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HECKE EIGENFORMS AND REPRESENTATION
NUMBERS OF QUADRATIC FORMS

LYNNE H. WALLING

Using the theory of modular forms and Hecke operators, we ob-
tain arithmetic relations on average representation numbers of positive
definite quadratic forms in an even number of variables.

1. Introduction. When looking for multiplicative relations satisfied
by representation numbers of quadratic forms, it is natural to study
the effect of the Hecke operators on theta series attached to quadratic
forms; in this paper we use such theta series to construct Hecke eigen-
forms and thereby obtain relations on weighted averages of represen-
tation numbers of quadratic forms.

When working over the rationals we obtain the relations

r(genL, mm') = Λ/(m)r(genZ/, m')

Xda)ak ' r f genL,

a\(m, rri)
a>\

where L is an even rank lattice equipped with a positive definite
quadratic form, r(gen L, ή) is the average number of times the lattices
in the genus of L represent n, λ'(m) is an easily computed constant,
Xι is a quadratic character associated to L, and U is a particular
sublattice of L scaled by \jm (see Theorem 3.9).

We assume herein that we are working with a totally positive quadra-
tic form Q on vector space V of even dimension 2k over a totally
real number field K for a lattice I on V we define the theta series
attached to L to be the Hubert modular form

xeL

We observe that there is a family of lattices related to L which is
partitioned into "nuclear families" such that the Hecke operators es-
sentially permute the weighted averages of theta series attached to
lattices within a nuclear family. Analyzing these permutations allows
us to construct Hecke eigenforms, and analyzing the behavior of these
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eigenforms allows us to infer relations on the weighted averages of rep-
resentation numbers of lattices within a nuclear family (as described
above for K = Q).

Note that when the character associated to the lattice L is nontriv-
ial, the eigenforms we construct are only eigenforms for the subalgebra
of the Hecke algebra which is known to map theta series to linear com-
binations of theta series with the same weight, level, and character.

2. Definitions. Let K be a totally real number field of degree n
over Q let (9 denotes its ring of integers and d its different. Let
Jf be an integral ideal, J a fractional ideal, k e Z+, and χjr a
numerical character modulo ./Γ we let

and we let ^ ( Γ Q ( ^ , *f), χjr) denote the space of Hubert modu-
lar forms of (uniform) weight k and character χjr for the group

As defined in [8] (see also (2.21) of [4]), we have Hecke operators

Tψ>)\ Jtk(Γ0(^9 S), χjr) -+jrk(Γ0(S9 J9>), χjr)

where 3° is a prime not dividing 2Jf we also have operators

S{β): 2

where @ is any fractional ideal relatively prime to 2Jf (i.e. ord^ &
ord^ 2yΓ = 0 for all finite primes 3d). The collection of these oper-
ators T{&) and S{£) generate a commutative algebra F which we
call the Hecke algebra. Since the mapping from ^ ( Γ o ( ^ , J"), χjr)
onto Jtk{T^{jr, αJ?), χjr) defined by / ^ f\ (α"1 o) (where α » 0)
is an isomorphism which commutes with the operators of ̂ , we set

9 χjr)

where the sum runs over a complete set of strict ideal class repre-
sentatives J", and we consider 3^ as an algebra of operators on
"Tki SiXjr)- (Notice that / | (g}) = / | (« }) whenever α > 0,
αf > 0 and αJ? = α'S.) We let 3^ be the subalgebra of 3Γ which
acts on each component space Jf^Jf, χjr); thus 3Q is generated
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as a vector space by all operators of the form T{Jt\) T{^s)S{Jr)
where f is a fractional ideal relatively prime to 2JV, the Jti are
integral ideals (not necessarily distinct) and aJt\ ^sf

2 = @ for
some a » 0. As shown in Theorem 3.1 of [8], a ^-eigenform
/ G ̂ ( Γ Q ( ^ , ~H, ^ ) can be lifted to several linearly independent
^-eigenforms F e

REMARK. The Hecke operators T{β°) defined here differ slightly
from those defined in [2] and in [7]; letting V(&>) denote the latter
operator, we have (up to identification of isomorphic spaces via the
map / ^ / | ( g ?))

We also have S(&~1) = V{^) where V(βP) is the operator defined
in [2] and [7].

Let V be a quadratic space of dimension 2k over K with Q a
totally positive quadratic form and associated bilinear form B such
that B(x, x) = Q(x). For L a lattice on V we define the theta series
attached to L by

xeL

where τ e %?n (and %? denotes the complex upper half-plane). As
shown in [7] (see also [2]), Θ(L9 τ) is a modular form of (uniform)
weight k with quadratic character χL for the group

, nL) = μ
where nL, the norm of L, is the fractional ideal of (9 generated
by \Q{L), and <5*(L), the level or stufe of L, is the product of
(nL)~ι(nL*)~ι and perhaps some dyadic primes (see [7]). Here L#

denotes the dual of L note that S^{L) is an integral ideal and XL
is a quadratic character modulo S"(L). Also note that a nondyadic
prime 3° divides S^{L) if and only if L ^ is not modular (as defined
in [3]). (N.B.: the norm nL defined here is not the same as the norm
defined in [3].)

