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ISOMORPHISMS OF SPACES
OF CONTINUOUS AFFINE FUNCTIONS

CHO-HO CHU AND HENRY B. COHEN

Let K and S be compact convex sets and let A{K) and A(S)
be the corresponding Banach spaces of continuous affine functions.
If the Banach-Mazur distance between A(K) and A(S) is less than
2, then under certain geometric conditions, the extreme boundaries
of K and S are homeomorphic. This extends a result of Amir and
Cambern, and has applications to function algebras.

1. Introduction. Let X and Y be compact Hausdorff spaces. The
classical Banach-Stone theorem states that if the spaces C(X) and
C(Y) of (real) continuous functions are isometric, then X and Y
are homeomorphic. There have been several generalizations of this
theorem, among which is the following result of Amir [2] and Cambern
[9]:

If there is a (surjective linear) isomorphism φ: C{X) —> C(Y) such
that IMIH^"1!! < 2, then X and Y are homeomorphic.

Alternative proofs of this result have been given by Cohen [12] and
Drewnowski [13]. The result is false if the bound IMIII^"1!! *s n o t

less than 2 [11] although it has been generalized to spaces of vector-
valued continuous functions (cf. [5, 7,10,15,17]). Nevertheless, in an
attempt to extend the result to certain function spaces, for instance,
to function algebras, we found that the arguments used in [9] and
[12] can actually be adapted to a setting more general than function
algebras which not only yields more general results but also gives new
insight into the essentials of these arguments.

Our setting is that of compact convex sets K (in locally convex
spaces) and the Banach spaces A{K) of (real) continuous affine func-
tions on K. We will show, given two compact convex sets K and
S with extreme boundaries dK and dS respectively, if there is an
isomorphism φ: A{K) —• A(S) satisfying IHIHί?"1!! < 2, then any
one of the following conditions implies that dK and dS are home-
omorphic:

(i) K and S are Choquet simplexes, and every extreme point in
K (and S) is a weak peak point;
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(ii) K and S are metrizable, and every extreme point in K (and
S) is a weak peak point;

(iii) dK and dS are closed, and every extreme point in K (and
S) is a split face.

The proof under condition (i) contains the idea of isolated points in
the second-dual method in [12]. Noting that C{X) is an ^(AΓ)-space
for some Bauer simplex K, and vice versa, Amir and Cambern's result
reads as follows:

If K and S are Bauer simplexes and if there is an isomorphism
φ: A(K) -> A(S) with IHIII^"1!! < 2> t h e n d K a n d d S a r e homep-
morphic.

This can be regarded as a special case of (iii) and indeed, as will
be shown, condition (iii) is exactly what is needed in Cambern's ar-
guments [9] to construct the homeomorphism. Finally, if sf is a
function algebra with state space K, then every extreme point of K
is both a weak peak point and a split face, and the extreme bound-
ary dK identifies with the Choquet boundary of sf . Moreover, the
uniform closure of resf identifies with A(K). Therefore the above
results apply to function algebras.

2. Compact convex sets. Let K be a compact convex set in a locally
convex space. The extreme boundary ΘK of K is the set of extreme
points, with the relative topology. A face F of K is called a split
face [1; p. 133] if there is a face Fr of K such that every point in
K\(F u F1) can be uniquely represented as a convex combination of
a point in F and a point in Fr. The complementary face F1 is
also split and is the union of all the faces disjoint from F. Every
face of a triangle is split; more generally, every closed face of a Cho-
quet simplex is split [1; p. 144], Let A(K) be the Banach space of
real continuous affine functions on K with the supremum norm and
pointwise ordering. The constant function 1 on K is also denoted by
1. We will identify K, via the evaluation map, with the state space
{μ e A(K)*: μ(l) = 1 = \\μ\\} in A(K)* and so, if F is a closed split
face of K, then A(K)* = l inF ®/ linF' where lin denotes the linear
span. Note that the convex hull of a finite number of split faces is
also a split face. If F is a closed split face of K, then any continuous
affine function on F has a norm preserving extension to a continu-
ous affine function on K. Moreover, if the complementary face F1 is
also closed, then given a e A(F) and b e A(Fr), there is an extension
/ G A(K) with f\F = a and f\F' = b. Let F be a closed split face
of K and let χ? be the characteristic function of F. Then the upper
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envelope function

