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ON THE ALGEBRAIC PART OF AN ALTERNATING LINK

MORWEN B. THISTLETHWAITE

A simple method is given for determining the algebraic part of an
alternating link. It is proved that the only alternating diagrams of
elementary links are the "obvious" ones.

1. Introduction. For each classical link L in the 3-sphere, whose
complement is irreducible and geometrically atoroidal, it is explained
in [B-S] how the pair (S3, L) admits a decomposition, unique up to
isotopy, into an algebraic part (A, Ln A) and a non-algebraic part
(N 9 L Π N). The algebraic part A is constituted, in a manner ex-
plained in §2 below, from so-called "elementary tangles" in (S3, L)
N is just the closure in S3 of S3 - A. As proved in [B-S], if the
complement of L is not a Seifert manifold, the submanifold A of
S3 may be characterized in more general terms as follows: (i) dA
meets L transversely; (ii) if π: X —• S3 is the 2-fold covering of S3

branched along L, we may choose the characteristic variety V of X
so that n~ι(A) is precisely the union of the closed-up Seifert fibered
components of X - V. If the complement of L is a Seifert manifold,
A is either empty or equal to S3 (see [B-S] for full details).

Since the characteristic variety V of X consists of incompressible
tori and S3 - L is atoroidal, each component of dA = dN is a 2-
sphere meeting the link L transversely in four points. The link L is
said to be algebraic, or arborescent, if the algebraic part is the whole
of S3.

The main purpose of this article is to describe and justify a sim-
ple method for determining the algebraic part of (S3, L) in the case
where the link L is presented as an alternating link. It is proved
in [Ml] that if L admits a connected, alternating diagram which is
prime (in the 2-dimensional sense), then S3 -L is irreducible and ge-
ometrically atoroidal. Therefore, in this paper, we shall be concerned
with precisely those links admitting connected, prime, alternating dia-
grams. The method for finding the algebraic part of (S3, L) is based
largely on Menasco's "visibility" results for Conway spheres [Ml],
and has already been investigated by F. Bonahon and L. Siebenmann.
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Indeed, Bonahon and Siebenmann have previously observed that the
method certainly achieves the desired objective, except possibly in the
awkward case where the pair (S3, L) contains no Conway sphere. It
is explained in §4 below how the Kauffman 2-variable polynomial may
be used to deal with this awkward case; in fact, the needed result is a
special case of Theorem 2 of [T2], but we feel it appropriate to give
in this paper an independent and more natural proof of this result.
The paper is concluded with some observations on the status of the
Tait flyping conjecture, and a curious classification result for Conway
spheres in alternating links. I am indebted to Francis Bonahon for
illuminating discussions.

2. Background. There now follows a rapid review of the underlying
concepts. The definitions of this section are gleaned more or less
directly from [B-S]; a minor variance of convention is that the term
"Conway sphere" refers here to a pairwise essential 2-sphere meeting
the link or tangle transversely in four points, and that "Conway disks"
are likewise assumed to be pairwise essential.

DEFINITION 2.1. A tangle is a pair (X, T), where X is a (closed-
up) punctured 3-sphere with at least one boundary component, and
T is a proper 1-submanifold of X, such that for each (2-sphere)
component F of dX, dTnF consists of four points. Two tangles
are equivalent if they are homeomorphic as pairs.

This definition generalizes the notion of tangle given, say, in [L]. In
keeping with our basic assumption in this paper that links are prime,
we shall assume that X does not admit a 3-ball in its interior meeting
T in a single knotted arc.

