a.
The case ci = - 1 can be dealt with using very similar arguments.
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Now pass to F arbitrary: it is enough to recall that dn{F) =
dn-ε(F(e)) and c{(F(ε)) = c{ + 2ε ([H2]? Cor. 2.2).

REMARK 1. It is not evident at all that the same sequence {dn} for
two different reflexive sheaves gives rise to the same a actually this
is true, because the dn 's determine also C\, as it will be seen in Theo-
rem 1.

COROLLARY 1. A reflexive sheaf F splits if and only if dn = 0 for
all n.

Proof. If F is split, then it is well known that the intermediate
cohomology vanishes.

Conversely, assume that all the dn 's vanish and F does not split;
then, by Prop. 1, F must be an unstable sheaf; now use Prop. 2 to
see that dnφΰ either for n = -a + 2ε - c\ or for n = -2 + ε or for
n — - 1 + ε . This is a contradiction.

REMARK 2. The same result could be proved using the nonsplitting
criteria of [R] (see 8 above).

PROPOSITION 3. Let F be a nonsplit rank 2 reflexive sheaf on P.
Then we have:

(i) if F is stable or properly semistable, then Cι = -ε2 - c\ε +

d-2+ε ~ d-l+δί

(ii) if F is unstable, then C2 = -ε2 - c\ε + d-2+ε - ^-i+ε -

(a - ε)2 -(a- e)(cχ + 2ε) = -a2 - acx + d_ 2 + ε - </_i_β.

Proof. First we assume that F is normalized (e = 0). If a > 0,
then c2 = χ(F{-2))-χ(F{-\)) = d-2-d-\. If a < 0, then we have:

d-2 - d-x = χ(F(-2)) -

= c2- h°(Op(-2 - a)) + h°(Op(-2 -a-cx))

+ h°(Op(-a - 1)) - h°(Or(-a - 3 - c{))

= c2 + a2 + ac\ + (c2 + c\)/2 = c2 + a2 + ac\.

If the sheaf is arbitrary we pass to F(ε) and recall that
c2{F) + cx{F)ε + ε2 ([H2], Cor. 2.2).

REMARK 3. The previous results show that, if we have the sequence
{dn} , for all n , and c\ (hence ε), then there is an algorithm to com-
pute explicitly both a and c 2 .
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LEMMA 2. Let F be a nonsplit rank 2 reflexive sheaf; then

(i) dn = 0 for all rc>0;

(ii) dn = c3 for all n < 0.

Proof. The intermediate cohomology for any coherent sheaf is 0
for n » 0 therefore (i) is obvious. For (ii) we remark that the first
cohomology module is finite, hence 0 for n < 0 and then use the
exact sequence (**) of n.l, which for n < 0 has only two nonzero
terms (h2(F(n)) and c 3 ) .

By the previous lemma and Corollary 1 every nonsplit reflexive
sheaf F has two associated numbers (depending upon {dn}: if all
the dn 's are 0, then they are not defined):

p = p(F) = min{n/dm = 0 Vra > n}

q = q(F) = max{n/dm = C3 Vra < «}.

Now we show some relations between the dn 's, the Chern classes,
a(F) and h°(F(n)), for all n . Actually we see that, if the sequence
{dn} is known for all n, then all the numerical characters are explicitly
computable from it.

THEOREM 1. Let F be a nonsplit rank 2 reflexive sheaf Then we

have:

(i) c2 = dq;
(ii) cι = -p - q - 4

(iii) <?2 is uniquely determined by C\ and {dn} as in Proposition 3;
(iv) α is uniquely determined by C\ and {dn} as in Proposition 2;
(v) h°(F(n)) is uniquely determined by C\ and {dn} as in Lemma

1, (ii) αnJ (iii).

Proof, (i) follows from Lemma 2.
For (ii) we observe that, by the above exact sequence (**) of n.l,

we have:

C3 = dn + d-n-c^4\

therefore
0 forr<0,

which means (by the definition itself) that p = -q - C\ - 4.
For (iii), (iv), (v), we remark that, by (ii), p and q determine C\,

hence also ε.
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REMARK 4. The equality

shows that the pairs (n,dn) are symmetric with respect to

(-(d+4)/2,c3/2).
For a rank 2 nonsplit vector bundle we know that, by Serre's duality,

h2(F{n)) = h{(F(-n -cλ- 4)) moreover c3 = 0 ([H2], Prop. 2.6).
So the previous result becomes as follows:

COROLLARY 2. Let F be a nonsplit rank 2 vector bundle over P .
Then the sequence {hι(F(n))} and the Chern class C\ determine
uniquely the sequence {dn}, hence C2, a and h°(F(n)),for all n.