Let ^ b e a prime not dividing 2S"(L) as shown in [7], when
L/&L is hyperbolic we can realize Θ(L9 τ)\T(&) as a linear combi-
nation of theta series attached to c^-sublattices of L, when L/^L
is not hyperbolic we can realize Θ(L, τ)\T(^)2 as a linear combina-
tion of 6{^L, τ) and theta series attached to ^2-sublattices of L,
and θ(L,τ)\S{&>) is a constant multiple of θ(^L,τ). (A sub-
lattice L' of L is a ^-sublattice of L if &L c L' c L and
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is a maximal totally isotropic subspace of L/3°L\ a
^-sublattice L" of a ^-sublattice II of L is a ^2-sublattice of
L if dimL"/(L" n&L) = dimL'/0>L.) Thus the subspace of
^ίJk(^(L), /£,) generated by forms whose components are theta series
is invariant under the action of the subalgebra <TL of 9" where
ZΓL is generated as an algebra by all operators 5 ( J Γ ) , T(^2),
and by T{&>) when Lj&L is hyperbolic. Thus the subspace of
^ ( Γ 0 ( ^ ( L ) , n ( L ) ) , χ L ) C j?k(Γι

0(<9>(L),n(L)),χL) spanned by
theta series is invariant under the subalgebra ^ L = y L n ^δ

3. Constructing the eigenforms. From now on we set J^ = S*(L)
and we require that for all dyadic primes 3?, the localization L&> is
an even unimodular lattice. As remarked in [8], XL = 1 if and only
if L/&L is hyperbolic for all primes & \ ΊJT. The space Lj&L
is hyperbolic if and only if (—l)*discL^ = π2e where π is some
nonzero element of K̂ > and e e ^ such that ε is a square modulo
3P (and discL^ denotes the discriminant of L&>)\ since discL^> =
discV (in &&) for all primes & and by 65:19 of [3] disc V is a
square at an infinite number of primes, Lj^L is hyperbolic for an
infinite number of primes &.

DEFINITION. A lattice K is in the family of L, denoted fam L, if
K is a lattice on \ a for some α » 0, a relatively prime to 2JV, and
for every prime ^ there exist some u& e <9g> such that KUJΪ ~ L^
(where ~ denotes isometry; here Vα denotes the quadratic space V
scaled by a and Ku& denotes the lattice A> scaled by u&). We say
K e fam L is in the nuclear family of L, denoted fam+ L, if there
exists some u e^x such that Â w is in the genus of L.

REMARK. In the case that χL = 1, the requirement that a be rela-
tively prime to 2JV is superfluous: For any β » 0, we can find some
a > 0 such that α is relatively prime to l/K and the Hubert symbols
(α, ( - l ) ^ d i s c F ) ^ and (/?, ( - l ) * d i s c F ) ^ are equal at all primes
& dividing 2JT (see §63B of [3]). (Note that if & is nondyadic
then specifying the square class of β in && allows us to control
(β, (-1)* disc V)&> if ^ is dyadic then, by the Local Square The-
orem, taking β = a (modA36) we get β = αw 2 for some w e~
1 + 2 ^ and hence (/?,(- Iodise F ) ^ = (α, (- Iodise V)& .) For ^
a prime not dividing 2/Γ, disc F^ = discL^ , and since XL = 1, §3
of [7] shows that (—l)fc discL^ is a square. Thus for every prime ^
we have (α, ( - l ^ d i s c F ) ^ = (β, ( - I o d i s e V)<? , so by 66:5 of [3]
we have F α ~ F^ .
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It was remarked in [8] that the number of isometry classes in fam L
is finite when χ^ = 1 we now prove

LEMMA 3.1. The number of nuclear families in famL is 2r where
reZ.

Proof. As shown in [7], L$> is modular at all primes & f ΊJT , so it

follows from 92: la of [3] that Luβ ~ L& for all u&e&Jji. In fact, for

3? \ 2 and Ug> e tfβ>, we must have Luβ ~ L& unless L& has an odd

rank Jordan component and {u&>\&>) = -1 (see 92:2 of [3]). For &>\2

and u&e&cp, the norm group of L#> is equal to the norm group of

Luβ (since L& is even unimodular), so by 93:16 of [3], ύβ ~ L&> if

and only if V*f ~ V^, and by §63 of [3], V j ~ V^ if and only if the

Hubert symbol (u&>, (—l)kdiscL&>)&> = (u&>, ( - l^discV^)^ = 1.
Consider 3? to be a "bad" prime for L if 3? \ 2 and L&> has an

odd rank Jordan component, or if &\2 and there exists some u& e
&g> such that (u#>, (—l)fcdiscL^)^5 = - 1 . Let @\ ? . . . , gt denote
the "bad" primes for L. Thus there are at most 2t genera in fam L.
We associate to K e famL the vector ((u\ : @\), . . . , (ut: &t)) where
KUJ ~ L@ and (* : β) is the Legendre symbol if S \ 2, and (* : £f) is

the Hubert symbol (*, (~ 1 ) k disc L@)@ if S\2 thus each genus within
fam L is associated to one such vector. We claim that these vectors
associated to the genera in fam L form a multiplicative subgroup of
{±l} ί . Since genL is associated to (1, . . . , 1) and each vector has
order 1 or 2, we only need to verify that the set is closed. Take
/ , K e fam L. Thus K is on Va where a » 0, a is relatively prime
to 2JV , and %tnK is associated to the vector ((a:&\), . . . , (α : &%)).
For any prime & \ 2JV , we have K^ ~ KUJ? ~ L$>, so V^f ~ J>̂ ».
From §63 of [3], we see this means