A tangle (X, T) with n boundary components admits a regular
projection onto a 2-sphere (extended plane) with n open disks re-
moved, Δ say (we shall refer to Δ loosely as an "n-punctured 2-
sphere"); as with links, a tangle diagram is obtained from the projec-
tion of T in Δ by introducing an overcrossing-undercrossing structure
(e.g. Fig. l(i)). The type of the tangle can be recovered by a suitable
small vertical perturbation near each crossing of the diagram; the par-
ticular tangle representative thus obtained from a diagram D will be
denoted l(D). Of course, we take the boundary components of X
to be 2-spheres for which the boundary components of Δ are equa-
torial curves. We shall say that the diagram D represents (X, T) if
the tangles (X, l(D)) and (X, T) are equivalent, and that tangle di-
agrams D\, Dι are equivalent if the associated tangles (X, l(D\)),
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(i) (ϋ) (iii)

FIGURE 1

(X, /(-D2)) a r e equivalent. We shall use the notation l(D) described
in the previous paragraph for link diagrams also.

Let D be a tangle diagram on a 2-sphere with n open disks re-
moved, denoted Δ as above. We shall assume throughout this paper
that there is not any simple closed curve in Δ meeting D in just one
point (this point would be a "nugatory" crossing); however, we shall
need to consider inessential crossings of D, defined as follows.

DEFINITION 2.2. A crossing-point x of a tangle diagram D on an
^-punctured 2-sρhere Δ is inessential if there exists an arc α c Δ,
with a Π D = x, such that both ends of a lie on the same boundary
component of Δ and α separates the four arcs of D incident upon x
into two pairs. A tangle diagram is reduced if it contains no inessential
crossings.

An example of an inessential crossing is illustrated in Fig. l(ii).
Clearly, any inessential crossing may be removed by twisting in such a
way that part of the diagram is inverted, without disturbing the type of
the tangle (Fig. 1 (iii)). If an inessential crossing is removed in this way
from an alternating diagram, the resulting diagram is also alternating,
with one less crossing.

DEFINITION 2.3. A trivial tangle with one boundary component (resp.
with two boundary components) is a tangle homeomorphic to that il-
lustrated in Fig. 2(i) (resp. Fig. 2(ii)). Thus a trivial tangle with two
boundary components is homeomorphic to (S2, 4 points) x / . A hol-
low elementary tangle is a tangle homeomorphic to the tangle with
three boundary components illustrated in Fig. 2(iii). An elementary
tangle is a tangle obtained from a hollow elementary tangle (X, T) by
glueing a trivial tangle of one boundary component to each of 0, 1 or 2
boundary components of (X, T). If all three boundary components
of a hollow elementary tangle are plugged in this manner with trivial
tangles of one boundary component, the resulting object is called an
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(i)

FIGURE 2

elementary link pair. See Fig. 6 for examples of elementary tangles,
and an example of an elementary link.

As is well known, given a suitable coordinate system, the attach-
ing map of a tangle of one boundary component is determined up to
isotopy by an element of Q u {oo} a trivial tangle together with this
glueing information is called a rational tangle. Note that an elemen-
tary link, as defined above, is merely a Montesinos link with at most
three rational substituents.

DEFINITION 2.4. A Conway sphere in a tangle (X, T) is a 2-sphere
F in int(X), meeting T transversely in four points, such that the
closure of neither component of (X, T) - (F, F n T) is a trivial
tangle with one or two boundary components.

In the presence of the assumption in this paper that (X, T) does
not contain in its interior a 3-ball meeting T in a single knotted arc,
a 2-sphere in int(X) meeting T transversely in four points bounds
a trivial tangle with one boundary component in (X, T) if and only
if it admits a pairwise compression disk; also, the closure of some
component of (X, T) — (F,FnT) is a trivial tangle with two bound-
ary components if and only if F is pairwise parallel to the boundary
of X. For definitions of "pairwise essential", "pairwise parallel", see
[B-S]. A Conway sphere in a link pair ( 5 3 , L) is defined likewise; we
merely omit the condition regarding trivial tangles with two bound-
ary components. We shall say that two Conway spheres are parallel
if they are parallel in the pairwise sense, i.e. if they bound a trivial
tangle with two boundary components.

DEFINITION 2.5. A Conway disk in a tangle pair (X, T) is a disk D
properly embedded in X, dD being contained in some component
W say of dX, with the following properties: dD does not meet Γ,
int(JD) meets T in two points, each component of W-dD meets T
in two points, and D is not pairwise parallel to W (i.e. there does not
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exist an isotopy, fixing dD, of D into W, through disks all meeting
T in two points).