REMARK 5. In [GRV] these results were already obtained, but only
for a bundle G having the same sequence {hι(G(n))} as a bundle
associated to a skew union of complete intersection.

n.2 Corollary 2 in n. 1 leads us to raise the following question: is it
enough to know the sequence {hι(F(n))}, all n, in order to get also
C\ ? We do not know in general, but we discuss some examples and
partial results.

EXAMPLE 1. If there is m such that hι(F(n)) = 0 for n Φ ra,
hι(F(m)) Φ 0, then the sheaf F(m + 1 ) is a nullcorrelation bundle.
In fact, if the normalized bundle F(ε) = E is not stable, that is,
a(E) < 0 , t h e n h \ E { n ) ) φ θ f o r a - 2 <n < a x - 2 ( s e e n . 1 , 6 ; s e e
also [S], Th. 3.1 and Prop. 3.2), which includes at least 2 values.

Therefore the bundle is stable. In this case either the 1-cohomology
vanishes at 2 values of n or it is a nullcorrelation bundle (see [CV1],
Prop. 4).

PROPOSITION 4. Let F be a rank 2 vector bundle such that hι(F(n))
does not vanish exactly at 2 values n = m and n = p > m\ then we
have:

the bundle is stable;

p = m + 1

cγ = -2m - 2 ;

2 for n = m,

2 ybr ft = m + 1
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{the same dimensions as a twist of the bundle associated to 3 skew
lines).

Proof, by [CV1], Th. 1.3, 1.5 and 1.6 and [CV2], Cor. 8 (see above,
n.l, 6), the hypothesis implies that the bundle has even c\, i.e. the
normalized bundle Fn = E has c\ = 0, the 1-cohomology cannot
vanish exactly at - 1 and at 0 and a(E) - 2 > - 1 , which means that
the bundle is stable. Now we are able to compute explicitly such a
cohomology at both levels where it does not vanish. Working on the
normalized bundle E, with c\ = 0, c2 > 1 (by [HI], Lemma 3.2),
we have:

χ(E)= -hι(E) = 2-2c2<0;

Therefore c2 must be either 1 or 2, and hence c2 — 2.
Now we go back to the original bundle and find that the first non-

vanishing level must be m = —C\/2— 1, whence the expected value
c\ = 2{-m- 1). The claim about c2 follows from the general formula
connecting the second Chern class of a bundle and of a twist.

PROPOSITION 5. Let F be a nonsplίt rank 2 vector bundle such that
cι = 0 and moreover hx{F(n)) does not vanish exactly for three values
of n. Then:

(i) hl(F(n))*0for n = - 1 , 0 , 1 ;
(ii) F is stable;

(iii) 3 < c2 < 5 and moreover

{ c2 forn = -\,

2c2-2 forn = 0,

t forn = \,

where t = 3c2-S + h°(F(l)) and h°(F(l)) <5-c2.
Proof. By [CV1], Prop. 15 (see n.l, 6), the cohomology is not 0 at

