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SOME INFINITE CHAINS
IN THE LATTICE OF VARIETIES

OF INVERSE SEMIGROUPS

DAVID COWAN

The relation v defined on the lattice £?{J) of varieties of in-
verse semigroups by W υ Ψ* if and only if % Π & = T Π & and
^ V & = ^V-f , where S? is the variety of groups, is a congru-
ence. It is known that varieties belonging to the first three layers
of &(*?) (those varieties belonging to the lattice Sfψί?) of vari-
eties of strict inverse semigroups) possess trivial v-classes and that
there exist non-trivial z/-classes in the next layer of Jΐf^). We
show that there are infinitely many v -classes in the fourth layer of
S?(*f), and also higher up in J?(J r ) , that in fact contain an infinite
descending chain of varieties. To find these chains we first construct
a collection of semigroups in 38ι, the variety generated by the five el-
ement combinatorial Brandt semigroup with an identity adjoined. By
considering wreath products of abelian groups and these semigroups
from J ^ w e obtain an infinite descending chain in the v -class of
^ V 38X, for every non-trivial abelian group variety %.

1. Introduction. In [Kl] Kleiman demonstrated that the relation v
defined on the lattice .^(J Γ ) of varieties of inverse semigroups by
WvT if and only if % Γ\% = T Γ\% and W V & = T V5?, where
& is the variety of groups, is a congruence. He further showed that
the lattice J?(<9ϊf) of varieties of strict inverse semigroups is isomor-
phic to three copies of the lattice &(&) of varieties of groups and
that each of the intervals [S*, & V &] and \3S, 3S V &\, where &>
is the variety of semilattices and 3S is the variety generated by the
five element combinatorial Brandt semigroup, is isomorphic to £?(&)
(and so, as a result, 2f{5^f) is a modular lattice). Consequently, for
any variety T in &(&f), the z/ class of V is trivial. &{&lf) is
sometimes referred to colloquially as the first three layers of the lattice
&(S). The "fourth" layer, [^ι, ^ 1 V &\, where 3§x is the variety
generated by the five element combinatorial Brandt semigroup with an
identity adjointed, is not nearly as nice. While it is a modular lattice
(the collection of congruences on an inverse semigroup which have the
same trace forms a complete modular sublattice of the lattice of con-
gruences on that semigroup), the z/-classes of its members are not all
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trivial and, as a result, &{3Bι N&) is not modular, and hence
is not modular (ReiUy [R2] provides an example which demonstrates
this). In this note we show that the z/-class of 3BX Nsrf , for any abelian
group variety sf , contains an infinite chain of varieties and so is far
from being trivial. The technique used is interesting in that we are
only required to know the structure of the ^-classes (as reflected by
their Schϋtzenberger graphs) of a given collection of words with re-
spect to 33ι (and not the entire ^ - f r e e object on countably infinite
X) in order to construct inverse semigroups which are then shown
to generate distinct varieties. We remark that the variety 33ι has
proved to be rather enigmatic. Even though it is generated by a small
(6-element) inverse semigroup and S?(βx) is just a 4-element chain,
its members are not easily characterized and, as Kleiman proved in
[K2], it is not defined by a finite set of identities.

Section 2 is devoted to preliminary material. In §3 we construct a
collection of inverse semigroups each of which belongs to the variety
33X but not 33. From these semigroups we construct in §4 a collection
of inverse semigroups belonging to 38X osrfn , n € ω, but not &lx\lsrfn.
In the final section we use the semigroups of §4 to construct an infinite
chain of varieties in the interval [ J W J / ^ ^ 0 ^ 1 ] which is the v-
class of 33ι V sfn (by a theorem due to Reilly [Rl]). Using this result
we can then show that a larger collection of ^-classes which are also
intervals in &{*f) possess an infinite descending chain of varieties.

2. Preliminaries. We assume that the reader is familiar with the
basic notions of inverse semigroup theory for which Petrich [P] is a
standard reference. For the basic results concerning varieties we refer
the reader to [BS]. We will consistently use the following notation:

S— the variety of all inverse semigroups

9— the variety of groups

2?2— the five element combinatorial Brandt semigroup

33— the variety generated by the five element combinatorial

Brandt semigroup B2; it is defined by the identity xyx~ι =

(xyx-1)2

B\— Bι with an identity adjoined

33ι— the variety generated by B\

— the variety of abelian groups

— the variety of abelian groups of exponent n
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FW(X)— the ^-free object on X in the variety ^

p(%)— the fully invariant congruence on FJr(X) corresponding

to the variety ^

c(w)— for any w over X u ΛΓ"1, the content of it; which is the set

{x G X: x or x~ι occurs in w}

w G E— for a word w over X U X~ι> the identity w = w2

Throughout this note X = {Xji i eω} is a fixed countably infinite
set.

For any congruence p on an inverse semigroup S, define the kernel
of p, ker p, and the trace of p, tr /?, by

ker/> = {5 G S: spe for some idempotent e in S)

= {s G S: sps2} = {s eS: sp = (sp)2},

trp = pn(Es xEs).

Every congruence p on an inverse semigroup S is completely deter-
mined by its kernel and trace, [P; III. 1.5].

An inverse semigroup S is combinatorial if %* = ε in S. The
variety 3^ is said to be combinatorial if all members of *V are com-
binatorial. The variety J 1 is a combinatorial variety. Moreover,
38X c ^ m a x = [tt; = κ ; 2 : i ( ; = i i ; 2 is a law in ^ ] for all group varieties
^ (see [PR]).

Let S be an inverse semigroup. A transformation p on 5 is a r/̂ Λί
translation of 5 if, for all x , y G 5 , (xy)/> = x(yp). Likewise, a
transformation A is a fe# translation if A(xy) = (Ax)}>, for all x, y G
5 . If, in addition, the left translation A and the right translation
p satisfy x(λy) = (xp)y, for all x , y G 5 , then the two are linked
and the pair (A, /?) is a bitranslation. The set of all bitranslations on
S under the operation of componentwise composition is an inverse
semigroup and is called the translational hull of S [P; V.1.4]. We
denote this semigroup by Ω(S).

For any s G S, the functions λs and ps defined by λsx = sx and
xps = xs, for all x G 5 , are left and right translations, respectively.
In fact, (λs, Ps) is a bitranslation and so is a member of Ω(S). The
mapping

π: s-+(A5, /?s) (5 6 S )

is a monomorphism of 5 into Ω(5) and is called the canonical ho-
momorphism of S into Ω(S).
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If S is an ideal of the inverse semigroup V then V is an ideal
extension of S (by the Rees quotient semigroup V/S).