The preimage in the twofold cover X of X branched along T of a
Conway sphere is an essential torus, and the preimage in J of a Con-
way disk is an essential annulus, both of whose boundary components
lie on the same boundary component of X.

Note that elementary tangles and links do not admit Conway
spheres: the double branched cover of such a tangle or link cannot
contain an essential torus, as it admits a Seifert fibration over a pla-
nar surface, where the sum of the numbers of boundary components
and singular fibers is at most three. Also, we can see immediately by
looking at double branched covers that a trivial tangle with one or
two boundary components cannot admit a Conway disk: the double
branched cover of a trivial tangle with one boundary component is a
solid torus, and the double branched cover of a trivial tangle with two
boundary components is a product of a torus with an interval. How-
ever, each elementary tangle (X, T), which is not a trivial tangle
with one or two boundary components, admits a Conway disk (illus-
trated as a dotted line in Fig. 6(i), (ii)), visibly separating the tangle
into two trivial tangles, (X\, 7Ί), (X2, T2) say; this disk cannot be
pairwise parallel to the boundary of (X, Γ) , for otherwise (X, T)
would be equivalent to one of the (Xj, TJ ) and would thus be trivial.
Conversely, it is easy to see that any tangle manufactured by glueing
together two trivial tangles along a Conway disk has a diagram of the
general form of Fig. 6(i) or (ii); hence such a tangle is elementary.

Next, we make the observation that if D is a Conway disk in a tangle
(X 9 T) for which some closed-up component ( 7 , 17) of (X, T) —
(D, D Π T) is non-trivial, then (X, T) contains a Conway sphere,
namely any 2-sphere in int(7) pairwise parallel to dY. Because of
this, the only Conway disks of interest to us in alternating diagrams
will be those occurring in elementary tangles.

From the above discussion, we have the following characterizations
of non-trivial elementary tangles.

PROPOSITION 2.6. The following statements are equivalent:

(i) (X, T) is a non-trivial elementary tangle;
(ii) (X, T) may be cut along a Conway disk into two trivial tangles;

(iii) (X, T) admits a Conway disk, but does not admit a Conway
sphere. D
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DEFINITION 2.7. A link or tangle pair is algebraic if it is elementary,
or if it can be cut along a collection of Conway spheres into elementary
tangles.

Of course, the double branched cover of an algebraic link or tangle
pair is a graph-manifold [B-S]; the decomposition just described cor-
responds to cutting the graph-manifold along incompressible tori into
pieces, each of which is homeomorphic to (S2 - 3 open disks) x Sι

plugged with 0, 1 or 2 solid tori. The double branched cover of an
elementary link is merely (*S2 - 3 open disks) x Sι plugged with three
solid tori.

DEFINITION 2.8. Let Fx, . . . , Fn be a maximal, finite collection of
pairwise disjoint and non-parallel Conway spheres in (S3, L) (such
a collection exists by Haken finiteness: see [B-S], §4.2). Then the
algebraic part of (S3, L) is the union of those closed-up components
of S3 - UjFi which are elementary.

As already mentioned, in determining the algebraic part of a link
pair (S3, L), it is necessary to consider separately the cases when
(S3, L) admits a Conway sphere, and when it does not. In the first
of these cases, clearly the ability to recognize Conway spheres and
elementary tangles is pertinent; this is dealt with in the next section.

3. Recognizing Conway spheres and elementary tangles in alternating
diagrams. First, let us recall Menasco's "visibility" result concerning
Conway spheres.