n = -1 and at n = 0 (to avoid a nullcorrelation bundle, with only
one non vanishing group). Moreover, the cohomology does not vanish
between a - 2 and a\ - 2; since a\ > 0 (Remark 1), then a > 0.
Now put: c2(F) = c. If a = 0 the three vanishing groups correspond
to n = - 2 , - 1 , 0. Then we have: χ(F(l)) = A°(f(l)) = 8 - 3c > 4,
which means either c = 0 or c = 1 but both cases are absurd,
because F has a section which, being the first one, gives rise to a
curve of degree c (see [HI], Lemma 1.3).
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At last a > 0 and the bundle is stable. Now we want to show
that the third nonvanishing group corresponds exactly to n = 1. In
fact, assume that hι(F(l)) = 0; then we have: χ(F(l)) = 8 - 3c =
h°(F(l)) + hι(F(-5)) > 0, which implies c < 2: but c < 1 is ex-
cluded because the bundle is stable ([HI], Lemma 3.2) and c = 2 is
excluded by [HI], Lemma 9.4 (because there should be only two non-
vanishing groups). Hence the three nonvanishing groups correspond
to n = - 1 , 0, 1 and the dimensions can be computed by χ(F(-l)) =
-c, *(F) = 2 - 2 c , χ(F{l)) = *-3c = h°{F(l))-hι{F{l)). By
χ(F(2)) = h°(F(2)) = 20 - Ac we see that 20 - Ac > 0, hence c < 5
moreover c > 3, because 2 and 1 are excluded by [HI], Lemma 3.2
and Lemma 9.4)

For the value of t it is enough to observe that h°(F(2)) is 0 for
c = 5 and so h°(F(ί)) = 0; if c = 4, then h°(F(2)) = 4. Hence
F(l) has at most one nonzero section; if c = 3, then h°(F(2)) = 8
and F(l) has at most two independent sections.

PROPOSITION 6. Lei F be a nonsplit rank 2 vector bundle such that
cx = -1 and moreover hι(F(n)) does not vanish exactly at three values
ofn. Then

(i)
(ii)

(iii)
(iv)

h\F{n))φί
c χ = 2
F is stable;

h

) for n

t\F{n)

= - i , o

) = 2

1

, i ;

for
for
for

n
n

n

= —
= 0,

= 1.

Proof. First of all put: c = c 2. By [CV1], Th. 1.6 see n.l, 6), the
three nonvanishing groups must correspond to n = - 1 , 0, 1 there-
fore a - 2 > -2 and a > 0 (see n.l, 6). If a = 0, then, because
χ{F{2)) = A°(F(2)) = 14 - 7c/2 > 10, we see that c < 8/7. Hence
c = 0 (because c must be odd: [HI], Cor. 2.2); but this is absurd be-
cause it is the degree of a curve, zero locus of a section of the bundle.
Hence a > 0 and the bundle is stable. If a = 1 and h°(F(l)) > 1,
then there should exist a curve, zero locus of a section of F(l), lying
on a plane, which is absurd because it cannot be complete intersection
as the bundle is not split ([HI], Cor. 1.2). Therefore either a > 2 or
a = 1 and there is only one independent section for n = a = 1. Now
we observe that χ(F(l)) = 5 - 5c/2, χ(F(-2)) = c/2 = Λ W - l ) ) ,

= 1 - 3c/2 = -h\F), χ(F(2)) = A°(F(2)) = 14 - 7c/2 hence
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we see that c < 4 and therefore either c = 2 or c = 4 (c being even
for an odd first Chern class). If c = 2, then we have the following
cohomology: hι(F(-l)) = 1, hι{F) = 2, hι{F{\)) = 1 (F(2) gives
rise to two skew conies). The case c = 4 is not allowed because it
implies α > 3 and hence natural cohomology, which is excluded by
[HH], Ex. 1.6.3.

THEOREM 2. Let F be a nonsplit rank 2 vector bundle such that
hι(F(n)) does not vanish exactly at 3 values of n then we have:

(i) the \-cohomology does not vanish at 3 consecutive values m,
m+ 1, m + 2;

(ii) F is stable;

(iii) setting (a,b,c) = (hι(F(m)), hι(F(m+l))> hι(F(m + 2))):

either (a9b, c) = ( 1 , 2, 1) and then c\ = -2m - 3 or (a9b) =

(A, 2A-2), w#A 3 < A < 5, and then cx = - 2 m - 2 , 3A-8 <2A-3.
Furthermore, each of these seven cases actually occurs.

Proof, (i) The three values are consecutive for a normalized bundle,
by Propositions 5 and 6; hence for every bundle.

(ii) The property is true for a normalized bundle (Propositions
5 and 6), hence for all bundles.

(iii) The case (a, b, c) = (1, 2, 1) is considered in Proposition
6, and corresponds to an odd C\, while the case (a, b) = (A, 2A - 2)
is considered in Proposition 5 and corresponds to an even C\.