Let V be an ideal extension of S. For each v G V, define

/Γs = υs and s/?̂  = sυ (s eS).

Then the mapping
τ(V:S): V-*Ω(S)

defined by
vτ(V : S) = (λ\ pv) (veV)

is a homomorphism of V into Ω(5) which extends π. Moreover,
τ(V : S) is the unique extension of π to a homomorphism of V into
Ω(5) [P; 1.9.2]. We call τ(V : S) the canonical homomorphism of V
into Ω(S).

Let S and T be inverse semigroups and suppose that T is an
inverse subsemigroup of S{ΐ), the symmetric inverse semigroup on
/. Let ιS denote the set of functions (written on the right) from
subsets of / into S. For any ψ e rS, denote the domain of ψ by
dψ. Define a multiplication on TS by

i(ψ ψ') = (iψ). (/y;) [/ ed^ndy/] .

For any β eJ^il) and ̂ G 7 5 5 w e define a mapping ^ ^ by

i(βψ) = (iβ)ψ [iedβ, iβedψ].

The (π^Aί) wraz//j product of S and T is the set

5 wr T = {(^, /?) G
 7 5 x Γ: d^ = dβ}

with multiplication given by

If Γ is an inverse subsemigroup of *f{I), we will sometimes write
(T, I) for Γ if we wish to emphasize the set / on which T acts.

Our definition of wreath product follows that of Houghton [H]. In
[H] the wreath product W(S, T) of inverse semigroups S and T
is, in our notation, 5wr(Γ, T) where T is given the Wagner repre-
sentation by partial right translations. Our notation follows PetricR
[P; V.4]. It is not difficult to verify that if S and (Γ, /) are inverse
semigroups then Swr(T, /) is also an inverse semigroup. In fact, if
(ψ, β)eSvίr(T,I) then
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where ψ~ι e!S and β~ι e T are defined by

d/r1 =dψ~ι = {iβ: iedβ},

β'1 is the inverse of β in T and

Ϊ > - I = (/jff- V)- 1 (/edjί-1).

Equivalently, we may define yf1 by

For any (ψ 9 β) belonging to S w r ( Γ , / ) , we have written (ψ, β)~ι

as (ψ~~ι, β~ι) even though the definition of ψ~ι depends upon β .
This is not to suggest that if (ψ, /?') is another member of S wr (T, / ) ,
then the first coordinate of (^, β')" 1 is the same as the first coordi-
nate of (ψ, β)~x. We use ψ~ι to avoid notational difficulties and
simply note that when ψ~x is used, the member of (Γ, /) to which
it is paired will be understood.

Let Vί and Ψ* be varieties of inverse semigroups. The Maΐcev
product of 1ί and Ψ, denoted by ^ o ̂ , is the collection of those
inverse semigroups S for which there exists a congruence /? on S
with the property that ep e % for all e e Es and 5//? e 7T. In
general, ^ o <V is not a variety. For example, if "V is any nontrivial
group variety and W = S? then the five element combinatorial Brandt
semigroup B^ is a member of (^ o 2^) but J?2 is not a member of
y o "V. However, when ^ is a variety of groups, ^ o ̂  is a variety
(see [P; XII 8.3] or [B]). Note that, if T and W are varieties such
that T c ar then, for any variety ^ , %oψ* c ^ o ^ and To% ς.

MaΓcev products play an important role in our efforts here, par-
ticularly in the context of the congruence v on ^{J"). If % is a
group variety and ^ is a combinatorial variety, then g< o 2^ is the
maximum variety in the v -class of ^ V2^, where ^ is the congruence
on &{S) defined by ^ί V ̂  if and only if ^ n ̂  = ̂  ΓΊ ̂  and
yrχ V ̂  = T2 V ̂ , for all 2^, ̂  e &{J) (see, for e.g., [P; XII.2,
XII.3]). By a result due to Reilly [Rl], if ^ is a variety of groups and
Ψ' is a combinatorial variety, then [^ V 2^, ^ o T\ is the i/-class of
Ύ V ̂ . For further information on Mal'cev products we refer the
reader to [P] or [Rl].

Define the binary operator Wr on the lattice of varieties of inverse
semigroups by

(Swr(Γ, / ) : S <E ίί and T e
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If ^ is a group variety and *V is a variety of inverse semigroups then
Wr(^, 2^) = %oT (see [C]).

We find it convenient in our investigations to make use of the graph-
ical representation of inverse semigroups introduced by Stephen [S],
which he calls the Schutzenberger representation of an inverse semi-
group with presentation. Schutzenberger graphs are defined as follows:

Let P = (X R) be a fixed presentation of the inverse semigroup
S with τ the corresponding congruence on FJr(X), the free inverse
semigroup on S. Let w e S and Rw the ^-class of w in S. The
Schutzenberger graph of Rw with respect to P is the labelled digraph
T(w), where

V(Γ(w)) = RW9

E(Γ(w)) = {(vι 9x9v2):υΪ9υ2eRW9 xeXuX'1

and υ\(xτ) = v2}.

The Schutzenberger representation of w (with respect to P) is the bi-
rooted labelled digraph (ww~ι, T(w), w), where ww~ι is the starί
vertex and tt; is the eftd or terminal vertex. The Schutzenberger
representation of the semigroup S is the family of birooted graphs
{(ww~ι

 ? Γ(w)9 w): w e S}. Schutzenberger graphs enjoy the fol-
lowing properties:

Let v e S, Γ(v) be its Schutzenberger graph with respect to P,
v\,v2,v3e Rv and w e(Xu X)+ (see [S]).

(a) if (v\, x9 υ2) is an edge in Γ(υ) then (v2, x~ι, V\) is also an
edge in Γ(v)

(b) if (v\, x, ι;2) and (vχ9 x9 v$) are edges in Γ(ι ) then v2 = υ$\
(c) if (v2, x,vχ) and (^3, x , v{) are edges in Γ(v) then ^2 = ^3
(d) V\(wτ) = v2 if and only if w labels a ^1 - ^ 2 walk;
(e) (wτ) >v if and only if w labels an e — υ walk;
(f) v\ 2 V2 if and only if Γ(^i) is isomorphic to Γ(^2)
(g) V\3ί v2 if and only if there exists an isomorphism from T{v\)

to Γ(v2) such that v\v^1 is mapped to V2V^X \
(h) V\ S? υ2 if and only if there exists an isomorphism from Γ(v\)

to Γ(v2) such that v.\ is mapped to v2.
We will only be considering Schutzenberger graphs of the ^ - f r e e

inverse semigroup on (countably infinite) X with respect to the pre-
sentation P = (X; p{β1)). For further properties and a detailed
discussion of Schutzenberger graphs we refer the reader to Stephen
[S].
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3. The variety 3SX. In this section we construct inverse semigroups
which belong to the variety 3SX which, in subsequent sections, will be
used to construct inverse semigroups in Wr(^, 3§x), where ^ is a
variety of abelian groups. These semigroups will be used to define an
infinite collection of varieties in the interval [^ V 3§x, Wr(^ ,&1)].
Throughout the remainder of this note p will denote the fully invari-
ant congruence on FS(X) corresponding to J 1 .

