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ON LIPSCHITZ STABILITY FOR F. D. E.

Yu-L1 Fu

Fozi M. Dannan and Saber Elaydi presented Lipschitz stability of
0. D. E., and made a comparison between Lipschitz stability and
Liapunov stability. In this paper, we will extend the concept of
Lipschitz stability to the systems of functional differential equations
(F.D.E.), and give some criteria via Liapunov’s second method.

1. Definitions. We consider the system
(1'1) x,(t)=f(taxt)’

where x € R", f: Rx C([-r,0],R") — R", f(t,0) =0, f is
continuous, x; = x(t +60), 6 € [-r,0], r > 0. The initial value
condition associated with (1.1) is

(1.2) x(0)=¢(0), 6e€[-r,0], ¢0)eC(-r,0], R").

Set ||¢|| = supgei—r,0119(6)|, where | -| is a norm in R". We always
assume that the solution of (1.1) with (1.2) is existent and unique.

DEeFINITION 1. For the solution x(¢) of (1.1) through (¢, @), (see
[2, p. 38)), (o, ) € R x C([~r, 0], R™"), R* def [0, +00), if there
exists a constant & > 0, which is independent of 7y, and another
constant M = M(d) > 0, such that

(1.3) [x:| < Ml|g||, forz>ty, and [|¢]| <7,

then the zero solution of (1.1) is said to be Lipschitz uniformly stable.
This is denoted by (1.1) € Lip. U.S.

DEFINITION 2. If in Definition 1, ¢ is allowed to be +oo, then the
zero solution of (1.1) is said to be Lipschitz globally uniformly stable.
This is denoted by (1.1) € Lip. G. U.S.

Obviously, if r = 0, each definition above reduces to a definition
for O.D.E.

Ifon [tg, T], where T is large enough, the solution of (1.1) through
(to, ¢) satisfies Definitions 1 and 2, it is said to be Lipschitz uniformly
or globally uniformly stable on the large interval [, T7].
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2. Main results.

THEOREM 1. For linear F.D.E.
(2.1) x'(8) = L(¢, xt),
where L is a linear operator, the Lipschitz uniform stability of the zero
solution is equivalent to Liapunov uniform stability of the zero solution.

Proof. If the zero solution (2.1) is Liapunov uniformly stable, from
[2, p. 163], there exists a linear operator T(¢, ¢y), such that the solu=
tion of (2.1) through (#y, ¢) can be represented by

-xt(t()’ ¢) = T(ta t0)¢s
and there exists a constant M > 0, such that
|T(t, to)] <M, fort>ty.

This implies that the zero solution of (2.1) is Lipschitz uniformly
stable.

On the other hand, it follows from Definition 1 that Lipschitz uni-
form stability implies Liapunov uniform stability.

The proof is complete.

THEOREM 2. If there exists a continuous functional V(t, y) > 0,
(t, w) €lty, +00) x C([-r, 0], R™), for which:
(i) There exist nondecreasing continuous nonzero functions u, v,
u(0) =0, v(0) =0, and v(s) < u(Ms) forall s >0, where M > 1
is a constant, and

u(lyl) <V, w) <vu(lyl), JoryeC(l-r,0], R") and t > 1.
(ii) For the solution x(t) of (1.1) through (ty, ¢), we suppose
I/Ell.l)(ts xt) < 09 t2> to,
where
. 1
Vi, x) = lm sup g (V(t+h, xen(t, 8)) =V (2, 9))-
Then (1.1) € Lip.G.U.S.

Proof. For the solution x(¢) of (1.1) through (¢, ¢), from (ii) we
have
V(ts xt) < V(tO ’ ¢) ’ t2> Zo.
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From (i) we obtain
u(lx ) S V(t, x) < V(to, ¢) <v(|g]) Su(Mlg]),  t21.

Hence, |x;| < M||¢| holds for ¢ > ¢ty and ||@|| < +oo. This completes
the proof.

THEOREM 3. Assume that
(i) There exists a functional V': [ty, +00)x C([-r, 0], R") — R*,
such that
u(lWl) S V(t! W) S v(lWD! for 4 S C([-r’ O]a Rn)’ t Z th
and

lim sup u_l_(_yQD <M,
S—’O+ s
where u, v is defined as in Theorem 2, respectively, and M > 1 is a
constant.
(i) Condition (ii) of Theorem 2 is satisfied.

Then (1.1) € Lip.U.S.

THEOREM 4. Assume that there exists a continuous function g:
[to, +00) x R' — RY, and V: [ty, +o0) x C([-r, 0], R") — R™*, for
which

(1) I/Ell.l)(t3 xt) S g(t9 V(ts xt)), t Z tOJ and h(“/") S V(t, l//) S
U(’W') » W E C([_r’ 0]3 Rn)’
where x(t) is the solution of (1.1) through (ty, ¢), h(s), v(s) are
continuous and nondecreasing nonzero functions for s > 0, satisfying
h(0)=0, v(0)=0, V(t,0)=0.
(i1) The zero solution of comparison scalar O.D.E.

(2.2) w=g(t,u), (g(t0=0),

is Liapunov uniformly stable.
Then (1.1) € Lip.U.S.

