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A class of braid group representations are constructed for each
non-singular bilinear form B : (Z/NZ)1 x (Z/NZ)1 -> Z/NZ with
N odd. Associated link invariants are given as a Gauss sum involving
the Seifert matrix and B . With a special choice of B these repre-
sentations are Yang-Baxterized to the si(n) generalizations of the
chiral Potts model discovered recently.

1. Introduction. The chiral Potts model [1-4] is a solvable lattice
model whose Boltzmann weights are parametrized by a high genus
curve and satisfy the star-triangle relation. The recent works [5-
11] clarified the place occupied by this model in the updated cata-
logue of solvable lattice models. Like many other models the Boltz-
mann weights of the chiral Potts model constitute the i?-matrices—
intertwiners of representations of the quantum group Ug(o). If q is
a root of unity and g = s[(2) we get the chiral Potts model. In [10,11]
an sl(n) generalization of the chiral Potts model has been obtained.

One of the most interesting features of solvable lattice models is its
connection with the braid group representations. Given a solution to
the Yang-Baxter equation, it is natural to ask the questions: Which
representations of the braid groups arise therefrom and which invari-
ants of links are obtained? The aim of this paper is to study the sί(n)
chiral Potts model from this point of view.

The trigonometric limit of the sl(2) chiral Potts model has been
known by Zamolodchikov and Fateev [12]. Kobayashi et al. [13]
found that the braid group representations arising from it lead to link
invariants related to the Seifert matrix. Goldschmidt and Jones [17]
constructed a more general class of braid group representations by
joining the Burau representation of the braid groups and the meta-
plectic representation of the symplectic groups over a finite field. They
have also studied the corresponding link invariants and found the re-
lation to the Alexander module and the Seifert matrix. In this paper
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we generalize this construction to incorporate the $l(n) chiral Potts
models. Namely, we construct group homomorphisms from braid
groups into certain finite dimensional C* algebras, and show that
the braid group representations obtained from the generalized chiral
Potts model fall into this class.

Fix a positive odd integer N and a non-singular bilinear form
B: (Z/NZ)1 x (Z/NZ)1 -> Z/NZ. For each finite sequence c of ±1
(which we call a configuration), we construct a C* algebra sf{c) gen-
erated by unitary elements satisfying q commutation relations, i.e.,
the relations of type aβ = qmβa with q a primitive Nth root of
unity. Then we construct a functor F from the category of uni-
form oriented tangles [15] to the category of vector spaces such that
F{c) = s/(c). In the special case c = (1, . . . , 1) this gives represen-
tations of the usual braid groups. The construction in [17] concerns
this case with / = 1,2. (Reading our first draft, Jones pointed out
to us that the general case can also be handled through the Burau
representation and the metaplectic characters.) The trace on sf{c)
enjoys the Markov property, so that we obtain invariants of uniform
oriented tangles. These invariants are expressed as "Gauss sums" as-
sociated with the quadratic form P <8> B + tP ®ιB where P denotes
a Seifert matrix of the link. In fact, they are invariants of the equiv-
alence classes of Seifert matrices. For N an odd prime, they can be
evaluated in terms of classical Alexander polynomials provided the
above quadratic form is non-singular. (See [17] in which a detailed
study is given for / = 1, 2.)

In [14] Jones proposed the problem of Yang-Baxterization—to find
solutions of the Yang-Baxter equation corresponding to given braid
group representations. We show that with a particular choice of B
(and only in that case), the representations above can be Yang-
Baxterized, and they are obtained from the sl(n) chiral Potts model.
H. Murakami taught us that this particular choice of B is explained
by the n-fold cyclic cover of S3\L (L : link).

The intertwiner of the sί(n) chiral Potts model splits into four
pieces [10, 11]

(1.1)
ft

We shall show that the operator T (or T) satisfies the Yang-Baxter
equation independently of others, and more generally that T, 7 and
S satisfy the Yang-Baxter equation in a twisted sense (see (1.2) below).
This gives an alternative proof of the Yang-Baxter equation for the R
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matrix (1.1) [11]. Consider for simplicity the trigonometric limit. In
the setting described above, the T, T and S operators give rise to
elements Tk(c\x) e Hom c ( j/(c), stf(sk(c))) (x e C) for various
configurations c. Here sk = (k, k + 1) is a transposition acting on
configurations. The twisted Yang-Baxter equation takes the form

(1.2) Tk(sk+ιsk(c) x)TM(sk(c) xy)Tk(c; y)

= Tk+ι(sksk+ι(c);y)Tk(sk+ι(c);xy)Tk+ι(c;x).

The braiding operators Tk(c)±ι obtained from Tk(c;x) in the limit
of x±ι —• 0 coincide with those associated with a particular bilinear
form of rank / = n - 1.