Before we proceed, we require some notation. For any word w e
X U X~ι, denote by wA the word obtained from w by deleting all
occurrences of variables not in A. For example, ι

is the word ι

LEMMA 3.1. Let w and v be words over l u l " 1 . Then wpv if
and only if c(w) = c(υ) and for all A c c(w), Aφ0f wAp{β)vA.

Proof, w pv if and only if B\ satisfies the equation w = v . Since
B\ possesses an identity, B\ satisfies the equation w = υ if and only
if 2?2 satisfies wA = vA for all A c c(wA) = c{vA). This is equivalent
to c(w) = c(v) and for all A c c(w), A φ 0 , wAρ[β)vA . D

COROLLARY 3.2. L^ί u> α ^ ^ be words over X\lX~x

if c(w) = c(v) and for all A c c(ιι ) , ^ 4 ^ 0 , wAρvA .

Proof, lϊ w pv then by Lemma 3.1, c(u ) = c(v) and for all
4̂ c c(w), A Φ 0, wAp(β)vA. But then for any A c c(κ ) = c(υ),

for all B C A, B Φ 0 , WBP(&)VB and so by Lemma 3.1, wApvA.
On the other hand, if c(u ) = c(υ) and for all 4̂ C c(iy), 4̂ 7̂  0 ,
WAPVA> then in particular, w = ̂ c(^) /? v ^ ) = Vφ) = v . D

LEMMA 3.3. IfSe^1 then Sι

Proof. Suppose that J? 1 satisfies the equation w = v , where c(w)
= c(^) = {χ{ 9 . . . ? χw} . Let 5Ί , . . . , sn be arbitrarily chosen elements
of Sι with repetitions allowed. Suppose that $ / , . . . , 5/ are those
Si that are the identity of Sι. Then S 1 satisfies w[s\, . . . , sn] =
υ [ 5 i , . . . , s n ] i f S s a t i s f i e s w A [ s { , . . . , s n ] = υ A [ s \ , . . . , s n ] , w h e r e
A = {xι, . . . , xn}\{Xiι, . . . , x/J . Since S e &ι, S does satisfy
u ^ i , . . . , sn] = vA[s\, . . . , sn] by Corollary 3.2 and so, as a result,
w[s\, ... 9 sn] = v[s\, ... , sn] is true in Sι. Since the 5, were chosen
arbitrarily, Sι satisfies the equation w = v . Therefore, 5 1 G ^ 1 . D

We require some further notation for this section. Let w e
^ . We write w = v to mean w and v are identical words,
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letter for letter, over a common alphabet (in this case X U X " 1 ) . We
say that the word v is a cyclic shift of w if w = U\U2 and v = u2u\
for words U\, u2 over the alphabet of w . For each n G ω, we de-
note by τn the equation x\x2 x^x^x^ 1 x^1 e E. Observe that
if w is the word x\Xi x^xj"1^^1 x~ι then any cyclic shift of w
can be written y\y2 -J^yf1}^1 J ^ 1 (where the y, all belong to

\X\ , . . . , Xn , Xγ , . . . , Xn }) .

The remainder of this section is devoted to a construction of a
family of inverse semigroups {S(τn): n G ω} each of which belongs
to the variety 3§~x. For each n e ω, £(!„) is obtained from
the ^ - f r e e inverse semigroup by first identifying the ideal consist-
ing of those elements whose ^-class does not lie above the ^-class
of x\Xι - - XflXf1.*^1 " x~ιp (which results in an ideal extension of
the principal factor of the .S'-class of X\X2 -XflXf1.*^1 xήιP > a

Brandt semigroup) and then mapping this semigroup into the trans-
lational hull of the principal factor corresponding to the ^-class of
X1X2 - xnxγx x2

l P - I n order to do this we require some knowledge
of the ^-class of X\x2- xnXγlx2

x •• x^1/?

LEMMA 3.4. Let w = X1X2 -x^x^x^"1 -x~ι and suppose that

v = yxy2 ... yny^ιy2l y^1 is a cyclic shift of w. Let a eXu X~ι.
(a) υp is an idempotent;
(b) (vaρ)<9ί(vρ) if and only if a = y\ ora = y n .

Proof, (a) As we remarked in §2, 3§λ is contained in j ^ m a x (be-
cause it has ^-unitary covers over the variety stf2 of abelian groups
of exponent two; see [PR]). Since sf2 satisfies the equation υ = υ2,
^max a n ( j h e n c e g§\ satisfies υ = υ2. Thus, vp is an idempotent.

(b) Since vp is an idempotent, if a — y\ or a = yn then
(vap)^(vp). On the other hand, suppose that {yap)£%{vp). Then
vaa~ιv~ιpvv~ι and so c(va) = c(v). Thus, a G c(υ). But
(vaρ)^(vp) also implies that vaa~ιpv. If a = y~ι for some /,
then {vaa~ι){y} = yiy~ιy~ιyip(^)y2, while v{y} = yiy'1 ί>{β)y2

and so, by Lemma 3.2, ΐ αα" 1 β/v. Therefore, α = yι for some /.
If 1 < i < n then {vaa-ι){y^y^n} = y i y / ^ y f ^ Γ 1 ^ ^ / y f 1 a n d

v{yι,yι,yn}
 = ^ l ^ / ^ ^ Γ ^ Γ 1 ^ 1 If ^ is any non-idempotent element

of B2, then substituting b for y\ and )^ and substituting b~ι for
j ; / , yields that (vaa~l){y^ ,y yy 0(&)v{yι ,y yy As a consequence, yι
must be either y\ or yn. D
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LEMMA 3.5. Let w = X\x2 xΛxf ! xJ* xΰι an^ suppose that u
is a proper initial segment of w with w = uu1. Let a e X U X~ι.
Then wup&wuap if and only if a is the initial letter of u1 or a~ι

is the terminal letter of u in the case that u is not the empty word,
and in the case that u is the empty word, a is the initial letter of u'
or a~ι is the terminal letter of v!.

Proof. If u is the empty word then the statement follows immedi-
ately from Lemma 3.4, so assume that u is not the empty word.