χF(x) = inΐ{a{x):aeA(K), a>χF}

is upper semi-continuous with F = χjx{\) and Ff = χ^ι(0) more-
over, the set {a e A(K): a > χF} is directed downward [1; p. 141]
and so χF is affine, and there is a decreasing net (aa) in A{K), with
Λa > XF , converging pointwise to χF such that for any δ > 0, there
exists α 0 such that a > αo implies 1 + <S > α α . These facts are
crucial and will be used repeatedly in the sequel. We refer to [1] for
further results on compact convex sets and Choquet theory as well as
undefined terminology.

DEFINITION. Let ί b e a compact convex set and let x e dK.
We call x a weak peak point if given 1 > ε > 0 and an open set U
containing x, there exists h e A(K) such that \\h\\ < 1, h(x) > 1 - ε ,
and \h\ < e on dK\U.

PROPOSITION 1. If x is a weak point in K, then {x} is a split face
of K. The converse holds if dK is closed in K.

Proof. The first assertion is an extension of Asimow's result in [3].
Write χx for the upper envelope χ^ which is concave and u.s.c.
Since x e dK, we have K = co({x} UF) where {x} = Xχl{\) and
F — Xχl(0), and every z eK has a representation

z = χx(z)x + (1 - χx(z))y (y e F).

To show that {x} is a split face, we need to show that F is convex
and the above representation is unique.

We first show that for 1 > ε > 0 and y\,yi,yι e F, there exists
h e A{K) such that h{x) > 1 - ε and \h(yj)\ < ε for j = 1, 2, 3.
Let μj be a maximal measure on K representing y ; . Then βj{x} =
βj(X{x}) < /{x}^") = 0 (cf. [1; Proposition 1.3.1]). So there exists a
closed neighborhood £// of x with μj(Uj) < § . Let £7 = C/iΓlt/2nC/3.
By hypothesis, there exists h e 4̂(isΓ) such that ||/z|| < 1, h(x) > 1 -ε,
and |λ| < f on 9A:\C7. SO |Λ| < f on dK\U which contains Ί)K\U.
By maximality of //7, we have

ίhdμj < ί \h\dμj+ [_
JdK JdKnU JdK\U

We now show that F is convex. Let y\>yi G i 7 and let z =

+ (1 — A)^2 where 0 < λ < 1. It suffices to show χx(z) — 0 .
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Suppose χx(z) > 0. Write z = χx(z)x + (1 - ^ ) ( z ) y 3 with y3 e F.
Let ε = \χx(z). Then by the above, there exists h e A(K) such that
λ ( * ) > 1-ε and |/z(y7 )| < ε for 7 = 1,2, 3. So |Λ(z)| = |AΛ(yi) +
(l-λ)Λ(y 2) |<β. But also \h(z)\ = \χx(z)h(x) + (I -χx)(z)h(y3)\ >
χx(z)(l-ε)-(l-χx)(z)ε = ε which is a contradiction. So χx(z) = 0.

Finally, given any representation z = βx + (1 - /?)/ with y' e F
(and 0 < /? < 1), χx(z) > β as £* is concave. Suppose χx{z) > β.
Then equating the two representations yields

from which 0 = χx{y') > x*[zl~ββ > 0 which is impossible. So χx{z) =
β and it follows that y' = y.

Now suppose dK is closed and {x} is a split face. We show that
x is a weak peak point. Let 1 > ε > 0 and let U be an open
set containing x. As x e <9,fif, we have {x} Πcδ(K\U) = 0 . Let
G = cδ(AΓ\C/) and let F be the complementary face of {x}. Since
{x} is a split face, there is a decreasing net (aa) in ^4(#), with l + § >
&a > Xx 9 converging pointwise to χx. Since GπdK is a compact
subset of F and χx = 0 on F , we have αα | 0 on G n 9AΓ and by
Dini's theorem, we can find aaQ € A(K), with 1 + § > aaQ > XF and
|α α j < § on G Π 5AT which contains dK\U. Let /z = aaQ - f . Then
||A|] < 1, h(x) > 1 - ε and \h\ < ε on βA:\CZ.