If C\ is even, then the normalized bundle F(—c\/2) has nonvan-
ishing cohomology at n = - 1 , 0, 1 by Proposition 5; therefore we
see that m = —C\/2 - 1. If C\ is odd, then the normalized bundle
F(-(c\ + l)/2) has nonvanishing cohomology at n = - 1 , 0, 1 by
Proposition 6; therefore m = ~(ci + l)/2 - 1.

Now we see that all the seven cases occur.
For c\ = 0, the three values for c2 are 3, 4, 5; then
—if C2 = 3, the sequences (3,4,2) and (3,4,3) for the 1-cohomology

correspond to 4 skew lines lying either on one or no quadric surface;
—if Cι = 3, the sequence (3,4,1) corresponds to an instanton bun-

dle with a < 2 ([HI], Th. 8.2 and [HH], examples of n.l);
—if Ci = 4, 5 skew lines give rise to the sequence (4,6,5), but also

the sequence (4,6,4) is allowed ([HH], n.l);
—if cι = 5, the sequence (5,8,7) exists and corresponds to a bundle

with natural cohomology (again [HH], n.l).
As long as c\ is odd, such a bundle corresponds to a skew union of

two conies ([HH], Ex. 1.6.2).
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REMARK 6. If the bundle has exactly 4 nonvanishing groups, then
it is still possible to describe everything (the four values are consecu-
tive, C\ even and odd are not allowed together and can be explicitly
computed by the position of the nonvanishing cohomology,... ), like
in the previous theorem, but it is required, beside all the previous
machinery, also the classification of stable bundles with c\ = - 1 and
c2 = 2 (see [HS]).

For five nonvanishing groups there is a case that cannot be easily
excluded; hence for n > 5 the difficulty increases, because of the
lack of classification for normalized bundles. Therefore our technique
cannot work for arbitrary n (even if it is not excluded that some extra
n can be dealt with).

EXAMPLE 2. Let F be a vector bundle with natural cohomology
([HH]) and cx(F) = - 1 . Then hι{F{n)) φ 0 for n = - 1 , 0, 1
by [CV1], Th. 1.6 (n.l, 6). Therefore A2(F(-1)) = A°(F(-1)) =
h2(F) = h°(F) = 0, because of the natural cohomology; hence F is
stable (α > 1). Moreover h2(F{-\)) = 0 = hι(F(-2)) implies that
F is an instanton bundle, which means that hι(F(n)) = 0 for all
n < -2 ([HH], Prop. 1.4). We have also:

hι(F(-\))= -

= 3c2(F)/2-l.

Now let G be any bundle such that a(G) = 0 and hι(G(n)) =
hι(F(n)) for all n . By Proposition 2, with n = 1, m = 0, we have:

2hι(G(-l)) - h\G) = 2h\F{-\)) -h1(F)=l- c2(F)/2

2 (G stable),

1 (G properly semistable),

0 (G unstable).

So C2{F) = 2, because F is stable (hence c2 > 0 by [HI], Lemma
3.4). This implies that hι(F(-\)) = 1, hι(F) = 2, while hι(F{\)) =
-χ(F(l)) = - 5 + 5c2(F)/2 = 0, which is absurd (n.l, 6).

This means that no bundle G with C\(G) = 0 can have hι(G(n)) i
hι(F(n)),foτaΆ n.

Using the same techniques as above one can show that, if F is a
bundle with natural cohomology and C\(F) = 0, then no bundle G
with Cγ(G) = - 1 can have h\G(n)) = h\F{n)), for all n .
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EXAMPLE 3. It is possible that two normalized vector bundles have
the same positive spectrum (see [H2]? n.7), hence the same dimensions
of the first cohomology groups for every n < 0, but different first
Chern classes. For instance ([H2], n.8) take the skew union Y of a
plane cubic and a complete intersection of two quadrics, which gives
rise to a bundle F\ then E = F(-2) has first Chern class 0 and
spectrum ( - 1 , 0, 1). If we take the skew union X of a plane quartic
and the complete intersection of a cubic and a quadric, then X gives
rise to a vector bundle which, twisted by - 3 , has first Chern class
-1 and has spectrum (-2, - 1 , 0, 1). It is easy to see that the first
cohomology modules have different dimensions when n > 0.
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