First suppose that wup&wuap. Then wup = uu'upJΐ?u'up
since u'u is a cyclic shift of w and any cyclic shift of w is an idempo-
tent modulo p. Therefore, wup&wuap implies that u'uρ<9lu'uap
(this follows from the more general result that t^f s implies that
t3ί ta if and only if s3% sa). Since u'u is a cyclic shift of w , we
have by Lemma 3.4 that a is either the initial letter of w' or α" 1 is
the terminal letter of u.

For the converse, first note that if a is the initial letter of uf

then ua is an initial segment of w and so, since wp is an idem-
potent, wup&wuap. If a~ι is the terminal letter of u then letting
u = u*a~ι we obtain that wua = wu*a~ιa = u*a~ιufu*a~ιa. Since
a~ιu'u* is a cyclic shift of w, a~lu'u*p is an idempotent by Lemma
3.4(a) and as a result,

wua = wu*a~ιa = u*a~ιu'u*a~ιaρu*a~ιaa~ιufu*pu*a~ιu'u*

= uu'u* = wu*.

It is now immediate that wup&wu*ρ = wuap. D

LEMMA 3.6. Let w = x\x2 -x^xf 1^ 1 -x" 1 . For any word v
over XuX~ι, wp&vp if and only if v pwu for some initial segment
u of w.

Proof. Suppose that wp&vp, say wa\ -a^pv , where a\, . . . ,
ajζ e X U X~ι. We prove by induction on k that wa\ a^p^wp
implies that wa\" a^ρwu for some initial segment u of w. If
k = 1 then wa\p&lwρ implies by Lemma 3.4 that a\ = X\ or xn .
If a = xi then tfi is an initial segment of w already. If a\ = xn

then wa\ pwwxn. Now

rt ΞΞ X! >XnX\X ' -X~±x[XnlXi -X^f 1 X^J t ]x^ 1 Xπ
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since [xΰιx\ 'Xnx^1 •• xή-\] *s a CΎC^C shift of w and so
[•x"1.*! xnX\l - * -x^-li]/7 is an idempotent.

But

X\ - - -XnXγ - -Xn_ι[Xn x\ ' ' ' XnX^ ' ' ' x

n-\\ = wx\ ' ' ' XnX\ * * * x

n-\

and so as a consequence, v p wxγ xnx^1 x~\ .
Now suppose that k > 1. wax-a^pdίwp implies that

wp£%wa\'-ak__\p and so, by the induction hypothesis, wa\-
<2fc_i pwu for some initial segment u of w = uu1. If u is the empty
word, then w<Zi "a^pwa^^wp and this is the same as the case
k = 1. Otherwise, by Lemma 3.5, wup^wua^p implies that a^
is the initial letter of u! or a^1 is the terminal letter of u. If a
is the initial letter of u! then υpwai'-a^pwua^ and ua^ is an
initial segment of w . If a^1 is the terminal letter of u then setting
u = b i ' " b m w e o b t a i n t h a t ^ /> w a \ - a k ρ w u a k a n d

tf

since [bmufb\ 6m_i] is a cyclic shift of w and so must £*, an idem-
potent modulo /?. But έi "bm-\[bmu!b\ &w_i] Ξ wb\ -bm-\
and so v pwb\- bm-\ and Z?i 6m_i is an initial segment of w .

Since wp is an idempotent, the converse is immediate. D

Schϋtzenberger graphs provide a concise, visual representation of
a ^-class. Because of this, in the following theorem we describe the
^-classes of the words {x\X2 XnX^x^1: n € co, n > 1} relative to
the variety 3§ι in this way.

THEOREM 3.7. Let w = x ^ * XnX\ xxϊl''' xnl The following
graph is isomorphic to the Schϋtzenberger graph of w relative to ι

where v\ is both the start and end vertex.

Vn-2 X

- X ) O X?

O-

FIGURE 3.1

The Schϋtzenberger graph of w = xχx2

with respect to &x.
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Proof. By Lemma 3.6 there are at most 2n vertices in the Schϋtzen-
berger graph Γ of w relative to J 1 as there are 2n initial segments
of w not identical to w. It is a simple exercise to verify, using
Lemma 3.1, that if u and u! are two proper initial segments of w
(that is, neither u nor u1 is identical to w) then wupwu1 implies
that u = uf. By Lemma 3.5, (wu\p, x , wu2p) is an edge of Γ if
and only if x~ι is the terminal letter of U\ or x is the initial letter of
u\, where u\u\=w. If x is the initial letter of u\, then wu2 and
wu\x are /^-equivalent with both U\X and u2 initial segments of w .
Thus, Wi X = u2. If x " 1 is the terminal letter of Wi then writing U\ =
WjX"1 we have wu\x~ιx pwu2. Since wu\p&wu\ = wu\x~ιp,we
have that wu\ pwu\x~ιx pwu2. Since both u\ and W2 are initial
segments of w ,wu\ = wu2 and so ^w 2 x" 1 = wu\. Finally, if u\
is the empty word and x~ι is the terminal letter of w then x~ι is
the terminal letter of ww = ww*x~ι p w and ̂ tί;*^" 1^: pwui. But,
ww*x~ιxpww* and both it;* and w2 are initial segments of ^ , so
^^2 = ww* ? whence wuιx~x = ww .

It follows from these remarks that Γ is isomorphic to the graph
described above via the map which sends wup to W|M|+i, for all proper
initial segments u of w . D

DEFINITION 3.8. Let F be the ^ - f r e e inverse semigroup o n l =
{Xji i e ω}. Let wΛ be the word x\ x^xf1 x~ι for each AZ G
ω. Denote the ideal {υ e F: Jv ^ Λϋ^} of F by 7(τπ) and let
J{τn) = F/I(τn). Now J(τn) is an ideal extension of J$ p which is
isomorphic to B({1}9 2ή). Let 5(τw) be the image of J{τn) under
the canonical homomorphism into the translational hull Ω(/£ J of

J™np

LEMMA 3.9. The semigroups S(τn) and S(τn)
1 belong to 3SX, for

all n eω, n>2.

Proof. The semigroup S(τn) is a homomorphic image of the &ι-
free inverse semigroup on X and so is an element of 38X. The semi-
group ^(τ^) 1 G ^ 1 by Lemma 3.3. D

In the following section we will use the S(τn) to construct a family
of inverse semigroups which belong to W Γ ( J 4 9&1) but not to stfm V
^ 1 , for ra G ω . Before we do so, we describe the S{τn).