EXAMPLE 1. Every extreme point of a Bauer simplex is a weak peak
point.

EXAMPLE 2. Let AΓ be the state space of a function algebra si.
Then dK identifies with the Choquet boundary C h j / of s/ and
every x E dK is a weak peak point by Bishop's characterization of
C h j / (cf. [8; p. 97]). Indeed, our definition originates from this
example, and we also note that, as in [8; Theorem 2.3.4], an equivalent
definition for a weak peak point x in K is that given ε > 0 and open
set U containing x, there is an h in A(K) such that \\h\\ = 1 = h(x)
and |Λ |<β on dK\U.

EXAMPLE 3. Let K be the Poulsen simplex (cf. [4; p. 130]). Then
every x e dK is a split face, but it is not a weak peak point. Con-
sider y = \x + \x* for some x! e dK\{x}. Choose a closed convex
neighborhood U of x such that y <£. U. Then x1 φ U. If x
was a weak peak point, there would exist h e A(K) with \\h\\ < 1
h(x)> 1 - i and \h\ < \ on ΘK\U. So h(y) = %
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Let y = lim^jty with Xβ e dK. Then y £ U implies Xβ φ. U

eventually and so h(y) = lim^ h{Xβ) < η which is impossible.

3. Isomorphisms of A (K). Let K be a compact convex set iden-
tified with the state space {μ e A{K)*: μ(l) = 1 = \\μ\\}. Then
the convex hull co(K U -K) is the closed unit ball in A(K)* and so
A(K)** identifies naturally with the space Ab(K) of bounded affine
functions on K, with the supremum norm and pointwise ordering.
Let Kb = {μe Ab(K)*: μ(l) = 1 = \\μ\\} c A{K)***. Then Ab(K) is
isometrically order-isomorphic to A(Kb) and hence we can turn the
bounded affine functions on K into weak* continuous affine func-
tions on Kb. The identifications A(K)** = Ab(K) = A(Kb) will be
used throughout. Note that K embeds as a σ(A(K)***, A(K)**)-dense
convex subset of Kb, via the embedding A(K)* —• A(K)***. More-
over, if K is a Choquet simplex, then Kb is a Bauer simplex and K
is even a split face of Kb [14; Example 3.3(b)]. An important ele-
ment in Cohen's second-dual method [12] involves the isolated points
of dKb which turn out to be in dK.

LEMMA 2. Let K be a compact convex set and let F be a dense face
in K. If x G dK is an isolated point in dK, then x E F.

Proof There is a closed set G c K with dK\{x} = dKnG. Since
x φ G, we have x $. cδ G by Milman's theorem. By density of F,
there exists y eF with y ^ cδG. Note that K = co({x}UcoG) and
so y = λx + (1 - λ)z with 0 < λ < 1. Now F is a face and y e F
gives x G F.

LEMMA 3. Lei K be a compact convex set and consider K c Kb.
Lei x G dif £e a split face of K. Then x is an isolated point in dKb

as well as a split face of Kb with a closed complementary face.

Proof. Consider the affine function χx e Ab(K) with {x} = χ~ι(l)
and Xχl(0) = {x}f being the complementary face in K. Now con-
sider χx e A(Kb) and let Z denote {zeKb: χx(z) = 0}, a (weak*)
closed face of Kb. Let y G Kb\Z. By denseness of K in Kb,
y is the weak limit of a net ya in K\Z. Since x is a split face
of K, ya = rax + (1 - rα)zα for each a where z Q G Z n ί and
ra = χx(ya). By compactness of Kb, we may assume za converges
to an element z in Z . Taking limits and using the continuity of
χx on Kb, we get y = rx + (1 - r)z where r = χx(y). Conse-
quently, the representation of y as a convex combination of x and
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an element of Z is unique, x e dKb, and dKb\{x} C Z . Hence,
{*} = {y G # * I ̂ ( y ) > \} Π 9 ^ and x is isolated in K.