The plan of our paper is as follows. In §2 we define the algebras
sf(c). In §3 we give the functors from the category of uniform ori-
ented tangles to the category of vector spaces, and evaluate the re-
sulting invariants. In §4 we extend a particular case of the braiding
operators to the elementary operators of the sl(n) chiral Potts models
and prove the Yang-Baxter equations for them in s/(c). Finally we
show that the trigonometric Yang-Baxterization is possible only for
this special case.

2. Algebra stf.

2.1. Notations. We fix a positive odd integer N, and a primitive
Nth root of unity q. Let L be a free Z/NZ module of rank /, and
let B be a non-singular bilinear form on L

B:LxL-> Z/NZ, dctB e {Z/NZ)X .

We denote by A the skew-symmetric part of B

(2.1) A(a,b) = ${B(a,b)-B(b,a)).

Let ^ be a Z/NZ linear isomorphism of L such that

and let v be its inverse. Note that B(a, b) = B(ά, b), A(a9 b) =

B{a, ψ ) .
Let M be a positive integer and let &M be the symmetric group

of degree M, i.e., w e &M is a bijective map from {1, . . . , M} to
itself. We consider oriented strings. More precisely, a configuration
is a map c : {1, . . . , M} -> {±1}. We often write (c(l), . . . , c(M))
to indicate a configuration c. We say that c is of type (M+, MJ)
where M± = #{k\c(k) = ±1}, M = Λ/+ + M_ . Graphically a configu-
ration c is a set of M strings such that the kth string (counted from



40 ETSURO DATE, MICHIO JIMBO, KEI MIKI, AND TETSUJI MIWA

+ + - + - - +

I I I I I I i
FIGURE 2.1

Configuration ( 1 , 1 , - 1 , 1 , - 1 , - 1 , 1 )

left to right) is downward or upward according as c(k) = 1 or — 1,
respectively.

The symmetric group &M acts on the set of configurations of M
strings;

W(c) = COW~1 .

Let c, d be configurations of M strings. There exists w e &M such
that d = w(c) if and only if c and d are of the same type. We
denote c ~ d if this condition holds.

2.2. Algebra s/(c). Let c be a configuration of M strings. We
shall define a C algebra sf{c) with a unit which we denote by 1. If
M = 0 or 1, J / ( C ) is simply C 1. If M > 2, we take generators
x£ = x%(c) of sf(c) where 1 < /: < M- 1 and a e L. We impose
the following relations.

(2.2) x°k = 1,

j φ c | = qA(b,a)χa+b i f (C(k),c{k + 1)) = (1 , 1)

= qΛ{a,b)χa+b i f ( c ( £ ) ? c ( f c + ! )) = ( _ ! ? _ ! j

= ̂
+ft

 iϊc{k)φc(k+\),
γdγb _

 n
B(a,b)γb

 γ
a \γr(lr-LΛ\—\

x
k

x
k+ι - ̂

 x
k+\

x
k ii c(Λ + i; - i

xkxί=xk xk if|fc-fc;|>2.

The set {x^1 ••• Ĵ/lJ|fljk e L (1 < fe < Af - 1)} constitutes a C
linear basis of J / ( C ) . Therefore, if M ^ 0 ? d i m c ^ ( c ) =
where D = Nι.

We define a C linear map e : J / ( C ) —• C by

^ • • • ^ M - 1 ) = 1 if αi = --- = αA r_ 1 = 0

= 0 otherwise,

and an anti-linear anti-involution * : sf{c) -+ stf{c) by
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Then we have

e(ab) = εφa) for a, b e sf (c),

and sf{c) equipped with the norm \a\ = sup^d^l1/2^ - α*α is not
invertible} is a finite dimensional C*-algebra.

2.3. Isomorphisms ιc,. Suppose that c and d are configurations
of M strings such that c ~ c'. We shall define canonical algebra
isomorphisms

such that

(2.3)

ε o fc, = ε , * o ιc

c, = ιc

c, o *,

We have in particular ι{ o /£, = i
Suppose that d = sk(c) where sk is the transposition (fc, fc + 1).

We shall define ιc

c, in this case as follows. If c(k) = c{k + 1), then
c = d, and we set ιp = i d ^ ) . Suppose that c(k) = 1 and c(k+1) =
- 1 . Then c'(fc) = - 1 and c'(A: + 1) = 1. We define

(2.4) 4 {xa

k, (d)) = xa

k, (c) if \k - k'\ > 2,

Note [4_1(c),x[β + a ) / 2(c)] = [ 4 + 1 ( c ) , ^ + a ) / 2 ( c ) ] = 0, since
5(α, a + a) = 0. We also define