The inverse semigroup S(τn) is isomorphic to the Wagner repre-
sentation of the ^ - f r e e inverse semigroup on X restricted to Rw p .
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That is, if aw is the element of Jr(F^ι(X)) corresponding to wp
in the Wagner representation of F<3?ι(X), then in the restricted (to
Rwnp) Wagner representation, af

w corresponds to wp, where dα^ =
{up e daw: up3?wnp and {up)awMwnp} and for all up G daf

w ,
(up)a'w = (up)aw .

An added advantage to using the Schϋtzenberger graph description
in Theorem 3.7 is that we can read directly from the graph the im-
age of any word of J(τn) under the canonical homomorphism into
Ω(/^ p) = ̂ y{Rwnp) The inverse semigroup S(τn) is generated by
the image of the Xt under the canonical homomorphism and, for
each / = 1, ... , n , the domain of the image of xz is the set of ver-
tices v for which there is an edge labelled by xι starting at v and
v is mapped to the terminal vertex of that edge. It is straightforward
to verify that S(τn) is (isomorphic to) the inverse subsemigroup of
^y{Rwnp) generated by {α, : / = 1, . . . , n} where for each /,

dα, = {wnxλ - - -Xi-χp, wnxx - xnx~x x~xp)

and

WnXχ - - Xi-ipai = WnXχ . XiP ,

WnXι "XnX~l - χ-λp0Li

= wnxx - xnx~x χrιχt pwnxχ - xnχ~ι x~}v

4. Inverse semigroups in Wr(j/m , &ι). The semigroups constructed
in §3 can be used to construct semigroups in Wr( j^ , 3SX) for m eω.
Since S(τn) is isomorphic to the Wagner representation of F3Sι{X)
restricted to Rw p, it can be represented as an inverse subsemigroup
of *f(RWnP) for all n e ω . Thus, for any group G belonging to
sfm, m e ω, Gwv(S(τn), RWJ e Wr(j/m , &λ). The semigroups we
construct in this section are inverse subsemigroups of semigroups of
this form and so belong to Wr(j/m 93Sι).

For each n e ω, n > 2, let Cn denote the cyclic group of order n .

DEFINITION 4.1. Let m, n e ω, m, n > 2. Let 1 denote the iden-
tity of Cm and let g be a generator of Cm . Let

Am,n Q Cmwr(S(τn),RWn)

be defined as follows:
Let {α/: / = 1, . . . , n) be the generators of ^(τ^) as described at

the end of the previous section. For / = 1, . . . , n - 1, define the map
φi from Rw into Cm by setting

n

dφi = dα/ = {wnx{ ---xt-ip, wnxχ -*xnx^x --x~Xp}
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and defining (wnxι --Xi-ιp)φi = l, {wnx\ •• x«xf1 --x~xp)φi = 1.
Define the map φn from Rw into Cm by setting άφn = άan =
{wnxι- xn-ιp,wnp} and defining (wnxχ -xn-\p)φn= 1, (W
= g. Then (0/, α, ) G C m wr (S(τ«), 7?^ ) for / = 1, . . . , n .

Let

Am,n = {(ψ, β) e C m wr(5(τ n ) ? i ? ^ ) : |dy| = \άβ\ < 1}

Define Γm > w to be the inverse subsemigroup of C w w r ^ τ , , ) , RWn)
generated by Am^n. Observe that Tmtn is an ideal extension of a
Brandt semigroup over the group Cm. It is not difficult to see that
Tm9n is in fact the following:

{(Ψ, β) e Cmvr(S(τn)9RwM): \iψ\ = \dβ\ < 1}

U

LEMMA 4.2. For eαcA rn, n eω, rn, n>2,
(a) Γ 1 1

(b) Γ

(c) s*
(d) J/

Proof. Tmn is an inverse subsemigroup of Cmwv(S(τn)
1, RWn)

and ^(τ^) 1 G ^ 1 by Lemma 3.9. Thus, Tm^n e Wr(j/m, 3§x) by the
definition of the Wr operator. As a consequence, Tm 9 n e Wr( j^ , 3S1)
since Γ w 5 n is an inverse subsemigroup of Tm n . On the other hand,
Γm, n is an ideal extension of a Brandt semigroup over Cm and so
contains a subgroup isomorphic to Cm . Thus, Tm^n $ &ι since &ι

is a combinatorial variety. Since Tm 9 n is an inverse subsemigroup of
Tjn n we also have that Tmn $ ^ ι . This proves both (a) and (b).

Both Tm n and Tm 5 n contain subgroups isomorphic to Cm and so
&m Q (Tm,n) and s/m c (ΓW,Λ) since j / m is generated by Cm. The
natural homomorphism onto the second coordinate maps Tm t n onto
an inverse semigroup isomorphic to S(τn) G &ι, and maps Tmn

onto an inverse semigroup isomorphic to ^(τ^) 1 G 3§x. Since both
5(τΛ) and ^(τ^) 1 contain copies of B\ , it follows that 38X c (Γ^ s l l)
and c^1 c {Tm,n). Consequently, we have that srfm\l 38X c (ΓW > Λ)
and j / m V ^ 1 c (Γ^ > π ) . It is immediate from parts (a) and (b) that
(Tm,n) c Wr(sfm,Xl) and ( Γ ^ π ) c Wr(j/m, a1). This completes
the proofs of (c) and (d). D
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LEMMA 4.3. Let m, n e ω, m, n > 2. Neither Tm^n nor T^n

satisfies the equation τn .

Proof. Substitute (φi, α/) for xt , / = 1, ... , n . •

In the following lemma we use the term kernel to mean the mini-
mum nonzero ideal of an inverse semigroup, if it exists.

LEMMA 4.4. Let ra, n eω, m, n>2. Tm>n satisfies the equation
τk f°r k < n.

Proof. Towards a contradiction, suppose that Tm t n does not satisfy
τ^ for some k < n . Assume that k is the least such integer and let

(Ψi, β\), . . , (Ψk, βk) € Tm,n be such that

l '' * k l [ ( Ψ ι >βι)> . ,(Ψk> βk)] = ( ψ , β )

is not an idempotent in Tm,n.
We first make a few observations.
(i) \άβ\ = 1: If \άβ\ = 0 then we immediately have that (ψ, β) is

an idempotent. If \άβ\ = 2 then the ( ^ , /?/) all belong to the same
^-class, namely, the ̂ -class D of (ψ 9 β). [This is because Tm,n is
completely semisimple and so 21 — / . Thus, the ^-class of (ψ, β)
is contained in the ^-class of (ψi, /?/) for all /. But if \άβ\ = 2, then
the ^-classof (ψ, β) is a maximal ^-classin Tm,n and so (ψ, β) is
^-related to (^z, j8/) for all /.] But D° is a Brandt semigroup and as
s u c h s a t i s f i e s τ k . S i n c e x \ - - X k X ϊ ι - - X k l [ { ψ \ , β \ ) , - * - Λ Ψ k > βk)\
= (ψ, β) in Z)° and {ψ 9 β) φ 0, we conclude that, in this case,
(ψ, β) is an idempotent. The only remaining possibility is that

Id)?] = 1 .
(ii) If dβ = {v} then vβ = v and vψ is not an idempotent.