We thank the referee for pointing out that the following result is
accessible via the general results of [6, 7, 17]. Since this result is not
stated explicitly in these references, we include here, for completeness,
our alternative argument involving isolated points for the interested
reader.

THEOREM 4. Let K and S be Choquet simplexes in which every
extreme point is a weak peak point Let φ: A(K) —• A(S) be a surjec-
tive linear isomorphism with \\φ\\\\φ~ι\\ < 2. Then dK and dS are
homeomorphic.

Proof. Consider the second dual map φ**: A(K)** -* A(S)**. By
previous remarks, and since Kb is a Bauer simplex, A(K)** = A(Kb)
= C(dKb) the same applies to A(S)**. Consulting Lemma 3 in [12],
the condition \(φ**χx){y)\ > j\\φ\\ establishes a 1-1 correspondence
between the isolated points x of dKb and the isolated points y of
dSb. By Lemma 2 and Lemma 3, dK is the set of isolated points of
dKb and the same for dS. Thus we have a bijection H: dS -> dK
given by H(y) = x whenever \(φ**χx)(y)\ > j\\φ\\. But this bijection
is just the map p defined below and, by the weak peak point property,
shown to be a homeomorphism in the proof of Theorem 7.

We now turn to arbitrary compact convex sets K and S in which
every extreme point is a split face. Suppose there is an isomorphism
φ: A(K) -> A(S) with HPIIHP"1!! < 2. We may, and will always
assume, that | |^| | < 2 and |jp(α)|| > cllαll f°Γ a ^ non-zero a e A(K)
where 1 < c < 2. This loses no generality for, if necessary, we can
replace φ by cH^"1!!^ where H^IHI^"1!! < § < 2. Given such an
isomorphism, how does one construct a homeomorphism p\ dS -*
dKΊ We follow Cambern's approach. Let y € dS. Consider the
dual map φ*: A(S)* —• A(K)*. Since every x e dK is a split face
of K c A{Ky, we can write φ*(y) = λx + μ for some λ eR and
μ G linlx}7, where {x}' is the complementary face. It turns out that,
if K and S are metrizable, then there is a unique x e dK for which
\λ\ is large, that is, |Λ| > c. So we can define p(y) = x and show it is
a bijection which is even a homeomorphism if every extreme point is a
weak peak point. In the nonmetrizable non-simplex case, however, we
need to assume the closedness of the extreme boundaries to complete
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the arguments. Note that, in the classical Banach-Stone theorem, φ
is an isometry with λ = 1 and μ = 0, and φ* itself already induces
a homeomorphism.

Now we describe the details. Let x e dK and let χx = X{x} be
the upper envelope function which is aίϊine and u.s.c. on K. Consider
χx e A(K)**. We will denote by ( , •) the bilinear functional on a pair
of Banach spaces in duality. Let y e dS with φ*{y) = λx + μ as in
the previous paragraph. Then, noting that {x} = χ~ι(l) and {x}f =
X~l(0), we have (y, φ**λχx) = {φ*(y), χx) = λ{x, χx) + (μ,χx)=λ.
As in [9], we have the following basic contructions. Let

Y = {ye ΘS: 3x e dK with \(y, φ**χx)\ > c}.

First observe that for each y e Y, there is at most one x e dK with
\(y, <P**Xχ)\ > c. Indeed, if there are x, x' e dK with φ*(y) = λx +
μ = λ'χ' + μ' and |λ|, \λ'\ > c, then 2 > \\φ*(y)\\ = |α| + ||/ι|| > c+| |/ι | |
implies 2 - c > \\μ\\ which gives (2 - c) + (2 - c) > ||μ|| + ||μ'|| >
ll/z-^ll = μV-zlxll = |A;| + |A| > 2c, contradicting c> 1. Therefore,
we can define p: Y -> dK by /?(y) = x whenever \{y, φ**χx)\ > c.
Likewise, we let

X=ίxe dK: 3y e dS with \(x, ^* > ^

and define τ: X —• dS by τ(x) = y whenever \(x, ί^**"1^)! > 5.
What remains is to show that Y = dS and p is a homeomorphism.
We demonstrate this for the metrizable and the nonmetrizable cases
separately in the next two sections.