Let L be a link which is l(D) for some alternating diagram D.
Then it is shown in [Ml], by elegant and elementary means, that each
Conway sphere for L is parallel to one whose intersection with the
2-sphere S+ of [Ml] (i.e. the projection 2-sphere perturbed slightly
so as to contain the overpasses) consists of either one or two circles,
as in Fig. 3(i, ii). The method of proof is equally valid for tangle
diagrams. Let us say that a Conway sphere is visible for a diagram D
if it is parallel to one conforming to Fig. 3(i), and let us say that it is
hidden otherwise. We may assume that each shaded disk in Fig. 3(ii)
represents a portion of diagram with at least one crossing; otherwise
the Conway sphere will be parallel to one conforming to Fig. 3(i)
For example, the alternating diagram obtained by substituting a single
crossing for each of these shaded disks is the usual 6-crossing diagram
of the Borromean rings.

Let (X, l(D)) be a tangle corresponding to an alternating diagram
D in a punctured 2-sphere Δ, and let F be a Conway sphere in
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(i) (iii)

FIGURE 3

X. If F is visible, then cutting X along F clearly results in two
tangles l(D\), 1{D2), where Dγ, D2 are simply the alternating tangle
diagrams obtained by cutting Δ along F Γ)A. On the other hand,
if F is hidden, there is an isotopy of X which transforms D to a
non-alternating diagram with two extra crossings, in which the image
of F under this isotopy is now visible (Fig. 3(iii)). The two tangles
(Xx, T2), (X2, T2) obtained by cutting X along F might not admit
alternating diagrams, but we can cut each (Xf, Γz ) along a disk Σ/
meeting Tj in two points, indicated in Fig. 3 (iii) by a dotted line, into
two (possibly trivial) tangles which visibly admit alternating diagrams.
We shall see, in Corollary 3.4 below, that this disk Σz is indeed a
Conway disk for (Xz, Γ;).

In the case of the Borromean rings, Fig. 3(iii) exhibits a decompo-
sition of this (3-sphere, link)-ρair into two elementary tangles, each
presented as a diagram with four crossings. Therefore the "Borromean
rings" is an algebraic link according to Definition 2.7; it is the simplest
example of an alternating link which is algebraic, but which does not
admit an alternating, "algebraic" diagram in the sense of [C] (recall
from [C] that a diagram is algebraic if it has Conway basic polyhedron
1*).

At this point, the reader might wonder how we can tell whether
our 2-sphere F, meeting the link or tangle in four points, really is a
Conway sphere (the same question arises for purported Conway disks).
According to Definition 2.4, this amounts to deciding whether F abuts
a non-trivial tangle on both sides. This question has been dealt with
by geometric means in Menasco's paper [M2], but here we provide
an alternative approach, using properties of the Kauffman polynomial
proved in [T3]. The reader is referred to [T3] for the definition of
adequate link diagram.
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(X, T) Double of (X, T)

FIGURE 4

The next theorem provides a stronger result than is needed for the
applications; it may be of independent interest.

THEOREM 3.1. Let D be a reduced alternating diagram, with n
crossings, of a tangle {X, T) with one boundary component Then no
diagram representing that tangle has fewer than n crossings.

Proof We can form the "double" of any diagram of T, as illus-
trated in Fig. 4, to obtain a diagram of a (3-sphere, link)-ρair which
is a pure double of (X, T). The type of this link is evidently in-
dependent of the particular diagram of Γ. If we double a reduced
alternating tangle diagram in this way, a (non-alternating) adequate
link diagram is produced, which has minimal crossing-number for the
link it represents by Corollary 3.4 of [T3]. D

REMARK. Clearly the proof of Theorem 3.1 applies equally to any
tangle diagram whose double is an adequate link diagram.

COROLLARY 3.2. A reduced alternating diagram with at least one
crossing cannot represent a trivial tangle with one or two boundary
components.