We know that β is an idempotent of (S(τn)9 RWn) since the nat-
ural homomorphism of Tm^n onto its second coordinate has image
S(τn) which, by Lemma 3.9, is a member of &ι and 3?1 satisfies
the equation τ^ . Thus, vβ = v . Also, Ϊ ; ^ is not an idempotent lest

) ( )

(iii) If (ψ9 β) is not an idempotent then for any cyclic shift
1 •• J ; Λ 1 o f χ\" 'xk*\l '"xkl we have that y{ - ynyϊι •••

^ ••• 5 ( ^ > ̂ ) ] is n o t a n idempotent. To see this
note that if y\ ^y f 1 yΰ1 is a cyclic shift of * i x^xf1 x^ 1
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then yi -'ynyϊι yήι[(Ψi>βi)> ΛΨk,βk)] = (Ψf> β') can be
expressed as (φu γι)(φ2, 7i) where (ψ, β) = (φ2,γ2)(φι, Vi). If {v}
= άβ then vγ2 £ άβ' and υγ2β

f = υγ2 because vγ2γ{γ2 = vγ2

since vγ2γx = vβ = v . Then

vy2ψ' = (^72^i)(^y27i^2) = (^2^1X^2) = (^2)(^2?>i)

since C m is abelian. But (vφ2)(vγ2φ\) — vψ which is not an idem-
potent and so, as a result, (ψf, β1) is not an idempotent.

(iv) For some / e {1, . . . , k}, (ψi9 βi) = (φn, an) or (φn, an)~ι.
By (ii), if άβ = {i>} then vβ = v. Therefore, if (ψ, β) is not an
idempotent then v ψ is not the identity of Cm . The only elements
of Tm9n which can contribute non-identity elements Xo vψ are those
(ψ, β) for which |d/?| = l,(φn, otn) and (φ~ι, α " 1 ) . Now

= (V ψ\){vβχ ψ2)'" {Vβx - βk_λ ψk){vβx '

If (ψi, βi) is such that |dy?/| = 1, then in this factorization of vψ, ψι
c o n t r i b u t e s υβi - βi-ιψi = g, say, a n d vβγ - βkβx

x β~_\ ψ~λ =
g~ι, since g~ι is the only element of rψ~ι. Thus, the contributions
to this factorization of vψ by ψ\ cancel and so, if (ψ, β) is not an
idempotent, one of the (ψi, βi) must be (φn , an) or (φn , α ^ ) " 1 .

(v) None of the (ψi, βi) is an idempotent. This follows from the
general observation that if e = e2 and aebec is not an idempotent
then aebec = aea~ι(abc)c~ιec and so abc cannot be an idempotent.
Thus, (ψi, βi) an idempotent contradicts the minimality of k.

As a consequence of the aforementioned observations, the following
assumptions concerning the (ψj9 βi) can be made. First of all, by
(iii) and (iv) we may assume that (ψ\, β\) = (φn9 &n) Secondly,
assume that the k-tuple {{ψ\, β\), . . . , (ψk, βk)) contains a maximal
number of elements from the kernel of Tm^n among the collection of
k-tuples from Tm^n whose first element is (φn, an) and which witness
that Tm t n does not satisfy τk .

There are two stages to the remainder of the proof. The first stage
is showing that exactly one of the (ψi, βi) is a member of the kernel
of Tm^n . We do this in four parts.

(1) For any / e {1 , . . . , & } , both (ψi, βi) and (ψM , βM) do not
belong to the kernel of Tm^n.

Suppose that both (ψi, βi) and (ψi+\, /?/+i) belong to the kernel
of Tm,n. If άβi = {vi} and d/?/+i = {^/+i} then Viβi = Vi+\ since



36 DAVID COWAN

~ιβ^\βiβi+ι φ 0 and vMβM = vt since β~ιβ^\ φ 0. It follows that

Viβiβi+\ = Vi and

and

(since Cm is abelian)

As a consequence of this we have that

X\ X/_iXz+2 * * χkx\ ' ' ' xΓ-lXΓ+2 '"Xk

[{ψ\ ,β\),..., (ψi-i , βi-\) , (ψi+2 , βi+l) , , (Ψk , βk)]

is equal to (ψ, β) 9 which is not an idempotent by assumption. Thus,
Tm 9 n does not satisfy the equation τ^_ 2 , contrary to our choice of k.
Note that under these conditions, k > 3, by observation (iv). In the
case k = 3, the conclusion is that Tm^n does not satisfy %\ which is
absurd since all inverse semigroups satisfy the equation xx~ι e E.

(2) If (ψi, βi) is an element of the kernel then

(i) if ύβi = {wx\ Xj p}, then wx\ Xjpβt = wx\ xnxΐλ

χJιP\
(ii) if άβi = {wx\ - - xnx^1 xjιp}, then

(i) We have assumed that (ψ\, β\) = (Φn> βn) and so i' Φ 1. Let
d/?, _i = {vi, v2} (by (1) |d^/_i| = 2), and suppose that
and ^2^/-i = W2 Now, j8/-_iJS, ^ 0 so one of Wi and
be wxi'-Xjp, say Wi = wxi Xjp. Also, β~}xβ^x φ 0 so one
of t>i and ^2 must be wx\ -Xjpβi. If vi = wx\---Xjpβi then
(^/_i, jff/_ 1) can be replaced by (ψ 9 β) where d̂ S = {v\} and I IJS =
U\ and V\ψ = V\ψj-\. This new substitution witnesses that Tm^n

does not satisfy τ^. Following the argument in (1) above, we obtain
that Tm^n does not satisfy τ^_ 2 , contradicting the minimality of 4
Thus, V2 = wx\ - "Xjpβi. By observation (v), /?,_! is ap or α" 1 fdr
some p e { l n} .

If j8/_i = α p then V\βi-\ = wx\-Xjp implies that V\Xpp =
wxi'-Xjp and hence that either p = j and v\pwx\- -Xj-\ or
j = n, p = 1 and vi /? (̂;Xl JCΛJCJ"1 . Thus,
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wx\ - - xnx^1 '"xjl P > ^ the definition of ap or wxi xnpβi =
V2 = wp, which is what we want to prove.