4. The metrizable case. We assume in this section that K and S
are metrizable, that every extreme point of K (and S) is a split face
in the following two lemmas. We adopt the previous notations.

LEMMA 5. The maps p: Y -> dK and τ: X —> dS are onto.

Proof, Let x edK. We show there exists y e dS with \(y, φ**χx)\
> c. By separability of A(K), there is a decreasing sequence (an) in
4̂(AΓ) converging to χx pointwise. So φ**χx = limπ ^(απ) pointwise

on S. If |(y, ^**χ x ) | < c for all y G ^ , then \{y, limπ p(απ))| < c
for all j ; G 9S and by Meyer's maximum principle [1; Proposition
1.4.10], we have

c > s u p | ( y , lim φ(an)) = s u p | ( y , φ**χx)\
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which is a contradiction. So Y is nonempty and p is onto. Similarly
τ is onto.

LEMMA 6. If y e Y with ρ(y) = x, then x e X and τ(x) = y.
Hence Y = dS and p: dS -+dK is a bijection.

Proof, Suppose either x φ X or x e X but τ(x) Φ y. Then
|(x, φ**~ιχy)\ < \ . We deduce a contradiction. Let

d = sup \(*,9**-ιXy)\.
x'edK

Since χy is the pointwise limit of a sequence of continuous affine
functions, as in Lemma 5, we have ||p**-1;fr|| < d by Meyer's max-
imum principle. Note that d > % and by Lemma 5, d > \ . So
we can pick x1 e dK such that \(x', φ**~ιχy)\ > f, \ . There exists
/ G Γ with /?(/) = xA. As \(x, ^ * * " ί ^ ) | < £, x / xx and so y φ
y . Therefore 0 = (/ , χy) = (^*(/), φ**-χχy) = (λ'x*, φ**-χχy) +
(μ',φ**-ιXy) where, as before, φ*{y') = λ'x' + μ' with \λ'\ > c
and ||μ'|| < 2 - c < 1. Now |μ 'x ' , ^**-1/y)| > |A;| £ > rf while
K^;, ^**"1Zy)l < II^ΊIIk**"1^!! < (2 - c)rf < rf. This is impossible.
The last conclusion can be easily verified, using Lemma 5.

Finally, to prove that p is a homeomorphism, we need to assume a
slightly stronger condition, namely, that every extreme point is a weak
peak point.

THEOREM 7. Let K and S be metήzable compact convex sets in
which every extreme point is a weak peak point If there exists an
isomorphism φ: A(K) -> A(S) with \\φ\\\\φ~ι\\ < 2, then dK and dS
are homeomorphic.

Proof. We show that the bijection p: dS -> dK is a homeomor-
phism. Let F c dK be closed and let F = dK n G for some closed
set G c K. We show p~x(F) is closed in dS. Let x e dK\F
with p(y) = x. Then y $ p~ι{F) and there is a closed neighbor-
hood V of x such that V Γ\G = 0. Note that F c dK\V. As
before, write φ*(y) - λx + μ with |Λ| > c and μ e lin{jc}'. Write
μ = Σ Li nki with r, e R and kt e {x}'. Let r = Σ " = 1 |r/| and let
μj be a maximal measure on K representing kj. Choose 1 > ε > 0
such that e < m i n ( j ^ , c - 1). Since x is a weak peak point, as in
the proof of Proposition 1, there are closed neighborhoods Uj of x
with μj(Uj) < § , and if we let U = U\ Π Π t/Λ Π V and noting that
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F C dK\U, we can find hx e A(K) such that \\hx\\ < 1, hx(x) > 1 -ε
and |Λjc| < ε on F\j{k\, ... , kn}. We claim

^ " 1 ( / Γ ) = Π {yedS:\(φ(hx),y)\<c}.
xedK\F

Indeed y £ p~ι(F) implies IMA*), y)| = \(hX9φ*(y))\ = \(hx,λx) +
(hx,μ)\ > μ|(l - ε) - rε > c since |(/zx, μ}| = |E/U<**> '/*/>l <
Σ7=i k/|e = r ε A l s°> f o r / Ξ / J " 1 ^ ) with #>*(/) = λ'x' + μ',
\λ'\ > c and x' e F, we have !<?(**), / ) l = \(hx, A'*') + (A*, /ι')| <
JA'jβ + \\μ'\\ < 2ε + (2 - c) < c. So ρ~\F) is closed in 5 5 and p is
continuous. Similar arguments show that p~ι is continuous.