(2.5) $(xp(c)) = xa

k {d) ii\k-k'\>2,

£(**(*)) = •
Ίc ( ^a

PROPOSITION 2.1. ιc, and ι{ given by (2.4) and (2.5) define algebra
c

homomorphisms. They are inverses to each other and compatible with
ε and *.
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Proof. The proof is by case checking. We show only one case c{k) =
1, c{k + 1) = —1 in which we use (2.1):

jC(χa (cfX\ιc'(χb (r'λλ

= xa (c)x{a+a)l2(c)xb (c)x{b^b)/2(c)

i-χ{c)x{^b+h)l\c)

D

Now consider arbitrary c and d such that d = w(c) for some
w G &M - Choose a reduced decomposition of w

Define configurations c^ (0 < j < m) by

and set
= Jcim~l) /λ) o /0)

*W l

c(m) ' ' lc{2) lc(l)

PROPOSITION 2.2. ιw: $/{c) —• ^ ( c ' ) w arc algebra isomorphism
defined independently of decompositions of w .

Proof. We need to show that the defining relations in &M, i.e.,

si = 1, tyfy+ity = ty+ityty+i, ^ % = ^'Jjk (|fc-fc ; | > 2), are
preserved by ιc

c,. For example, set c^ = sk(c) and c^ = sk>(c). If

|fc - ^ Ί > 2, then we have to prove *^2V(2) = ^/(V(1). The proofs of
this and other necessary equalities are straightforward. D

We define ιc, = ιw . Then all the requirements of (2.3) are satisfied.
The structure of the algebra stf(c) is thus determined by the type

(A/+, M-) of the configuration c. We shall henceforth identify s/{c)
and $/(d) with c ~ d via the isomorphism ιc,, and let them denoted

by J / = J / M + , M _ .

2,4. Representation. Let us construct a representation of J / ( C ) .

Suppose that L is given by an exact sequence

0 -» Ker π -> (Z/NZ)n ^-> L -> 0.

We identify a column vector α = '(αo > > fl/i-i) mod Ker π with the
element π(α) e L. Set (a,b) = Σ"=d &&. Suppose that B is an
nxn matrix with the matrix elements in Z/NZ such that (a, Bb) = 0
if a E Kerπ or b G Kerπ. Then a bilinear form B(a, b) on L is
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defined by B(a, b) = (a,Bb) = φ, 'Bά). Note that Ba, ιBa and
Aa belong to (Ker π)L . Set V = Cυ0 Θ Θ CυN-χ = CN. Let Z
and X be the following linear operators on V,

and let Zz and X{ be the following operators acting on V®n ,

ith

Z / = l ® - - - ® Z ® - - - < g > l ,
ith

I/ = 1 0 ® I ® ® 1 .

For <2 G (Z/NZ)n we set

9τ<2 T^O ryan-\ γa γao γan-ι

Note that ZβX^ = q^a^XbZa . Consider the subspace WM of F ^ n

given by

W^ = {we V®n\Zaw = wfoτae Kerπ}.

If a e (Kerπ) 1 then Xa acts on W^ . With all these preparations we
can construct a representation p of sf(c) on {W®))®M as follows.

itth (A:+l)th

where

% a , ha_=

2.5. Locality. Fix a type (Af+,Af_) of configurations. For config-
urations c, c7 of the same type, the expression of x%(c) in terms of
x%{d) is in general nonlocal, i.e., depends on the latter with \kr -k\ >
1. Nevertheless the left regular representation on si —

= aβ (α

can be made local in the sense explained below.
For each c let us introduce the basis elements

where a^eL and

B+ί(a, b) = B{a, b), B~\a, b) = B(b, a).

We define the isomorphism pc: s/ ^ (cD)®(M~V by

AϊCKc)*1'""'""-') =VOl (8> ® VaM_x ,

where {va}aeL signifies the standard basis of CD.
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Let c, c' be two configurations of the type (Af+, MJ). We set for

Clearly one has

; ;

 c

aι,...iaM_ί

We say that α e J / is local relative to the pair {c 9 c') if the matrix

element ( α ^ v ' v ' 1 h a s t h e form

for some function w(a, b, e, f).
The elements (.x£(c)) are local relative to (c,

-i > *k, ak+ι, 4 )

= M Oaa' Oa+b a'
ω\ak+\ > ak > ak-\ > ak)

1 -••••• I I I k k

for c(k) = c(k + I) =-I,

= ( Π δa,a; I hk-ak-b ά ^ « , ak_x , Uk

Wk )

α fc+l' alc> ak-\)

- 1 ) = 1,

where

ω(a,b,e,f) = qB(f-b,ά+e)/2+A(b,f) foτa, b, e, f eL,

ak = {ak_x +άk_ι+ak+ί +άk+ί)/2.

The matrix elements of JC|(C) are also local relative to (c, c).
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3. Link invariants.

3.1. Elements Tk(c),Ek(c). Set

/(α) = -^QB(a'a)l2 > Ka) = ̂  Σ fΨ)<iB{a>b) > D = Nι.