If /?/_i = a~ι then V\βi-\ = wxi -Xjp implies that V\X~X p =
u>Xi x7y9 and hence that υ\ pwx\ - xp and p = j + 1. Note
that in this case j φ n since if u is an initial segment of w,
then wux~x pwx\ "Xn is impossible by Lemma 3.5. Therefore,

xjpβi = v2 = ϊι ~x ϊι j x

by the definition of α " 1 .

(ii) As in (i) we can assume that d/?z_i = {v\

xjι pβ\) and that v\βi-\ = ii xi -xnXχX --xjιp. Again, by obser-

vation (v), we may assume that j8/_i = α^ or α " 1 .

If /?/_i = α^ then Vχxpp = tyjci -xnx^1 --x~ιp and hence /7 =

y'+l and v\ pwx\ •• -xnxΐι •• ' ^ V Note that if 7 = «, t/ xi •• xnxf1

"'X'1 pw and so for any initial segment u oΐ w, wuxppw is

impossible, by Lemma 3.5. Therefore, by the definition of ap,

WX\ --XnXχl "X~lpβi = WX\ -XjP.

Ifβi-\ = a"1 then V\X~ιp = wx\ -x^xf1 -xjιp and so p = j
and vi /7^xi •• -x^xf1 -xnX\l ' " x 7 - i or 7 = n, /? = 1 ? vi /?wxi.

By the definition of α " 1 , it xi xnx^x xjxpβi = wx\ Xjp and

if j = /i, p = 1, w/># = ι;2 = ̂ ^1 *^/?.
(3) At most one of the (ψi, βi) belongs to the kernel of Tm,n .
Suppose that (ψj, βj) and (^7 + p , βj+p) are two members of the

kernel of Tm t n and they are the first two such elements appearing in
the sequence {(ψx ,βι),..., (Ψk,fik)} L ^ t dβj = {vx}, άβj+p =
{u\}, ^ i^ 7 = ̂ 2 and ̂ i ^ y = ̂  , and Mi^ +p = u2 and Wi^+ P = g 2 .
The claim is that if (ψ, β) is not an idempotent then neither is the
following:

X \ " - X j - \ X j + ι X X j i - X k X

Xj-\xj+\ ' ' ' xj+p-lxj+p+ι '"xk

when (ψj, βj) is substituted for Xi for all xz appearing in the expres-
sion. Call this element (ψ1, βr). If the claim is correct then TmiΆ

does not satisfy τ^_ 2 , contrary to our assumptions. We first show that
άβ' D dβ and β1 equals β on dβ. Now, with dβ = {v},

,βJ+ι),...9 (ψj+p-i, ^ +p-i)] and
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u2 € άxj+p+ι • • xkxλ~' • xj-\[{ψj+p+ι, βj+p+χ), ... ,{ψk, β k ) ,

(ψl, βx), ... , (ψj-χ, βj-

v2 e άXj+χ • ••xj+p-xKψj+x, β j + χ ) , ... , (ψj+p-χ, βj+p-x)] a n d

υ2βj+ι •••βj+p-x =Uχ\

ux e dx~+

ι

p+ι • ••x^[(ψj+p+ι, βj+p+x) ,...,(ψk, β k ) ] a n d

Thus, v e dβf and vβf = vβ = v. By calculation one sees that
vψ must be equal to vψ1' g\g2g\X g2

x > since Cm is abelian, and thus,
vψ = vψ1. Therefore, if (ψ, β) is not an idempotent, then neither
is (ψf, β1). It now follows that at most one of the (ψι, /?/) belongs
to the kernel of Tm t n .

(4) Exactly one of the (ψf, /?,-) is a member of the kernel of Tm 9 n .
First of all, observe that if none of the (ψi9 βi) belongs to the

kernel then each (ψj, βi) is (φp , ap) or (φp , ap)~ι for some p . By
the definition of the ap , if vβλ βk e dβ^1 then vβχ βkβ~x =
v. This is because if υ = wup for some initial segment u of w
then vβ\- βjc = ww'/> for some initial segment ur of w and the
difference between the lengths of u and uf is not greater than k
and hence strictly less than n. It follows that vβi-βk must be
?;/?!. By the same reasoning we can conclude that, for all 1 < / <
k, υβl'"βkβ-l'"β~{ = υβι- βi-ι. Since άβ = {^}, we can
replace each {ψi, βϊ) with an element of the kernel and conclude that
if (ψ, β) is not an idempotent then neither is the result of this new
substitution. But this cannot be since the kernel of Tm 9fl is a Brandt
semigroup over an abelian group and so satisfies the equation τk.
Therefore, exactly one of the (ψi, βi) belongs to the kernel of Tm^n .
This completes the first stage of the proof.

Let (ψj9 βj) be the only member of {{ψx, βγ), . . . , (ψk, βh)}
which belongs to the kernel of Tm,n . Let dβj = {v\}, V\βj = vι and
Vγψj = gι. We consider the following two cases: (i) V\ pwxγ -xp^
and (ii) v\ ρwx\ -x^xf1 -xp

ι.

(i) If v\ pwxγ '"Xp then υ2 = wx\ •• -x^xf1 -xp

ιρ by the first
stage, part (2). Since (ψ\, β\) = (φn, an) and k < n, by the con-
straints on the (ψi, βi) discussed thus far, for some 1 < q < y,
{ψq , βq) = (Φn , <*n)~l [That is, because for / = 1, . . . , j - 1,
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(ψi, βi) is either (φh , ah) or (φh, ah)~ι, for some h, and the pro-
jection map of Tm,n onto its second coordinate has image S(τn), we
have that vβ\β2'- βj-\ = vXiχXi2

 χίj_iP> f°Γ s o m e - ^ , */2, . . . ,
x/ _ E l u l " 1 , and that JC/ JC, •** labels a path in the Schϋtzen-
berger graph of x\ x^xf1 x"1/? from ^ to wxi xp/>. Since
j - 1 < k < n, this path must traverse the edge labelled x~ι

with terminal vertex υ. Thus, for some 1 < q < j , (ψq9 βq) =
(</>„, α^)"1.] Assume that # is the least such integer. Because
k < n and each of the (ψi9 βt) is either (φh9 ah) or (φh9 ah)~ι,
for some h, for 1 < / < q, as a consequence of the definitions
of the (φh, ah), we have that vβ\ - βq = v and (vψ\)(vβιψ2)
(vβ\ - βg-ιψq) = 1. In a likewise manner we obtain that

(Vβ\ ' ' ' βjς)β] ' ' ' βn == Vβ\ ' ' ' βk

and

[( ĵ̂ i *' *βk)Ψ7l][(vβι'''βk)β7lΨϊ~l]

-•[(vβi' 'βk)βϊl' β;lιΨϊl]=l-

As a result, xq+x -Xkχ

ql\ -xk

ι[(ψq+ι, βq+\), ... , (Ψk, Λ)l is not
an idempotent if (^, β) is not an idempotent, contrary to our choice
of k.