5. The nonmetrizable case From now on, K and S are nonmetriz-
able compact convex sets in which every extreme point is a split face.
We assume that dK and ΘS are closed in K and S respectively. As
before, let φ: A(K) —• A(S) be an isomorphism such that | |^| | < 2
and | |p(α)|| > c\\α\\ w ^ h 1 < c < 2. Then one can define the maps
p: Y ^ dK and τ: X -> <9S. We need to show 7 = 9 5 and p is a
homeomorphism. In the metrizable case, this can be achieved by in-
voking Meyer's maximum principle which, however, is not available in
the nonmetrizable case. Instead, one needs more delicate arguments.

Our first task is to show that Y φ 0 and p is onto, in other words,
given x e dK, we need to find y G dS such that \{y, φ**χx)\ > c.
Fix a decreasing net (αα) in A(K) converging pointwise to χx such
that αα > χx and for any δ > 0, we have 1 + δ > αα from some α 0

onwards. Then φ**λx = limα φ(αα) pointwise on S and so we need
to find y edS with \(y, limα φ{αα))\ > c. Fix x e dK as above. For
each α, let dSα = {y e OS: \(φ(αα), y)\ > c}. Note that dSα ψ 0
since φ{αα) e A(S) and svφyedS\{φ(αα),y)\ = \\φ(αα)\\ > c\\αα\\ > c.
Let dSx = {y e dS: y is a cluster point of {yα} with yα e dSα}.
Since dSα Φ 0 and since dS is compact, we have dSx Φ 0 . Now
we are going to show that dSx is finite and it contains the point we
are looking for.

LEMMA 8. Let 1 > ε > 0 and c-2ε > 1. Let y e dSx . If g e A(S)

satisfies g(y) > l-ε and \\g\\ < I, then K ^ " 1 ^ ) ^ ) ! > \(c-\-2ε).

Proof. Let y be a cluster point of {ya} with ya e dSa . By choosing
a subnet, we may assume 1 + § > aa and g(yα) > l - ε fo r all a.
We have \(φ(aa), ya)\ > c . Let Aα = ± 1 such that (φ(λaaa)9 ya) >
c. T h e n \\g + φ(λaaa)\\ > \g(yQ) + ( φ ( λ a a a ) , ya)\ > 1 - ε + c . S o
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\\φ-ι(g)+λaaa\\ > £ ( l - e + c) > 1. Note that U ^ U < ± < 1 and
II^HsOII < 1 F ° r each a, by Bauer's maximum principle [1; p. 46],
there exists xaedK such that

\(φ-ι(g)9Xa)+λaaa(xa)\ = \\φ~ι(g)+λaaa\\

which implies \(φ'ι(g), xa)\ > i θ - e + c) - (1 + §) - \{c - 1 - 2β)
and aa(xa) > \(c - 1 - ε). By compactness of <9Λ̂ , we may assume
(xa) converges to some z G dK. We show z = x . Suppose z Φ x .
Then limα αα(z) = χx{z) = 0. So there exists αi such that αα i(z) <

\{c - 1 - ε). Further, there exists α > αi such that aaι(xa) <

\{c - 1 - e). As (aa) is decreasing, we have \{c - 1 - ε) < aa{xa)

a) <\{c—\—ε) which is a contradiction. So xQ —• x and it
follows that K p - 1 ^ ) , x)| = limα l ^ " 1 ^ ) , **)l > ^ ( c - 1 - 2β).

LEMMA 9. dSx is finite.