Proof. Since trivial tangles admit diagrams with no crossing, the
result for tangles with one boundary component follows directly from
Theorem 3.1. Now let (X, T) be a trivial tangle with two bound-
ary components. Let (X\, T\) be the result of glueing some tangle
(Y, U) to one of the boundary components of (X, T). Then, siήoe
(X, T) is equivalent to (S2, 4 points) x / , ( 7 , U) is equivalent to
(Xi, T\). Suppose that D is a reduced, alternating diagram with n
crossings of (X, T), in a twice-punctured 2-sphere Δ. Then we can
adjoin a diagram with no crossing of a trivial tangle with one boundary
component to one of the boundary components of (Δ, D), to obtain
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a reduced diagram D\ with n crossings. According to the above ar-
gument, D\ represents a trivial tangle with one boundary component;
hence by Theorem 3.1 « = 0. D

It follows in particular that any alternating diagram of a trivial tan-
gle with one boundary component is a 4-string plait diagram, and that
any alternating diagram of a trivial tangle with two boundary compo-
nents is a diagram of a 4-string geometric braid in S2 x I.

COROLLARY 3.3. Let D be a reduced alternating diagram of a tangle
{or link) (X, l(D)), let F be a hidden Conway sphere for (X, /(£>)),
and let (X\ ,Tι),(X2, T2) be the tangles obtained by cutting (X, 1{D))
along F. Then

(i) Each tangle (X\, T\), (X2, T2) is non-trivial; moreover, if
some (Xi, T() (i = 1,2) has one boundary component, then the di-
agram of (Xi, Ti) illustrated in Fig. 3(iii) has minimal number of
crossings for diagrams representing (Xi, 7}).

(ii) The disk Σ, in (Xi, 7}) indicated by a dotted line in Fig. 3 (Hi)
is a Conway disk for (Xi, 7}).

Proof, (i) For z = 1,2 let JD, be the (non-alternating) diagram of
(Xi, 7/), obtained as in Fig. 3(iii). If (Xi, 7/) has one boundary com-
ponent, then the double of Dj is an adequate link diagram; hence, by
the remark following Theorem 3.1, Z), has minimal crossing-number
for (Xi, Ti), and in particular that tangle cannot be trivial. On the
other hand, if (Xi, TJ ) has two boundary components, the method of
proof of Corollary 3.2 shows that (Xi, Ti) is non-trivial.

(ii) Suppose Σ, were pairwise parallel to the boundary of (Xi, 7}).
Then there would be a 2-sphere G, made up from Σ/ with a small
open collar of its boundary removed, together with a disk close to and
parallel to one of the components of dXi - dΣι•, such that G and
dXi bounded a trivial tangle of two components (Fig. 3(iii)). But the
tangle bounded by G and dXi has a reduced, alternating diagram
with at least two crossings, so this tangle cannot be trivial. D

From Corollary 3.2, one may determine whether an alternating di-
agram of a tangle with one or two boundary components represents
a trivial tangle by repeatedly removing inessential crossings until a
reduced alternating diagram is obtained. Then the tangle is trivial if
and only if that reduced diagram has no crossings.
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Corollaries 3.3 and 3.4 enable us to deal effectively with hidden
Conway spheres. Using the notation of Corollary 3.3, one looks at the
(alternating) subtangles into which (AT,, 7}) is decomposed by cutting
along the Conway disk Σ, . If both these subtangles are seen to be
trivial, then (AT,, 7J) is elementary by Proposition 2.6(ii); otherwise,
(Xj, Tt) contains a visible Conway sphere, i.e. one such as G in Fig.
3(iii), and cutting along this sphere decomposes (Xt, 7}) into two
alternating, non-trivial tangles.

Let us pause for a moment, to see where we stand in our quest for
a determination of the algebraic part of (S3, L), in the case where
(*S3, L) admits a Conway sphere. Given an alternating link or tan-
gle Diagram D, we have described a method for detecting 2-spheres
meeting the link or tangle l(D) in four points, and a method for de-
termining whether that 2-sphere is pairwise essential. We have also
dealt fully with the consequences of cutting along a hidden Conway
sphere. Therefore, apart from the matter of recognizing elementary
tangles resulting from cuts along visible Conway spheres, the proce-
dure is now clear. One cuts (S3, L) along a Conway sphere, then cuts
the resulting pieces likewise, and so on, continuing the process until
one has obtained a collection of non-trivial tangle pieces of (S3, L),
none of which admits a Conway sphere. All that remains is to be
able to determine which pieces of this collection are elementary; from
Proposition 2.6, this is equivalent to determining which pieces admit
Conway disks.