Note that g(ά) = g(a) = g(-a) for g = f or / . For each con-
figuration c = (c(l), . . . , c(M)), we define the following elements in

(3.1) Tk(c)=

where k = 1 , . . . , Λf - 1 and f(a)* means the complex conjugate.
Here and in what follows, whenever E^c) appears the condition
c(k) φc(k+\) is implied. Clearly, if \k - k'\ > 1 then

(3.2) Tk(sk.(c))Tk.(c) = Tk,{sk{c))Tk{c),

Ek{sk,{c))Tk,{c) = Tk.(c)Ek(c), [Ek{c),Ek,{c)] = 0.

Using Σb qB(a>b) = Dδa0 it is easy to check that

(3.3a) Tk(c)* = Tk{c)-χ, Tk(sk(c)) = Tk(c),

(3.3b) Ek(c)* = ^ ( c ) , ^ ( ^ ( c ) ) = Ek(c),

(3.3c) ^ ( c ) ^ ( c ) = Ek(c) =

(3.3d) Ek(c)xa

k±ι(c)Ek(c) = δ

3.2. Uniform oriented tangles. Let ^ denote the category of uni-
form oriented tangles in the sense of [15]. (Recall that an (M, My
tangle t is called uniform if the drawing of t intersects each horizontal
line between the top edge and the bottom edge at exactly M, M - 1
or M - 2 points; see Fig. 3.1.) The objects of &~ are configura-
tions in the sense of §2. If c, c1 are configurations of the same type,
we let hom(c, d) be the set of uniform oriented tangles with c on
the top and d on the bottom; we set hom(c, d) = 0 otherwise.
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A A

f

c(k)

FIGURE 3.1

Uniform oriented tangles

c(k)

σ{[c)

c(k-l) c(k)

σk(c)

FIGURE 3.2

Elementary tangles

Given two tangles t G hom(c, d), f G hom(c', c") their composition
t' o t G hom(c, c") is defined by concatenation as in Fig. 3.1.

We shall define a functor F from &~ to the category of C vector
spaces. Let σ^(c), θ^(c) be the elementary tangles shown in Fig.
3.2. Any uniform oriented tangle can be written as a composition of
them.
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The functor F is specified as follows.

(i) F(c)=sf(c) for a configuration c,
(ii) F{σ±{c))=*(Tk{c)±ι), F(θ±{c))=*(Ek(c)).

Here Jί{x) e End(j/) denotes the left multiplication by X G J / . We
shall verify the well-definedness of F in §3.3.

Let tr denote the usual matrix trace on End(j/) so normalized
that tr(l) = 1. Note that tr(Jt(a)) = β(α) for a e stf .

PROPOSITION 3.1. The following defines an invariant of oriented
links:

(3.4) τ(t) = D^M~1^2 tv(F(ή), t € hom(c, c)

where c is a configuration of M strings.

The proof will be given in §3.3.

REMARK. The matrix elements (in the left regular representation)
of Tk(c)±ι relative to (c9sk(c)) and of Ek{c) relative to (c,c) or
(c, sk(c)) are local in the sense of §2.5.

3.3. Well-definedness of F, τ . First note that (3.3a,b) imply

(3.5) F(tτ) = F{ty for*ehom(c,c')>

where tτ e hom(c', c) denotes the tangle obtained by the vertical
flip with respect to the middle horizontal line [15], and * means the
adjoint with respect to the hermitian form (α, β) = ε(aβ*) on s/(c).

To prove the well-definedness of F we are to check the relations
corresponding to the Reidemeister moves R1-R10 as shown in Fig.
3.3.

The cases Rl-4 and R5 correspond to (3.2) and (3.3a) respectively.
In view of (3.5), it remains to verify the following relations.

(3.6a) Tk(c)±ιEk(c) = Ek(c),

(3.6b) Tk(sMsk(c))Tk+ι{sk{c))Tk(c)

(3.6) Ek{c')Ek±x{c')Ek{c) = Ek{c),

(3.6d) ^ ( O ^ ± i ( ^ ( 0 ) ^ ( 0 e = ^ ( ^ ± i

In (3.6c) d denotes the configuration such that d(k - 1) = -c'(k) —
c'(k+l) = c(k±l), c'(j) = c(j) {jφk-\,k,k+\). In(3.6d)

e = ± 1 and c" = sk(c) if c(k) Φ c(k + 1), = sk±isk(c) otherwise.