* = (α, (-l)^

Since L&> is modular and of even rank, discL^ = β2ε for some
β e K ŝ and β e ^ . If ord^α is odd, then (—l)*β must be a
square, which implies that Lj^L is hyperbolic (see §3 of [7]). Thus
we have a^\ ^ J^2 = ^ where the ^ are primes not dividing
2/f such that L/^L (and hence J/&J) is hyperbolic, and J^ is
some fractional ideal. Let JQ = / , and let // be a ^/-sublattice
of Jj-ι. Then -^/^ must be in famL, and for any "bad" prime @,

^ = Jg. Thus if gen / is associated to the vector (u\,... , ut),
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the genus gen(J*V£) is associated to the vector (u\(a
ut(a : βt)) Thus the set of vectors associated to the genera within
famL forms a subgroup of the group {±1}*.

A genus gen K lies within fam+ L if and only if there is some
totally positive unit u such that gen Ku = gen L thus each nuclear
family within fam L contains the same number of genera, which is
the number of distinct vectors in the set

So each nuclear family is associated to a unique coset of {±\y
and thus there are 2r nuclear families within fam L where r is some
nonnegative integer. D

REMARK. If K is a ^2-sublattice of L then <P~XK e genL c
fam+ L since at all primes β Φ 90 we have K& = L@ = ZPL^, and
AΓ̂  ~ c^L^ by construction. (For a more detailed discussion of 3*-
and ^2-sublattices, see §6 of [7].)

Let L\, . . . , Lγ represent the distinct nuclear families within
fam L, and define

where the sum is taken over a complete set of isometry class represen-
tations K G fam+L z and o(K), denotes the order of the orthogonal
group O(K) of K. Notice that

0(fam+ Li, τ) e Jtk(Γ0(jr, N(L)),

To help describe the action of ^ L on 0(fam+ L/, τ), we first prove

LEMMA 3.2. L ^ 3? be a prime ideal such that 3? \ 2JV ,
and consider T{3°) as a map from ^ ( Γ o ( ^ , ILL), χ£) into

(I) If LjSPL is hyperbolic then

0(fam + L ? τ ) |Γ(^) = NK/Q(&)kt2(NK/Q(0>)k-1 + l )0(fam+# ? τ)

where K is any 3^-sublattice of L.
(2) // L/&L is not hyperbolic then

) k ~ ι- Nκ/Q(<P)k~ι + l ) θ ( f a m + ^ L , τ).
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Proof. The first assertion follows from Lemma 5.2 of [8] and the
observation that 0(fam+ L, τ) = J2U θ(genLu, τ) where the sum runs
over a finite set of totally positive units u (which represent the distinct
vectors in the set UL defined in the proof of the preceding lemma).

To prove the second assertion, we let L\, . . . , L'm represent the
distinct isometry classes in fam + L; as remarked above, any «^2-
sublattice V of L lies in f a m + ^ L . We set 57, =the number
of isometries σ of V which map &L!j to a c^2-sublattice of L\.
Then we have that (I/o(Lfj))gijis the number of ^2-sublattices of
L\ which are isometric to IPL'j, (l/0(LJ))£y is the number of 9ΰl-
sublattices of Lf- which are isometric to &L\, and by Proposition 7.3
of [7],

I v - 1
2-*o(L'j)8iJ

= N(&>)kN(&>)k-2 N(^)°{N(^)k + 1) (N(^)2 + 1).

Now Proposition 6.1 and Theorem 7.4 of [7] yield the desired re-
sult. D

Let g e n s y L be the commutative monoid consisting of all (finite)
products of the operators

{T(&>): L/&L is hyperbolic}

U {T{&>2): L/^L is not hyperbolic} U {S(J?)}

where it is understood that ^ i s a prime ideal, £P \ iJV, and J^
is a fractional ideal relatively prime to 2/f. Then as vector spaces,

is generated by g e n s y L and ^ L is generated by g e n s ^ L =
Π g e n s y L . Now we prove

LEMMA 3.3. Let T e g e n s ^ L . Then

θ(fam+Li9 τ) |Γ = A Γ θ(fam + L σ r ( / ) , τ)

where λγ is nonzero and dependent only on T', and σγ is a permuta-
tion of {1, . . . , 2r}. Furthermore, a\ = 1 and oj has a fixed point
only if oj = 1; the set {ϋj : T e gens,9QL} ybrm^ α commutative
group of order 2r which acts transitively on {1, . . . , 2r}.