Proof. Let yx, . . . , yn e dSx with n > 1. If c - f < 1, then
n < ^ γ and there is nothing to prove. Let c- \ > 1. Pick gι G A(S)
such that | | ^ | | < 1, gι(yι) = 1 - 1 and ^ ( ^ ) = 0 for j' φ 1. This
can be done because {yt} is a split face of co{yι, ... , yΛ} which is
in turn a closed split face of S. Let G = {y e S: \g\(y)\ > ^} U
{y;: j φ 2} which is closed in S. Since y^ ^ G and ^2 is a weak
peak point by Proposition 1, there exists g2 € A(S) with ||g2|| < 1 >
^2(^2) > 1 ~ jι and |^ 2 | < ^ on ΘSf)G. Next, consider j 3 ^ {y e
S: \gι(y)\ > £ or Iftfr)] > 1} u {̂ 7 : 7 ^ 3 } , we get g3 G ̂ (5) with
llftll < 1, glut) >ι~τi and \g3\ < ι- on {y e dS: \gι(y)\ > ± or

^ } . Continue. We get gΪ9 . . . , ^ G A(S) with
< IVy, gjfrj) > 1 - I and | ^ | < i on

> I for some /c < j - 1} U {yk: /c ̂  y} .

We show that | | ^ + + &,|| = sup^e^^ | ( ^ + + ̂ )( j ;) | < 2. Let
y edS. If y = yj for some j 9 then |g7(y7)| < 1 and \gk(yj)\ < ±
for kφj. So |(ft + + &)(yy )| < 1 + ^ < 2 . If y ^ y7 for all
j , then either |^7(y)| < i for all 7 < « - 1 or |gy(y)| > ^ for some
7 < n - 1. In the former case, |(& H h ̂ Λ)(y)| < ^ + 1 < 2. In
the latter, we have \gk(y)\ < ^ for k Φ j and again
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+ gn\\ < 2. Now by Lemma 8, either
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\{c-\-^ or

As the norm \\g\ H h ̂ M | | remains the same if we change the sign
of any gj, we have, by changing signs if necessary, that

φ φ
- 1 Σ»

n

So n < ^ y and dSx is finite.

LEMMA 10. The map p: Y w onto.

Proof. Let x G dK and let ^ α | χx as above. By Lemma 9,
is a finite set {y\9 ... ,yn} say. We show there exists yj e dSx

with \{yj9 φ**χx)\ = |(y ; ? limα ^(αα)) | > c. Suppose, otherwise,
\{yj, lima ^(αα)) | < c for all j . Let F = co{y\ 9 ... , yn} which is a
closed split face of S. Let Fr be its complementary face. Recall that
coOSΌ-S) is the closed unit ball in A(S)*. Since | |^* - 1(^)ll < \ < !>
we can write

^ - 1 W = Λ 1 A z 1 + A 1 ( l - i 8 i ) z /

1 - λ 2 β 2 z 2 - λ 2 ( l -β2)z'2

where Ai + λ2 = H^*" 1 ^) ! ! . 0 < βx, β2 < 1, zx, z2 e F and
z\, z'2, e F'. Let δ = i ( l - (Ai + A2)c) > 0. There exists ax such
that a > a\ implies \(φ(aa), yy)| < c + δ for y = 1, . . . ,« . Let
α > OL\ . Then

where \{φ(aa)9 z, )| < c +

),zλ) -λ2β2(φ(aa), z2)

(φ(aa),λi(l-βι)z'ι-λ2(l-β2)z'2)

for / = 1, 2. Let μi and μ2 be max-

imal measures on S representing z[ and z'2 respectively. Then the
supports of μ\ and μ2 are contained in Ff by [1; Corollary 11.611].
Let μ = λi(l - A)/^i -^2(1 - ^2)^2- Then ^ ( a ^ ) = 0 and μ is
supported by dS as //! and //2 are. Therefore there is a compact set
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GcdS such that GndSx = 0 and μ(dS\G) < f. As GndSx = 0,
there exists a2 such that a > a2 implies \(φ(aa),y)\ < c for all
yeG. Note that \μ\(G) < λ{(l - βι)+λ2(\ - β2). It follows that, for
OL > Oil , OL2,