Now, Menasco's analysis of Conway spheres for alternating dia-
grams may easily be adapted to deal with Conway disks. It turns out
that, as with spheres, there are "visible" and "hidden" Conway disks
(Fig. 5). However, since a hidden Conway disk always abuts a non-
trivial tangle, we shall not need to consider these: observe that in
Fig. 5(iii) one of the tangles obtained by cutting along the Conway
disk has a diagram of the same sort as that occurring in Fig. 3(Hi).
The upshot is that Conway disks in reduced alternating diagrams of
elementary tangles are always visible; moreover, since any alternating
diagram of a trivial tangle with one boundary component is a 4-string
plait diagram, any alternating diagram of a non-trivial elementary tan-
gle consists of 4-string plaits and boundary components set out in tHfc
obvious fashion (Fig. 6). Therefore elementary tangles are recogniz-
able from their alternating diagrams, and, in the case where (S3, L)
admits a Conway sphere, the process of determining the algebraic part
of (S3, L) is now complete.
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Typical elementary tangles
FIGURE 6

A typical elementary link

4 The case where (S3, L) does not admit a Conway sphere. We
shall assume throughout this section that L = /(£>) for some reduced
alternating link diagram D, and that there is no Conway sphere in
(S3, L). From Definition 2.8, we see at once that either L is an
elementary link, or else the algebraic part of (S3, L) is empty. The
aim of this section is to show that, as with elementary tangles, the only
alternating diagrams of elementary links are the "obvious" ones.

Let us recall that an elementary link is merely a Montesinos link
with at most three rational substituents. In [L-T], the notion of a re-
duced Montesinos diagram of a Montesinos link is described, and it is
proved that a Montesinos link cannot be projected with fewer cross-
ings than in such a diagram. It then follows from Theorems 1 and 2
of [Tl] that if L admits a non-alternating reduced Montesinos dia-
gram, then L cannot admit any alternating diagram; therefore we can
immediately discount links whose reduced Montesinos presentations
are non-alternating.

Now suppose L is an alternating, elementary link. Either L is
2-bridged and admits a standard 4-string plait diagram, or L admits
an alternating, reduced Montesinos diagram with three substituent ra-
tional tangles, of the type illustrated in Fig. 6(iii). Indeed, if D is
any alternating, algebraic diagram of L, i.e. an alternating diagram
whose Conway basic polyhedron is 1* [C], then from the absence
of Conway spheres in (S3, L) it is easily seen that D must be ei-
ther a 4-string plait diagram or a reduced Montesinos diagram. How-
ever, we must still consider the possibility that L might admit an
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alternating diagram whose Conway basic polyhedron is other than 1*.
This possibility is duly excluded by the following theorem.

THEOREM 4.1. If a link L admits an alternating diagram which is
algebraic, then every alternating diagram of L is algebraic.

A longer proof of a slightly more general theorem is set forth in
[T2]; there it is proved that the basic polyhedra 1*, 6*, 8* are all
"characteristic" for reduced alternating diagrams.

As in [T2], we shall use the integer invariant κ{D) of regular iso-
topy classes of alternating diagrams D with at least two crossings,
determined by the Kauffman two-variable polynomial Λ#(α, z). We
recall the following facts about K :

(i) κ(D) > 0, and κ(D) > 0 if and only if D is reduced and
prime;

(ii) κ(D) depends only on the basic polyhedron of D
(iii) if D is algebraic, κ(D) = 1.

Therefore, to prove Theorem 4.1, it will be sufficient to show that
κ(D) > 1 if D is a reduced alternating diagram whose underlying
projection is a basic polyhedron other than 1*.