Proof. Let ^ , . . . , €t be the "bad" primes for L as in the proof
of Lemma 3.1, and associate as before each genus within famL with
a unique element of {±1}', and each nuclear family within famL
with a unique element of the quotient group {±\y
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Take Γ € g e n s ^ L . Thus

T = Γ(^i) Γ ( ^ ) Γ ( ^ 2

+ 1 )

where the &i are primes (not necessarily distinct) such that
is hyperbolic for 1 < / < / and not hyperbolic for / > /, and
a&x W / + ! * 'rf+sS

2 = ^ f o r s o m e <* > 0 Let A: = j£ / + j C
••• c ί i c ί o = i be lattices such that AT,- is a ^/-sublattice of
ϋΓ/_i for 1 < / < /, and Kt is a ^f-sublattice of K^γ for i > /.
Then repeated use of the preceding lemma and Proposition 6.1 of
[7] shows that 0(fam + L, τ)\T = ΛΓ0(fam+ SKa, τ) (where λ φ 0
depends only on Γ) ; the techniques used in Lemma 3.1 show that
fam+ SKa is associated to the coset (... , {μ\Sι), ...)UL. Similarly,
if fam+ Li is associated to (... , βz , . . . )UL then θ(fam+ L, , τ)\T =
Ajθ(fam+L7,τ) where fam+Ly is associated to ( . . . , e z (o ; | ^ ) ? . . . )UL-
Hence we may associate to Γ a permutation σj of {1, . . . , 2r}
where a\ = 1 and στ has a fixed point only when στ = 1. Clearly
{στ : T7 e gens^QL} is an abelian group of order 2r that this group
is transitive follows from Lemma 3.2 and the proof of Lemma 3.1. D

This shows us that for T G gens^oL we have

L M O j τ)

2 2 M ) L ' > τ)
(since a\ = 1) so to find the eigenspaces of ^ L on

we merely need to find the eigenspaces of {σ^ : ̂  G gens^ L } acting
on C2 ' by (aι9a2,...) ^ ( α σ r ( 1 ) ? ^ r ( 2 ) ? . . . ) . 'S ince σ 2 = 1 and
{στ : F G gens^ L } is transitive, a vector (αi, α 2 , . . . ) is an eigen-
vector for {θτ : SΓ G gens^ L } only if there is some α G C such that
α, = ±tf for each /. Clearly (1, 1, . . . , 1) is an eigenvector; this
corresponds to 0(famL, τ) = ]Γ)z 0(fam+ L, , τ) , which was shown to
be a ^-eigenform in [8] in the case that χL = 1.

LEMMA 3.4. For 1 < i <r, let pn be the permutation

pn = (1 20(2 21' - 1)(3 21' - 2) (21""1 2 / " 1 + 1)

and for I < j < 2r~ι, define pij inductively by

Pij = (2' + ax 2ι + a2)-" (2<* + a^x V + at)
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where Pij-ι = (ax a2) (α/-i a{). Set

7=1

up to a reordering of fam+ L\, . . . , fam+ L 2

f , the permutations
<τ\, ... , σr generate {σγ : .7" €

Proof. Clearly the 07 commute, σ? = 1, and for *Ί < *2 < < U >
we have

atl - a^a^l) φ 1.

Hence if we demonstrate that <7i, . . . , σr G {σr : Γ G gens^ L } then
it must be the case that these σ, generate {σj : T G g e n s ^ L } .

We begin by choosing σj φ 1 and then ordering the nuclear fami-
lies within famL such that W, = (1 2)(3 4) (2r- 1 2r) = gx. Next,
using the transitivity of the group {σr '• T e g e n s ^ L } , we choose στ2

such that στ2(l) = 4. Now, στχ(*τ2 = ^ r ^ η > s o σr2(2) = 3. Thus
aTi = (1 4)(2 3)*. Next we observe that στ2(5) ψ 6 else στχ0τ2 is
a nontrivial permutation with a fixed point; thus we can reorder the
nuclear families such that σTl(5) = 8. Notice that we can choose
this reordering to preserve the equality oτ = θ\. Since we have
θτϋτ2 = στ2Gτ{ 9 w ^ get

Reasoning as above, στ(9) Φ 10, thus a reordering of {fam+L/}
gives us

and we still have σγx = o\. Continuing this process of reordering

{fam+L|} gives us σr2 = σ2 and ση = θ\.
Now we choose σχ3 such that σ^ (1) = 8 the subgroup (στx, crr2 ?

σ^3) is commutative and has no nontrivial elements with fixed points,
so arguing as before we can reorder the nuclear families {fam+L, }
so that στ3 = 03, στ2 = &2 > and σ^ = ϋ\. Continuing this process,
we find στ4 9 ... , σjr e {στ : T G gens5£L} and a reordering of the
nuclear families {fam+ L/} such that oj• = σ r, . . . , σγ = σi. π

This shows that the ^L-eigenforms of the form ]ΓV α/θ(fam+ L/, τ)
correspond to the vectors (... , a\, . . .) which are eigenforms for
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{σ\, ... , σr}. Now we show