Among these, (3.6a) and (3.6c) are direct consequences of (3.3c) and
(3.3d), respectively.
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FIGURE 3.3 (continues)
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FIGURE 3.3 (continues)
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RIO

/ \
/ \

FIGURE 3.3

Reidemeister moves. Figures obtained by vertical flip are
omitted. The strings should be oriented in all possible ways

Proof of'(3.6b). There are altogether 8 cases according to the choices
of c(k), c(k + 1), c(k + 2). As an illustration we shall prove the case
(c(k), c{k + 1), c(k + 2)) = (1, - 1 , 1). In this case (3.6b) reads

a,b,d

= Σ /(*)
a,b9d

Equating the coefficients of x%(c)Xk+ι(c) i n both sides, we are to show

Σf(d)f(byf(a + d-(b ^

= Σ f(d)f(aTf(b + d-(a +
d

Summing over d we find that the left-hand side becomes

ΊB(e+b,e+a)-B{b,a)
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Λ/

Λ
FIGURE 3.4

Markov property

Likewise the right-hand side becomes

Σf{e)f{a)*f{a - e)q-B(b,a+e)+B((a+&)/29e)

e

QB{e~b+a' e)~Bφ ' a).

Our assertion follows from this. D

COROLLARY 3.2. Suppose c(k) = 1 (Vfc). ΓAe« *Ae {7^(c)} pro-
vide a homomorphism from the M string braid group into an algebra

Proof of (3.6d) can be done in a similar manner, so we omit it.

Proof of Proposition 3.1. We are to verify the invariance of τ under
the Markov moves, namely (Fig. 3.4)

τ(to t') = τ(t' or), t ehom(c, d), t1 e hom(d, c),

τ(tθ^) τ(t)y ί G h o m ( c , c ) ,

where c, d are configurations of M strings. The proof is straight-
forward. D

3.4. Link invariants and Alexander polynomials. In this section we
restrict ourselves to the configurations c such that c(k) = 1 for all k.
In this case the uniform tangles are nothing but the usual braids. Let
t be a braid on M strings with v crossings, and let K = v - M + 1.

PROPOSITION 3.3. Let P = (Pij)ι<ij<κ denote a Seifert matrix for
the closure of t. Then τ(t) is given by

(3.7) Q=
PiJB{ai9aj).

Proof. Fix a drawing of the braid, and let (k-9 i), 1 < / < mk,
denote the fth crossing (counted from top to bottom) between the
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kth and (k + l)th column. The sign of the crossing {k, /) is denoted
by εf] = ± 1 . We write (k, i) < {k1, ϊ) if the crossing (k, i) is
above (k', i') in the drawing. In these notations we have

Σ
{kJ)<{k+\J)

'where the sum ranges over <z ' e l satisfying

The substitution 6^ } = Σ ^ i ^ ^ ^ - '' - mk "" ̂  b r i n 8 s β i n t 0

the form

In the sum, /* signifies the largest j such that (A: + 1, j) < (k, i).
Next we draw a Seifert surface for t using Seifert's algorithm (see

e.g. [16]). Let γ^ be the cycle passing counterclockwise through
(k,i) and (fc,i + l) (Fig. 3.5).

On these cycles the nonzero values of the Seifert form φ are given
by

if {j, k + 1) < (i, fc) < (; + 1, k + 1) < (i + 1, A:),.

if (ϊ, A;) < ( , k + 1) < (i + 1, k) < (j + 1, k + 1).

Our assertion follows from this. D
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FIGURE 3.5

Seifert matrix

REMARK. Fix B. The quantity (3.7) determined by a Seifert ma-
trix P is in fact an invariant of the equivalence classes of the Seifert
matrices ([18], [19]).

Assume now that N = p is an odd prime. For k ψ 0 modp let

/Ί v £ ^ , 2 fln\f^Λk\
s(k, p) = > qJ , # = exp

>o \ P )

denote the Gauss sum. The following is well known.

LEMMA 3.4. (1) Denoting by ( |) the Legendre symbol, we have

s(k,p) = y/p(-J .

(2) Let φ(a) be a nondegenerate quadratic form of rank I on the
finite field Έp with p elements. Then

Returning to the setting of Proposition 3.3, define

Δ(JC) = det(P - x'P).
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Then x~κ/2A(x) is the classical Alexander polynomial. Upon sym-
metrizing Q the determinant of the quadratic form in the Gauss sum
(3.7) is given by

det(/> ® B + ιP ® ιB) = (dctBf det(P ® 1 + ιP ® B~UB)

where X{ ranges over the eigenvalues of the matrix -B~UB. Hence, if
this is nonzero, the invariant τ(t) is written in terms of the Alexander
polynomial.

REMARK. Given a link L in S3 consider the «-fold cyclic cover
Mn of S3 branched along L. It is known that the first homology
group of Mn can be represented as

Hx{Mn) = ZK ®Zn~ι/QZK ®Zn~\ Q = P®B + tP®tB,

where P is a Seifert matrix of L of size K, and B = (2?/;) is the
matrix given by B\j = 1 for \<i<j<n — \ and B\j — 0 otherwise.
The bilinear form associated with B is the one relevant to the sl(n)
chiral Potts model (see §4). We are indebted to H. Murakami about
this comment.