Now let G = G(D) be the connected, planar graph obtained from a
black-and-white shading of D by associating, in the usual fashion, a
vertex of G to each white region say of D, and an edge of G to each
crossing of D. It will be convenient to discuss the invariant K applied
to G(D), rather than to D. We shall use the standard notation G'e,
G" for the graphs obtained from G by respectively deleting an edge
e of G, contracting the edge e. We shall say that an edge of G links
its endpoints.

DEFINITION 4.2. A connected graph G is separable if either of the
following holds:

(i) G has more than one edge, and at least one edge of G is a
loop;

(ii) G may be disconnected by the removal of a single vertex, called
a cutvertex of G, together with its incident edges.

DEFINITION 4.3. A subgraph H of a separable graph G is a cut
component of G with respect to v if it is a component of the graph
obtained by deleting from G some cutvertex υ of G together with
its incident edges.
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The nonnegative integer invariant K is characterized by the follow-
ing properties:

I κ{G) = 0 if and only if G is separable;
II if G is the graph < ^ > , κ(G) = 1

III if G has at least three edges, and e is an edge of G which is
neither an isthmus nor a loop, then

κ(G) = κ(0e) + κ{(%).

Note 4.4. The above characterization is somewhat redundant, as the
implication (κ(G) = 0 => G is separable) follows from properties II,
III. We leave this as an exercise to the interested reader.

Now, if the underlying projection of a diagram D is a non-trivial
basic polyhedron, then that diagram has no two-sided region. There-
fore the planar graph G(D) contains no vertex of valency 2, nor any
pair of vertices linked by more than one edge (Fig. 7).

ό

FIGURE 7 FIGURE 8

The proof of the Theorem is now reduced to the following.

PROPOSITION 4.5. Let G be a connected graph with at least two
edges, such that κ(G) = 1. Then G has a vertex of valency 2 or a pair
of vertices linked by more than one edge.

Proof. The conclusion certainly holds for the graph ^ 3
proceed by induction on the number of edges of G. Suppose the
statement holds for all graphs with fewer than n edges; let G be a
graph with n > 2 edges, such that κ(G) = 1 and G fails to satisfy the
conclusion of the Proposition. Since G is non-separable by Property
I above, G contains no isthmus or loop. If e is any edge of G, by
Property III and the non-negativity of K , precisely one of Qe, G"
is separable. Let us choose e so that this separable graph {G'e or
G") has a cut component H say with smallest possible number of
edges. We shall assume henceforth that this separable graph is G'e
the case where the separable graph is G" is dealt with by means of
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a dual argument. Therefore we assume that G'e is separable with a
cut component, H say, with minimal number of edges for all choices
of G'e, G"e, and that <%' is non-separable. Since κ(G%) = 1, by
the inductive hypothesis G" has a vertex of valency 2 or a pair of
vertices linked by more than one edge. However, by hypothesis G
has no vertex of valency 2, and contraction of e cannot decrease
vertex valencies; therefore G"e must have a pair of vertices linked by
more than one edge. It follows that e must belong to a cycle of length
3 in G, whose vertices are u, v, w say, where u, v are incident
to e and w is the cutvertex of G'e giving rise to the minimal cut
component H of G'e (Fig. 8). As G is non-separable, the graph K,
obtained by deleting from G the vertex w together with its incident
edges, is connected. In this graph K, e is an isthmus, so K - e has
two components; these components are precisely the cut components
of G'e with respect to w . Therefore the minimal cut component H
of Gf

e must contain precisely one of the vertices u, v let this vertex
be u. Let e\ be the edge of G joining w, w. Note that H must
contain at least one other edge / say, incident to u and not incident
to w , as u cannot have valency 2 in G and u, w cannot be linked
in G by more than one edge. Let x be the other end of / (Fig. 8).
G"e is separable, with cutvertex the single vertex, W\ say, obtained
from the identification of u, w under the contraction of e\. But
the cut component of G" , corresponding to Wi and containing the
vertex x, has fewer edges than H, contradicting the minimality of
H. D

5. Epilogue. An unexpected consequence of the method of proof
of Theorem 3.1 is the following.

PROPOSITION 5.1. Let Dif D2 be alternating link diagrams such
that there exists a homeomorphism h: (S3, /(A)) -* (S 3 > 1{D2)), and
let F be a Conway sphere for the link l(D\) which is visible for D\.
Then h(F) is visible for D2.