Proof. For any ¢ > 0, there exists a § > 0, such that
|u(t)| < h(e), for |up| < d.

Taking up = v(||¢]}), where % < ||¢|| < v~!(d), ¢ € C([-r,0],R"),
N = const. > 1, we find that

V(ta xt) < u(t) ) for ¢ > fo and V(tO s ¢) < U(”¢”) =Up,
by the theory of differential inequality.
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Thus, we have
;
h(ix]) SV (2, x) <ut) AN, 210, 1 < ol Sv71(d),
where x(¢) is the solution of (1.1) through (¢, ¢).
The proof is complete.

3. Examples. (1) We consider a scalar model of infectious diseases
3.1)  X'(t)=f(@t, x(®) - f(t, x(t-1)), x20, t€[t, T,

where T is large enough, 0 > 1, r > 0, f(t, x) is continuous and
nonnegative, f(¢,0)=0.
Assume that

of 1
< L < >T.
0< 5% <IN for a constant N > T

Constructing
1
V(t9 W) = WZ(O)?, U(S) =S
we have

Vit x) = ::E (; - 2%@(0 —x(t— r)))

= :t)_c ((? - zafétx, f)x) + 2%x(r = r))

tety, T] and & € [x(¢), x(t —r)], and
x ,0f@,8) _x 1

X _ >Z 2 x>
t 2 ox x—t 22Nx‘0’

for x >0 and ¢y <t < T, this implies that V(g_l)(t, x:) <0.

It follows from Theorem 2 that (3.1) € Lip. G.U.S. on the large
interval [ty, T].

(2) In (1.1), suppose that

wT(0) (2, ¥) < K(®)La(y T (0)y(0) + 1),
for y € C([-r, 0], R"),K(¢) >0, [T®K(t)dt < +co.
Taking A(|y|) = v(ly]) = V(¢, ) = La(yT(0)y(0) + 1), we have

2fo(ta xt)
(Lt X) = ey S 2KV, x),

in view of that the zero solution of y’ = 2K(#)y is Liapunov uniformly
stable, it follows from Theroem 4 that (1.1) € Lip. U.S.
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(3) For scalar D.D.E.

(3.2) x'(t) = f(t, x(t=r)), t>0,
assume that
|f(t, x(t—r))| < %Ix(t—r)l, g(t) >0, and
+°<>g(S)ds<+oo, r>0.

Constructing u(|y|) = w?(0)exp(— [ g(s)ds), v(|ly|) = y*(0),
and

it w) = v Oexp (- [ g(s)ds)
+ % ( _(i wz(e)dﬁ) exp (— /Otg(s) ds) ,

Vo (t, xi)
= -%t)(xz(t) +x2(t~r))exp (— /Ot g(s) ds)

we have

+2x(8)f(t, x(t—r))exp (— /Otg(s) ds)
_ 5_22@ (/0 x%(t + 0) d) exp(— /: g(s) ds)

-r

< 8D (x2(0) = X2t = 1) + 2x(0)x(t - 1)

X exp <—/otg(s)ds) <0,

t>1t >0, and
u(lx:]) <V (e, x)) < V(to, ¢) < v(|d]) < u(M|gl),

where M = exp(f,;"* g(s)ds) > 1.
It follows from Theroem 2 that (3.2) € Lip. G. U.S.
(4) For scalar D.D.E.

(3.3) X'(t) = —-4x3(t) + 2x3(t - r), t>0,

constructing

V(W)=W48(O)+ 0t//"’(é’)a’é’, u(s) = s, v(s) =s*+sr,
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it is easy to conclude that
I/(I3,3)(xt)so’ t> t0_>_05

and

u(lx:) < V(xe) < V(o) < llgll* + llgll®r = v(lloll) ,
léll= sup [o(6)l,
6€[—-r,0]

-1
lim sup w = limsup(1 + s%r)!/4 < M, where M > 2.
5s—0 s—0

It follows from Theorem 3 that (3.3) € Lip. U.S.

4. Remarks. (1) Obviously, Lipschitz stability implies Liapunov
stability.

(2) THEOREM 5. If the system (1.1) € Lip.U.S., then the zero solu-
tion of the system

(41) yl=D¢f(t:xl(t=01 f))yt7

is Lipschitz uniformly stable.

In fact, by the results of [2, page 46] and the definition of the deriva-
tive operator Dy, we obtain that the solution of (4.1) through (%, v)
is in the form of

y=D¢x(ZOa 0, f)!//=)€(t(), v, f)_x(tOs Os f)_'w(os W)s
where

weC(-r,01,R"), >0, x(t,0,f)=0,

i 2O Wl _ o
wli-o  [lw
Hence, there exists a constant n > 0, such that Dyx(fp, 0, f) is
uniformly bounded, whenever ||| < n. This implies that (4.1) €
Lip. U.S.

Theorem 5 means that (4.1) € Lip. U.S. is a necessary condition
for (1.1) € Lip. U.S. We can conclude that Lipschitz uniform stabil-
ity is not equivalent to Liapunov uniform stability for nonlinear sys-
tems [1].
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