4. Yang-Baxterization. Except in §4.3 we shall henceforth deal with
the following case

0 -> (Z/NZY(l, ... , 1) -+ (Z/NZ)n Λ i - ^ 0 ,

A(a, b) = Σ(aibM - ai+ϊbi), B(a, b) = -

We set
ith

^ = ^ ( 0 , . . . , 1 , . . . , 0 ) .

We note that vt = i//+1.
4.1. The operator T. Our goal is to show that the twisted braid

relations (3.6b) can be Yang-Baxterized in this case (Theorem 4.1,
Corollary 4.2). To state the result we need to prepare some nota-
tions. Fix γ = (λi9μi)o<i<n G {Cx)2n such that A/ ψ μj (Vi, j), and
consider an algebraic curve [11]

Cγ = {r = ( i i f , Vi)o<i<n e ( C * ) 2 n \ u ? + λi = v f + μj ( 0 < i , j < n ) } .

Denote by t the automorphism of the curve such that

r] = (qui, Vi)o<i<n for r = {u{, v/)0<ί<n.
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We define the functions σ%(a) (r9reCγ, aeL, ae Z/nZ) by the

recurrence relations

(4.1) ^ I f , t ^ = j

for all i = 0, 1, . . . , n - 1, and the normalization condition σ$(0) =
1. Here

N _ 1

and the suffixes /, j should be read modulo n. These functions
satisfy the following relations:

Let us denote the Fourier transform of σ% by

Let us extend the notion of a configuration by assigning to each
string a triple (r, c9ά) consisting of r e Cγ, c = ±1 and α E Z/nZ.
As before c = ±1 signifies that the string is going downwards or
upwards respectively. We define a decorated configuration d of M
strings to be a map

d : {1, . . . , M} -> CV x {±1} x Z/nZ,

fc^rf(fe) = (r(fe),c(fc),α(fc))

where r(fc) = {u(k)i9 v(A:)/)o</</i a n d the α(fc) are such that

α α-1 α~l α α-1 α-1 α α

α α-1 α-1 α α α α-1 α-1

FIGURE 4.1

Change of a in the decorated configuration
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We shall write snί{d), x%{d) for J/(c), xf.{c) respectively. Let
us define the action of symmetric group &M on the set of decorated
configurations by

(sk(d))(k') = (rfok(fc')). c(sk(k')),

w ( d ) = Siι( ' ( s i t ( d ) ) - ) forw= s^ • • s f / .

Here if c(k) = -c{k + 1) = ±1 then

(sk(a))(k) = a(k) ± 1, (sk(a))(k + 1) = a(k + 1) ±

and (sk(a))(kr) = a(k') in all other cases.
Set

(4.2) Tk(d) = L ^£

for c(ik)=

THEOREM 4.1. For any decorated configuration d,
(1) Tk(sk{d))Tk{d) = scalar ( 1 < £

(2)

Consider the special case where λt•= λ, μ, = μ and hence Uj = u,
Vi = υ are independent of / (we call this the trigonometric case).
Then σ^ fc)r(A.+1)(α) depends only on z = u(k)υ(k + \)/u{k + l)v(k)
and a, and Tk(d) only on z and c. We set

σz{a) = < W r ( f c + 1 ) ( α ) , Tk(c; z) = Tk(d).
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The recursion relation (4.1) simplifies to

COROLLARY 4.2.

(4.3) Tk(sk+ιsk(c); z)Tk+ι(sk(c) zz')Tk(c; z')

; z*)Tk(sk+ι(c); zz')Tk+ι(c; z).

In the limit z±ι -> 0, Tk(c; z) tends to Tk{c)±x in §3.

4.2. Intertwining relations. Proof of Theorem 4.1 is based on an
intertwining property of the Tk(d), which we shall explain. Fix a
decorated configuration d. For each k, denoting i + a(k) by j , we
set

4=« *ί

C(k) = c(k + 1) =-1,
κji-l

= 1 otherwise.

Using these, we define L-operators for the decorated configuration d
by

(4.5) - 2 " = V

Now exhibiting the of dependence of lι

k, ^ ^ , we have

PROPOSITION 4.3.

^ for all iand2<k<M.

Proof. First we shall show that it is sufficient to check the following
equations,

(4.6)
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It follows from (2.2) that

[χa

k(d),xl/

k'_ί(d)χu

k'(d)xl/

k'+ι(d)] = o .

From (2.2), (2.4), (2.5), (4.4), (4.5) and the above relations, we obtain

[Tk(d),Pk,(d)] = 0, l'k,(d) = rk,(sk(d)) {k'φk,k±\),

[Tk(d)Jic_ι(d)l'k(d)ljc+ι(d)] = O,

li

k.ι(d)li

k(d)li

k+ι(d) = lU(sk(d))l'k(sk(d))l'k+ι(sk(d)).