Proof. D\, D2 have the same number of crossings by Theorem
1 of [Tl]; let their common crossing-number be n. Let F be a§
in the statement of the proposition. Then we may assume that the
intersection of F with the projection plane is a circle which divides
the link diagram D\ into two tangle diagrams U\ and V\ say. Let
us suppose that D2 and h(F) conform to Fig. 3(ii). Then, as we
have already seen in §3, we may transform the diagram D2 to a non-
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alternating diagram Dr
2 with (n + 2) crossings, in which the image of

h(F) under this isotopy has become visible (Fig. 3(iii)). Let h' be the
modified homeomorphism of S3 which carries l(D\) to l(D2). Then
the intersection of F' = h\F) with the projection 2-sphere is a circle
which divides the diagram Df

2 into two tangle diagrams U2, V2 such
that h'{U\) = U2 and h'{V\) = V2. Since D\ has fewer crossings than
Df

2, it follows that at least one of the tangle diagrams U2, V2 does
not have minimal crossing-number for the tangle it represents. But,
as already mentioned in the proof of Corollary 3.3, doubling either of
these tangle diagrams yields an adequate diagram, thereby forcing a
contradiction. D

Thus there are two discernible types of Conway sphere for alternat-
ing links: the type of sphere which, informally speaking, is "always
visible", and the type which is "always hidden". Bonahon states that
he has a purely geometric proof (unpublished) of Proposition 5.1.

Proposition 5.1 would follow from the celebrated Tait fly ping con-
jecture, which proclaims that, given any two alternating diagrams of
a link, one can transform one diagram to the other by means of a
sequence of flypes >OKI-*Z®CX . The Tait conjecture is unsolved
in general, but in light of the results of [B-S] and the discussion of the
previous section, we may make the following assertion.

PROPOSITION 5.2. Let L be a link admitting an alternating, alge-
braic diagram. Then any two alternating diagrams of L are related
via a sequence of flypes.

Sketch proof. From Theorem 4.1, every alternating diagram of L
is algebraic. But in [B-S] it is proved that any two algebraic diagrams
of a link must be related via certain moves; in particular, it follows
from their analysis that any two alternating, algebraic diagrams of a
link are related via a sequence of flypes. D

One may deduce in particular from Proposition 5.2 that every al-
ternating diagram representing a 2-bridged link is "standard". There
does not appear to be any purely geometric proof of this available at
present.

Proposition 5.2 does not cater for those alternating diagrams which
represent links which are algebraic according to Definition 2.7, yet
which do not have basic polyhedron 1* (for example the 6-crossing
diagram of the Borromean rings). From Proposition 5.1, if a link
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FIGURE 9

admits such an alternating diagram, every alternating diagram of the
link must be of that form. Such a diagram can always be transformed
to a non-alternating diagram which does have basic polyhedron Γ ,
by repeated application of the move which transforms Fig. 3(ii) to
Fig. 3(iii), at which stage the machinery of [B-S] can be applied. It
should be possible, by means of this approach, to show that any two
alternating diagrams of an algebraic link are related via a sequence of
flypes, whether or not the diagrams themselves are algebraic; however,
we shall not pursue this matter here.

We close by remarking that the flyping conjecture does not hold for
the more general class of adequate diagrams [T3]; Fig. 9 illustrates two
adequate 11-crossing diagrams of the famous Kinoshita-Terasaka knot
with trivial Alexander polynomial, each conforming to the pattern of
Fig. 3(ii). These diagrams are not related via a sequence of flypes, and
indeed at first sight it is not obvious that they represent the same knot
type. However, their equivalence becomes fairly easy to see once they
have been transformed to the pattern of Fig. 3(iii).
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