(ii) If v\ p wx\ - - XnX^1 '"Xpl then V2 p wx\ --xp. Using a sim-
ilar argument to that used in (i) above, we can assume that (ψ\, β\)
is the only (ψi, /?,-) equal to (φn, an) for / < 7 . Moreover, the same
argument can be used to show that at most one of the (ψj9 βi) is
equal to (φn, an) for j < i < k. In this case, by the constraints on
the (ψi9 βi) and the definitions of the (φι9 α, ) and their inverses,
(Ψk>βk) is equal to (φn,an). Thus, the only (ψi,βi) equal to
(φn , an) are (^1, /?i) and (ψk, ^ ) B u t f°Γ anY inverse semigroup,
axaa~ιya~ι is not an idempotent implies that xy is not an idem-
potent. It would then follow that Tm t n does not satisfy the equation
τk-2, a contradiction.

Since every inverse semigroup satisfies τ\, the proof is complete
if we can show that, for n > 2, Tm f n satisfies 12 . This is not dif-
ficult to verify directly: Suppose that (ψ9 β) G Tm^n is such that
(Φn, oίn){ψ9 β)(φn> oίn)~λ(ψ, β)~ι is not an idempotent. Since &ι

does satisfy 12, we have that anβa~ιβ~ι is an idempotent. Thus,
for all v e άanβa~ιβ~ι C dα«, vanβa~ιβ~ι = i;. Therefore, both
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v and van (which are not equal) are in the domain of β . For either
υ in the domain of an , there is no pair (ψ, β) in Tm^n such that
dβ — {v ? van} . It follows that Tm,n must satisfy T2 . •

LEMMA 4.5. Let m, n e ω, m, n > 2. Γ^^ satisfies the equation
Tk for k < n, but T^?n does not satisfy the equation τ^ for k > n.

Proof. This is an immediate consequence of Lemmas 4.4 and
4.3. D

REMARK. The only property of the varieties sfm that we used in the
construction of the Tm^n's was that they each satisfied the equations
τn , n e ω. This is also true of the variety srf&, the variety of abelian
groups. Thus, in a similar way, we can construct a family of inverse
semigroups {Tx} such that, for each n, T\ satisfies the equations
τ^ , for k < n , but T\ does not satisfy the equations τk , for k > n .
Moreover, for each n eω, s& \l 33X c (T^) C j ^ o J 1 .

5. A class of varieties in the interval [sfm , 33X\. The inverse semi-
groups defined in the previous section can be used to define an infinite
collection of varieties in the interval \sίm ,33X\. Once it is established
that the interval [sfm , ̂ ι] is infinite, it can then be shown that other
intervals which coincide with ^-classes are infinite.

NOTATION 5.1. Let m e ω. For each n e ω, define the variety
%n n to be the variety of inverse semigroups generated by {T^ k: k >

PROPOSITION 5.2. Let m, n eω, with m, n > 1.
(a) %n,n satisfies τ7- for j <n\
(b) %n,n does not satisfy τ ; for j >n\
(c) %,« D %m,n+i (the containment is proper).

Proof, (a) By Lemma 4.5, T^ k satisfies τ ; for j < k. There-
fore, each generator of 2^ > π satisfies Xj for j < n , and hence % , π

satisfies τ ; for j < n .
(b) By Lemma 4.3, 7^ ; does not satisfy τ y . Since T^ , j >n,^

is a generator of ^ , w , the equation τ ; is not satisfied by ^ ? π , for ;

all j > n .
(c) { 7 ^ : fc > n} D {Tx

mk: k>n+l} and so Ύm,n = ( Γ ^ ^ : A: >

n) D (7^ fc: A: > n + 1) = 2 ^ , Λ + i . That the containment is proper

follows from parts (a) and (b). D
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As a consequence of Proposition 5.2, the collection of varieties of
inverse semigroups {^,«: n > 1} forms an infinite chain in the lat-
tice of varieties of inverse semigroups. Furthermore, by Lemma 4.2,
sίm V ^ 1 c Ψm^n c W r ^ , ^ 1 ) . Since W r ^ , ^ 1 ) = J / ^ O ^ 1 ,

and the ^-class of s/m V <3&x is the interval [j/m V 3Sι, j / m o ^ 1 ] , we
have the following result.

THEOREM 5.3. The v-class of the variety s^m V 31X possesses an
infinite descending chain of varieties.

Using Theorem 5.3, we can show that other intervals in &{J) are
infinite.

LEMMA 5.4. Let T e [stfm \l 3§x, sfn o33x\, wAere s/m is the variety
ofabelian groups of exponent m, and let ?/ e [stfm \/3§x, stf™x]. Then

and

Proof. $?mCT and so s/™* c 2^m a x . Therefore,

^ v 2^ c ̂ m a x v ̂  =

Since ker/?(^) = ker/?(^ m a x ), it follows that ker/?(^ V

Also,

Since tr/?(^) = tτp(& V &), we have that tr/?(^ V ̂ ) = t r p ( ^ ) . D

THEOREM 5.5. LΛ ^ G [J/W V ^ 1 , ^ ^ ] . ΓA^Λ /Â  interval
v ^] contains an infinite descending chain.

Proof. The function θ: [s/m V J ί l , j 4 o J ί l ] - 4 [ ^ , (sfm

defined by 'Vθ = T' V ̂  is one-to-one on [s/m V 3Sγ, j / m o ^ 1 ] by
Lemma 5.4 and the fact that all varieties "V in this interval are such
that tr/>(2^) = tr/?(j/m V ^ 1 ) . Clearly θ is order-preserving, and the
result follows from Theorem 5.3. D

COROLLARY 5.6. Let %/ be a combinatorial variety contained in
s/^ax and containing S§x. Then the v-class of %' V sfm, that is,
[%S V £fm 9 ̂ m ° %/] 3 contains an infinite descending chain.

Proof. By Theorem 5.5, since ^ V stfm G [sfm V 33x, J / ^ 1 ^ ] and
( J 4 O ^ ) V ^ C J 4 O ^ , D
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REMARK. The results of this section are true for the variety
as well. That is, if Ψ*n denotes the variety of inverse semigroups
generated by {T\: k > n}, the analogous results to Proposition 5.2
hold and the remaining results of this section are true when we replace
sfm by srfg.
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