LEMMA 3.5. Let σ\, . . . , σr be as in Lemma 3.4. For i = 1, . . . , r,
let v/ = (Vii, . . . , vi2

r) where v\j = (- l ) α with a e Z swc/z that
a 2Z~1 < j < (a +1) 2ι~ι. TTzen vi, . . . , \r generate an abelian group
of order 2r under componentwise multiplication, and every element in
this group is an eigenvector for {σj : T e gens^ L } (where the permu-
t a t i o n σ m a p s t h e v e c t o r ( a \ , a 2 , . . . ) e ( C x ) 2 ' t o ( α σ ( 1 ) , α σ ( 2 ) , - . . ) ) •
Furthermore, if v and \f are distinct elements of this group, then v and
y1 have distinct eigenvalues for some σj -

Proof. Notice that the entries of the vector v/ occur in blocks of
2 / - 1 , so

Ί if j < i ,

For 1 < j < r and v = v, vz with i\ < -- < is, take I < s such
that j > iι and j < //+1 if / + i < s then

v if / is even,

-v if / is odd.

Since σ(vv') = σ(y)σ(V), two vectors v and v; have the same eigen-
values for all the σ, if and only if v = v;. D

REMARK. For any vectors v = (a\, a2, . . .) in this group (vi, . . . ,

vΓ) we have Σiai = 0 unless v = ( l , l , . . . , l ) . T o see this, write

v = v/ v, where i\ < < is, and observe that for i < is and

j = / (mod 2ls~ι), we have

Vii if / < is or j = I (mod 2ι~s),

if i = is and j' ψ I (mod2^).

Thus aj = aι if j = / (mod 2**), and αy = -a\ if j = I (mod2/^~1)

but j ψl (mod21'*).
Let v r + 1 , . . . , y2r denote the other vectors in the group generated

by Vi, . . . yr, and write v/ = (vn , . . . , ^ / 2

r) w ^ h the nuclear families
of famL ordered as in Lemma 3.4, set

f v/7

I -

Then we have

THEOREM 3.6. Those Ej(τ) which are nonzero are linearly indepen-
dent T^-eigenforms. We also have

< 0 ( f a m + L i , τ ) ) =
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so the number of forms 0(fam+ L\, τ), . . . , 0(fam+ Lγ, τ) which are
linearly independent is equal to the number of E((τ) which are nonzero;
here 2r is the number of nuclear families within famL.

Proof. Lemmas 3.3 and 3.5 show that for T G gens5^L,

E( \\τ= I λτEi^ i f στ^ = V/'

since v, and v7 have the same eigenvalues for σ\, ... , σr only when
i = j 9 the nonzero 2£/(τ) must be linearly independent.

To finish proving the theorem, it suffices to show that the matrix
A = (Vij) is nonsingular. Now, the /, ./-entry of AAt is the dot
product of v/ with v/, but this is just the sum of the entries of the
vector v/V/. As remarked above, the sum of the entries of any vector
v in the group generated by vi, . . . , vr is 0 if v φ (1, 1, . . . , 1) thus
AAι = 2r -1 where / denotes the 2r x 2r identity matrix. D

Next we use Theorem 3.1 of [8] to lift the ^L-eigenforms iΓ/(τ)
to ^"L-eigenforms i?/(τ) G ̂ {/V, χ) where χ is a Hecke character
"extending XLXOO" with /oo(3) = sgn(αoo)

/: for an adele a e KA .
(Thus χ is a Hecke character such that the finite part of its conductor
divides the conductor of χ^9 χ{άyy) = χL(a) when άjr , the yF-part
of the adele a, is a unit at all primes dividing Jf and a G Kx such
that A = ά ( m o d ^ ) cf. [8] or [4]. Note that for u G ̂ x ,

, τ)
0 u

, τ)

so XL(U) = sgn(w)/c as required in [8].) The lift of Ei(τ) involves
theta series attached to lattices in the "extended family" of L, which
is defined as follows.

DEFINITION. A lattice K is connected to L by a prime-sublattice
chain if there exist lattices Ko = L, K\, . . . , Ks such that Ki is
a &ι- or a ^2-sublattice of K^\ (depending on whether L/^L is
hyperbolic) and K = <yKf for some fractional ideal <J and some
a > 0. Here it is understood that £P\, . . . , ^ are prime ideals (not
necessarily distinct) which do not divide 2Jf, and J^ and α f̂ are
relatively prime to 2yV also, we take Ki to be a ^/-sublattice of
AΓ/_i if Lj9°iL is hyperbolic, and we take Λ̂ z to be a ^2-sublattice
of ΛΓ/_i otherwise. If K is connected by a prime-sublattice chain to
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a lattice in famL then we say K is in the extended family of L,
denoted xfam L.