Therefore the proof reduces to (4.6). We are going to show that (4.6)
is equivalent to (4.1). Suppose, for example, c(k) = - 1 , c(k+ 1) = 1
and a(k) = a(k + 1) = j - i. In this case, a(k - 1) = a(k) for
c(k — 1) = 1, = a(k) — 1 for c(k — 1) = - 1 . Then using the notations

Tk = T k ( d ) , x a

k . = x a

k , { d ) (k' = k - l , k ) ,

Λ,a _ Ύa Λa+a)β « a _ Ύ-a
yk-\ " xk-\xk a n α yk~Xk '

we have

T k κ j Ί ( q - ι u ( k ) j V ( k + \)iXΪ_χ - u ( k + V Ϊ ΐ

= ( u ( k ) j . M k + V i - i y t M - <rxu{k

Then by substituting the expression (4.2) and using the definition of
φrf{a), we obtain the recurrence relation (4.1). D

LEMMA 4.4. Let d be a decorated configuration, s/k(d) the subal-
gebra generated by xf(d) (aeL) (k <l < M) and set

where gv> e x^id)^^^) - Let further H bean element of4
Then for generic z the solution of the following equations

for alii,(4.7)

must satisfy

H

[G'(z),H]

es/k+2(d)

= 0.

and
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Proof. Clearly H e ^fk+2{d) satisfying [g^, 77] = 0 is a solution
of (4.7). We must show that these are the only solutions for generic
z. The coefficients of the linear equations (4.7) are polynomials in
z. Therefore by the specialization argument it is sufficient to prove
the assertion for H(z) e s/k+ι[z]. Set G\z) = (1 - zguήx~Uι(d).

From G^z^iz) = 1 + 0{z2), it follows that [G*(z), H(z)] = O(z2).
Therefore we have

K = Gi(z)Giτl(z)Gi(z)Giτl(z)

= qκ{\ - z(l - q~2)gvi + O{z2)) for c(k + 1) = ± 1 ,

with some integer K . From this, we obtain

(4.8) [g" 9H(z)] = O(z).

Putting z = 0 we have 7/(0) G J 4 + 2 ( ^ ) and [7/(0), g"i] = 0. Note
that this means in particular [G\z)9 7/(0)] = 0. Therefore we can
apply the same argument to (7/(z) - H(0))/z. By repeating this, the
lemma can be proved. D

COROLLARY 4.5. Let H be an element of J^id). Then for generic
parameters r(k) (1 < k < M), λ[ and μι, the equations

= 0, for alii

imply H e C l .

Proof. This can be shown by specialization to the trigonometric
case. In this case,

M-\

S?i{d)=ΣzMχv

χ>{d). xΐ{d),

where zW = ±qm u(k+ l)υ(l)/v(k+ l)u(l) for some integer m^ .
Then the repeated use of Lemma 4.4 proves the corollary. α

Proof of Theorem 4.1. Let

Pk = Tk(sk(d))Tk(d),

Qϊ = Tk(sMsk(d))Tk+ι(sk(d))Tk(d),

Qk = Tk+ι(sksk+ι(d))Tk(sk+ι(d))Tk+ι(d).
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From Proposition 4.3, we have

= 0 ΐor2<k<M,

for Qk = Qfc, Ql and 2 < k < M - 1.

From Corollary 4.5, we conclude that Pk = scalar and Q£ = (scalar) x
Q£. The assertion holds also for the case k = 1 since only the re-
lations (2.2) are necessary for the proof. In the trigonometric case,
comparing the determinant (in some representation) of both sides of
(4.3) we see that the scalar factor is 1. D

REMARK. The relation between the operators T and the generalized
chiral Potts model is as follows. Let W^, Xt and Zz (0 < / < ή) be
the ones defined in §2.4. Let us set M = 4 and consider the decorated
configuration d such that

= ( r \ l , 0 ) ,

= ( f M , 0 ) ,

On W° (8) WW, the algebra sf(d) is realized as follows,

Then the image of 72(5i^2(^))^(^2(^))73^2(^))72(^) under π
coincides term by term with the i?-matrix of the generalized chiral
Potts model

Using the Yang-Baxter equation for Tk(d), we can prove the Yang-
Baxter equation for the above i?-matrix.

REMARK. Let us consider the same representation as in the Remark
in §3. Then the matrix elements of Tk(d) are given as follows. Set

b,e9f)= l

b,e,f) = J=φ%(g)/ω(f9 a 9 b , e ) 9
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where a,b9e,feL and g = {a + e + ά + e)/2-f-b. Then

V? 4 *

4
for c(k) = c(k + I) = -I,

forc(A:)= l ,

ξ Γ

α

τ (a,b,e,f) =

for c(k) = -l,c(k+!)