We can lift any i?/(τ) regardless of whether isz (τ) is nonzero (al-
though if Ei(τ) = 0 then the lift of £/(τ) is also zero). Theorem 3.1
of [8] shows us that each nonzero ^L-eigenform Ej(τ) can be lifted
to Cih1 linearly independent yL-eigenforms Ej(τ) where h! is the
class number of K/Q and cz is the cardinality of

{\S\: @ = a^χ - - -^iJ"1 with a > 0 and L/^L hyperbolic}

here \S\ denotes the complex of the strict ideal class of $, and it
is understood that J^ is a fractional ideal relatively prime to 2</f.
Thus if XL — 1, each nonzero £ z(τ) can be lifted to h linearly 3Γ-
eigenforms where h is the strict class number of K/Q. Furthermore,
an examination of this lift gives us

COROLLARY 3.7. For each i = 1, . . . , 2r, each component of Ei(τ)
is a linear combination of theta series attached to lattices in xfam L,
and

Ei(τ)\T(<P) = δi(&)(Nκ/Q(<P)k-1 + l ) ^ (τ)

where δ^) = ±1 so that

_ To obtain nice relations on the "Fourier coefficients'Όf the lifts
Ei(τ), we follow [4] and define the "Fourier coefficients" associated to
an integral ideal Jf by

= aμ(ξ)Nκ/Q(Sμ)-k'2

where ξ » 0, ξ^~xi = Jt9 and the form Σζ^μ(ζ)e2πiΊr(ζτ) e

9 XL) is a component of JE/(τ). Thus for ξ e
ξ > 0, and Jΐ = ξ(nL)-{ we have

Lj , ξ)

where r(fam+L?c^) = ΣL>(l/o(L'))r(Lf, ζ) with the sum running
over isometry class representatives Lf G fam+ L, and where we take
nL to be one of the strict ideal class representatives used to define
^c(«^ ? XL) = (Bjr Jtk(Γ0(yr, / ) , χL). Since JE/(τ) is an eigenform
we have
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where T{^£) € ^ L and κ{Jί) is some constant such that Eι{τ)\T{Jf)
— κ{^)Ei(τ) (see (2.23) of [4]). These relations and a scrutiny of the
lift will yield relations on the numbers r(fam+ L, ζ) as a step toward
that goal we prove

LEMMA 3.8. For a prime 3? \ 2JV, define

1 if LI 3? L is hyperbolic,

- 1 otherwise;

and define

Then for any a e @ such that a is relatively prime to Jf, XL{CL) =
sgn(a)kεL(a0). Moreover, if we let J*ί, . . . , J% be strict ideal class
representatives such that

Ei(τ) G Jίk(Jf > χ) c

{where χ is a Hecke character (<extending XLXOO"—see the discussion
following Lemma 3.6), then for Jί — ξ{nL)~ι, with ξ e nL, ξ » 0,
Jf relatively prime to 2JV and

where χ*(sf) = χ(a) for an adele a such that
& with ord^ J / = 0 and M = srf .

;,2ξ)

= 1 for all primes

Proof. Letting (a

c

b

d) G Γ Q ^ , nL) such that ad - be = 1, we see
that the restrictions on d in the transformation formula (2) of [7]
are unnecessary, but one needs to replace N(d)~ml2 by d~ml2 . Then
the arguments used to prove Theorem 3.7 of [7] show that XL{O) =
sgn(a)kβL(a) for any a e ^ with ( α ^ , yf) = 1.

Now, take μ and α e Kx such that si — a^μ and a » 0. Then

from the construction of E\{x) we find that

2a'2ξ)

, Iξ).
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Since χι is quadratic, we have

Γ (sf)eL(sf) = T(Sμ)εL(Sμ)χL(a)εL(a0) =

and so the lemma follows. D

For a prime ideal & \ 2jy we now define

λ{&) = Nκ/Q(^2(NK/Q(^)k-1 + 1) when εL(&) = 1,

and

{ + 1) when εL{&>) = - 1 .

We inductively define λ{Jt) where T{Jt) G y L by defining

c=0

and λ{^)λ{^') = λ{Jrjr') whenever ^f and Λf; are relatively prime.

THEOREM 3.9. Take ξenL, ξ^>0. Write ξ{nL)~ι = JUP where
Jf and Jf1 are integral ideals and T{Jt) € ZΓL. Then

r(fam+ L, 2ξ) = 2(^)iV^ / β(^)- / :/ 2r(fam+ L', 2ξ)

where nL1 = JίvίL and V is connected to L by a prime-sublattice
chain. In the case that K = Q, we can scale L to assume nL = Z
then for m, m1 G Z such that T{m) e ^ L we have

r(gen+L, 2mm') = λ(m)m~k/2r(genLf, 2m1)

Σ , N k-\ ( T 2mmr

where L ' e g e n L w/ϊ/z genL' determined by m.

Proof. Take £ e nL, ί » 0, and write ξ(nL)-{ = ^g f̂' with.
T{Jt) G ̂ L (i.e. ^f is relatively prime to 2</V and ord^> J£ is even
whenever eL{^) = - 1 for ^ f 2^f). To lift ^ ( τ ) , we may as well
assume that JfnL is one of the strict ideal class representatives used
to define Jt^i/K, /) then we observe that
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so we can fix a square root of #*(.<#) and define the ^nL-component

of Ei{τ) to be

where vdJj = Jί nL and Lj is connected to Lj by a prime-sublattice

chain. (Notice that if Jt = J^ 2 then we can interpret

Vijθ(L'j, τ)

as eL(S)T(S)Nκ/Q{S)kΣjVijθ(SLj, τ) since ^ L , efam+L} in
this case.) Then

Since Jt' — ξJt~{(nL)~x, we have

so

(where Ei(τ)\T(Jt) = κ, (,<f ).E, (τ)). Therefore we have

which, together with Corollary 3.7 and Lemma 3.8, give us

-kl2 £ v,7r(fam+ L), 2ξ)