ζr

α

?(a,b,e,f) = a

FIGURE 4.2

Matrix elements of
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In terms of ξ and ζ, the Yang-Baxter equations become

Hb, c, d, g)ζ^\f, g, d, e)
g

= ( s c a l a r ) £ φ ( f l , b, c, g)ξ?7,ι(g, c, d, e)ξ%.[μ, g, e, / ) ,
g

Hb,c, d, g)ξ?r,(f, g, d, e)
g

= ( s c a l a r ) ^ Γ X " ? 1 ^ , b,c, g)ζ?r7,ι(g, c, d, e ) ζ % . { a 9 g , e , / ) ,
g

g

%ι{de g c)ξχ}= (scalar)£C£(c, g, a, b)ζ%,ι{d,e, g, c)ξχ,}(a, g, e, / ) ,

where a, b, c, d, e, f, g e L and r,r',r"e<£y. Note that these
equations are equivalent

4.3. Yang-Baxterization for general B. We now return to the case
of general bilinear form B. Consider the operators Tk(c) with c, =
1 (Y/) which satisfies the ordinary braid relation. Following [14]
we say that a set of polynomials {Tk{c\ z)} c stf{c)[z] is a Yang-
Baxterization of {Γfc(c)} if Γfc(c; 0) = Γfc(c) and the Yang-Baxter
equation (4.3) holds. Clearly if {Tk(c; z)} is a Yang-Baxterization,
then so is {T'k(c\ z)} given by T'k{c\ z) = φ(z)Tk(c\ z) with some
φ(z) G C[z]. We say that these two Yang-Baxterizations are equiva-
lent. A non-trivial Yang-Baxterization is one which is not equivalent
to {Tk{c)} itself.

Let {7fc(c; z)} be a Yang-Baxterization, and define φ(a) and its
Fourier transform φ(a) by

Tk(c; z) =

Choosing an equivalent Tk(c\ z) as necessary, we assume φ(0) = 0
without loss of generality.

LEMMA 4.6. (i) For any a, b eL we have

(4.9a) φ(a) = φ(ά),

(4.9b) φ(b)(φ(a)(a-B^^ - 1) - < W Γ * ( " ' α ) + <***) = 0.

(ii) Ifaφb and φ{a)φφ) φ 0, then b = a, or B(a, b) = 0.



BRAID GROUP REPRESENTATIONS

rf

63

FIGURE 4.3

Yang-Baxter equation

Proof. Picking the coefficients of z' and zz1 in the Yang-Baxter
equation (4.3), we find (4.9a) and (4.9b) respectively. (The coeffi-
cients of z give trivial identity.) The second assertion follows from
(4.9b). D

For aeL, define a^ inductively by α ( 0 ) = a and a^) = a! with

LEMMA 4.7. Assume that

(4.10) B(a,a)φO foraφO.
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Suppose φ(a) Φ 0, and let r be the least positive integer such that
α(Ό = a . Then

(i) α + α(1) + + α( r-1) = 0,

(ϋ)

B(a{i\aU)) = B(a,a) ifi = j modr,

= -B(a, a) ifi+ 1 = j modr,

= 0 otherwise.

(iii) a, a^, . . . , α(r~2) are linearly independent over Z/NZ.

Proof. Note that (4.10) implies a Φ a if a Φ 0, and hence r > 1.
Assertion (i) follows from this, since under ~ the left-hand side is
invariant. Assertion (ii) is a consequence of Lemma 4.6(ii). To show
(iii), suppose there exists a relation Σji=o c ./α^ > 0 € Z/NZ. Then
we have for 0 < fc < r - 2

=ckB(a,a)

by (ii). Since B(a, a) φ 0 by (4.10) we have ck = 0 for all A:. D

Now let N = p be an odd prime. Then L ^ F J , where F p is the
field with p elements. Lemma 4.7 means that on the linear subspace
V = 0y lo F/?0(y) ^ bilinear form 5 has the form λBr, where λ =
-B(a, a)12 and 2?r denotes the bilinear form associated with the
$l(r) chiral Potts model. Note that V is invariant under ~. Set
W = {b e L\B(b, V) = 0} = {b e L\B(V, 6) = 0}. For 6 e L,
the element d = b- jyjZocjaU) w i t h ck = B(b,a + α ( 1 ) + + α w )
belongs to W. From this we see that L= V ®W. Thus we have

PROPOSITION 4.8. Let N = p be an odd prime, and assume (4.10).
Then there exists a non-trivial Yang-Baxterization of Tk(c) if and only
if B can be written in a suitable basis as a direct sum

B = λBr®B',

where λ e ( F p ) x , Br is the bilinear form of sl(r) chiral Potts model,
and B' is a non-singular bilinear form.

In particular, the case discussed in [14] has a non-trivial Yang-
Baxterization if and only if s + s* = 0, ±1 (in the notation of [14]).
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