Summing on / and normalizing yields the desired result.
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4. Linear independence of theta series when K = Q , χL = 1, and
rankL > 2. Suppose now that K = Q, XL = 1 > and rankL = Ik
with k > 1. Since the object of this section is to show that the Ei(τ)
constructed in §3 are nonzero (and thus by Theorem 3.6 the forms
{0(fam+L, , τ)} are linearly independent), we may assume that the
lattice L has been scaled so that nL = Z . Let q\, . . . , qt denote the
"bad" primes for L (as defined in the proof of Lemma 3.1). Since L
is even unimodular when localized at 2, an analysis of the Hubert sym-
bol (*, (—1)* discL)2 shows that 2 is not a "bad" prime for L. Fur-
thermore, since /z, = 1, there are 2ι nuclear families within fam L.
(Using the Chinese Remainder Theorem we can realize each vector
in {±iy as ((a : q\), . . . , (a : qt)) where a = P\ -ps with the
Pi primes (not necessarily distinct) and p\ \ 2JV. Since L/pjL is
hyperbolic, Kιla e famL where K = Ks, KQ = L, and Kt is a pr
sublattice of K^\. Then fam+ Kιla = genKι/a is associated to the
vector ((a: q\), ... , (a: qt)).) For any prime p the localized lattice
Lp has the Jordan decomposition

JLp — «/j _L JL J\ \

letting es = ordp n/5 and ms = rank Js = dim /5 ® Q, for b > 0 with
= e we define

'b,L)= T](e-es)ms.
e<e

Notice that rankp(6, L) depends on famL, p and b; since famL
is fixed, we simply write rankp(b) for mnkp(b, L).

LEMMA 4.1. Fix a prime q and suppose L1 e famL such that for
all primes p we have L'p ~ Lp except when p = q. (Thus q must be
a "bad" prime for L.) Then

0(fam+L,τ)-0(fam+L',τ)

= 2massL ] Γ # ( | , L ) (Z?τ - α)~*

rank^ ?̂ odd

= 2 mass L • Σ
b>0,(a,b)=\

, ^ even

^
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where
£,L) = ik(discL)-ι'2b-k

xeL/bL

and massL = Σ//Gfam+£ ^ y is an invariant for famL.

Proof. First we verify that massL is an invariant of famL.
From our construction we know that the zero-Fourier coefficient of
#(fam + L, τ) is massL; from the definition of Hecke operators we
know that the zero-Fourier coefficient of 0(fam+L, τ)\T{p) must be
(pk~ι + 1) times the zero-Fourier coefficient of #(fam + L, τ) . Using
Lemma 3.2 and identifying isomorphic spaces of modular forms via
the map

1 0
.0 P.

we see that for p a prime such that χL(p) = I we have

0(fam+L, τ)\T(p) = (pk~ι + l)0(fam+ Kl'p, τ)

where K is a /?-sublattice of L and hence Kιlp e famL. Since the
zero-Fourier coefficient of θ(fam+ Kι/p, τ) is m a s s Λ ^ , we have
that massL = m a s s Λ ^ . Now, as discussed at the beginning of this
section, any nuclear family fam+ L' c fam L has a representative of
the form (Ks)

γla where a = P\'-ps with px, . . . , ps primes (not
necessarily distinct) such that χι(Pi) — 1 and Ko = L, K\, . . . , Ks

are lattices with K[ a ^/-sublattice of K\-\ thus it follows that
mass U — mass L for any U e fam L.

From equation (82) of [5] we have

0(fam+L, τ) = massL \+^2^(a τ\(u^ ~\-k

a,b

where the sum is over all integers a and b with b > 0 and (a, b) = 1,
and

xeL/bL

(here we write e(α) for eπia). Using the results of §3 of [7] we have

Σ e ( ^ w ) = (fc")̂ L(ft") Π ί Σ
xeL/bL p prime \xep"bLlbL

Pe\W

where 6 = W with (6', 6") = 1 = ψ", N). Fix a prime p\b' and let
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e — ordp b by assumption p Φ 2 (since L is even and unimodular
when localized at 2 and so 2 \ TV; see §3 of [7]) and hence we can
write

Lp ~ J\ ± - ± Jj

where rank/5 = ms and Js ~ pe*(l, . . . , 1, es) with εs G Z* and
es < es+\. Since we are assuming Z = nL we have ej = 0. We know
LjpeL « Lp/peLp (where the isomorphism is as Z/^Z-modules),
and if x G L and x' G Lp such that x - x! G peLp then

Q(Λ ) Ξ Q(X') {modpeZ).

Thus, choosing // G 2Z such that // = /7e/6 (mod/?6*), the techniques
of §3 of [7] give us

Σ
xep~ebL/bL

I=π e{μaper*(d\ + ••• + d2

m

where

if 2 f (e-φ,.

(Recall that βi = 0 since nL = Z, so e > ei.) For L ; G famL such
that L^ ~ Lu

p with w e Z ; , w e see that cs(^Lf,p) = (u\p)cs(%,L9p)
iΐ es < e and 2 f (^)m 5 , and cs(% , Lf, p) = cs(% , I , p) otherwise.
Since (u\p) = - 1 only when p = q , the lemma now follows. D

Now we can prove

LEMMA 4.2. For each i = 1, . . . , 2t we have

Et{τ) = massL

7=1

\-k

the sum runs over all integers a, b with b > 0, (a, b) = 1,
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and for each j , δij is chosen to be 0 or 1 such that rank^ b = δij

(mod2). Also, Π}=i(l + (-1)*") = ° unless Ei{τ) = 0(famL, τ).

f. Choose TΪ9...,Tte g e n s ^ L such that θ (fam+ L, τ)|7) =
Λ,;r0(fam+Z/, τ) for some Lf e famL with Z^ ~ L£ except when
s = j . Then we can arrange the nuclear families within fam L such
that Oj = σ^ , 1 < 7 < ί, where σ ; is as defined in Lemma 3.4. Let

0 if (j/(V|) = v / ,

(where vz is defined in Lemma 3.5 and E\(τ) = Σ)^=i Vijθiίzxΐ^Lj, τ)).
Then the argument used to prove Lemma 4.1 now gives us

1

mass L ι

7=1 I rank9i 6=<J,, (2)

H(%, LJ) (bτ-a)

7=1 rank9| teί,, (2)

b=όa (2)

7=1 rank^ ftsj^ (2)

a

Finally we have

T H E O R E M 4.3. For each i = I,..., 2*, the form Ej(τ) is nonzero,
and hence the set {0(fam+ L\,τ), ..., 0(fam + L2<, τ)} is linearly in-
dependent.

Proof. If Ei{x) = θ(famL, τ) then the zero-Fourier coefficient of
Ej(τ) is nonzero. So suppose Ej(τ) Φ 0(famL, τ) we will show that
the first Fourier coefficient of Ej(τ), α,(l), is nonzero. As before, let
q\, . . . , qt denote the "bad" primes for L and set Q = qλ

ιX qt

u

where the δij are as defined in the preceding proof. From the
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preceding lemma we have

(2rmassL)~1£'/(τ)

Σ
b>\
b=δ

Σ
αez

b x ae(Z/bzy

ί '

—A:

mβZ

ae(Z/bZ)x

(a

X

B,

m=\

x
imτ I

ae{Z/bZ)x \m=l

(Here C denotes the Riemann-zeta function, and 5^ is the kth Ber-
noulli number.) Now, take QeZ such that

ί 0 if/?+ 6,

ordp Q= I I if ordp Q = 1,

[ 2 otherwise;

then for b > 1 with rank^ έ = (5/; (mod 2), we have

Σ {-a\Q)elπimalb

ae{Z/bZ)x

= J2 {-a\Q)e2πima/b

aeZ/bZ

-π
ίΊI*

- Π
ί'll*

ord^β

ord ?β

e2πimd/ge

deZ/qe~]Z
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where it is understood that in the above product q is a prime dividing
b. Unless qe~x\m, the above sum over d is zero; also, the sum over
c is - 1 if qe f m and oτdq Q is even. Thus in the Fourier expansion
of Ei(τ), the coefficient for e 2 π i τ is

(QnrkfH±,LΣ
+

n square-free

ϊnicjq

(«,β)=i
n square-free

Note that ((-l)k-{2kζ(k)/QkBk)H(^, L) φ 0. We know that

ceZ/qZ

thus to show that the coefficient of c2πιτ is nonzero, we only need to
show that the last sum in the above expression is nonzero. We have

Σ n-kχL(n)(n\Q) = χL{n){n\Q)
neZ+,(n,Q)=l

n square-free

and

n>\

n>\
n square-free

< Σ « " 2 < 1

n>\

Ώ

5. Concluding remarks. Since the techniques used in this paper are
in some ways rather general, one can imagine there are many exten-
sions of the results presented here. First let us note that equation (82)
of [5] (which we used in §4 to show Ej(τ) ψ 0 in the case that K = Q,
χL = 1 and k > 1) is extended in [6] to allow K φ Q however, in [6]
Siegel only concerns himself with free lattices. Thus the techniques of
§4 can be used to show that the E[{τ) are all nonzero in the case that
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the strict class number of K is 1; this author suspects that SiegePs
results hold regardless of the strict class number of K, and thus in
general all the £Ί (τ) are nonzero. Next, let us observe that Theorem
5.2.5 of [1] implies that the results of §3 can be extended to Siegel
modular forms when K = Q and XL = 1. In view of the techniques
used to prove Theorem 7.4 of [7], this author suspects that Theorem
5.2.5 of [1] can be extended to allow K Φ Q and χL Φ 1. If this is in-
deed the case, then the results of §3 herein may be extended to general
Siegel modular forms. Furthermore, SiegeΓs papers [5] and [6] extend
equation (82) of [5] to include Siegel modular forms attached to free
lattices; thus the results of §4 could probably be extended to Siegel
modular forms. Finally, we mention that these results should extend
to include lattices of odd rank; this, in fact is the author's current
concern.
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