+ λ2β2(c + δ) + \[ φ(aa)dμ
\JdS

- Λ-2/?2C + λ\β\δ + ^2^2^

+ / ψ{aa)dμ + / φ(aa)dμ
JG Jas\G

< λxβxc + λ2β2c + λrfrf + λ2β2δ

= \μ - {λx +λ2)c){\ +λxβι +λ2β2) + (A! +λ2)c

< 1 - (λι + λ2)c + (λι +λ2)c= 1

which is a contradiction. So there exists yy e dSx with \{yj, φ**χx)\ >
c. This proves Y φ 0 and p is onto. Analogously, one can show
that τ: X —• dS is onto by considering, for each fixed y e dS, the
finite set SXy of cluster points of {xa} where xa e dKa = {x €
9^Γ: K^'H^α)? x)l > 5} a n d (^α) is a decreasing net in A(S) con-
verging pointwise to χy e Ab(S) and for any δ > 0, ba < 1 + δ for
large α. As before, the following lemma shows that p: dS -+ dK is
a bijection.

LEMMA 11. If y e Y with p(y) = x, then x € X and τ(x) = y.

Proof. Suppose either x ^ I o r x e l but τ(x) Φ y. We deduce
a contradiction. Let (ba) be as above and let dKy = {xx, . . . , xn} c
dϋ: with | (x!, l im α p-^fcα))! > i Let 0 < ε < ^ - . There ex-
ists OL\ such that α > a\ implies K ^ " 1 ^ ) > ^i) | > 5 — β. As
|(x, limα φ~ι(ba))\ < \, we have x ^ Xi and so y Φ y\ where
^(^0 = *i Consider ^*(yi) = σx\ + v with \a\ > c and ||i/|| <
2 — c < 1. Let F = co{x2 > ? *«} which is a split face of K. Now
\(Xj, limα ^"^fcα))! < 5 for j = 2, ... , n, and as in the proof of
Lemma 10, we can write

ιs=λιβιzι+λι(l-βι)z'ι-λ2β2z2-λι(l-β2)z'2
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where λx + λ2 = ||z/|| < 2 - c, 0 < βγ, β2 < 1, zi, z2 € i7 and
z\, 2̂ lie in the complementary face F ' . Moreover, as in that proof,
by constructing a representing measure μ and a compact set G c dK
with μ{dK\G) < ε, one can show that, for large a,

\(φ-\ba),λx{\-βι)zf

ι-λ2{\-β2)zl

2)\

xβx{\ + ε)+λ2β2{\ + ε)

\( φ-\ba)dμ + ( φ'\ba)dμ
\JG Jdκ\G

< (2 - c)(J + ε)
Since y / yx, there exists Z? e ^4(5) such that b > χy and 6(yi) = 0
and it follows that ba(y\) = 0 for large a. Hence 0 = ba(y\) =
(φ-ι{ba), φ*(yι)) = (φ~ι{ba), σxλ) + (φ-χ{ba), v) where

\(φ-ιφa),σXι)\ > c{\-ε) > (2-c)(± + ε) > \{φ-\ba), v)\

which is a contradiction. This proves the lemma.

Finally, the proof for p: dS —> dK being a homeomorphism is as
in the metrizable case and so we obtain the following result.

THEOREM 12. Let K and S be compact convex sets with closed
extreme boundaries dK and dS respectively. Let every extreme point
of K (and S) be a split face. If there is an isomorphism φ: A(K) —•
A(S) with IHIHί?"1!! < 2, then dK and dS are homeomorphic.

We end with some examples and applications to function algebras.

EXAMPLE 1. Both Theorem 7 and Theorem 12 are false for arbitrary
compact convex sets, even in the finite dimension. Take any triangle
K in the plane. Let S be the quadrilateral obtained from cutting off
a tip of K. Then the restriction map φ: A(K) —• A(S) is clearly an
isomorphism and one can make HPIHIP"1!! less than 2 by cutting off
a small enough tip. However dK and dS are not homeomorphic.

EXAMPLE 2. Let X = {z e C: \ < \z\ < 1} and let A = {/ e

CC(X): f(z) is analytic for \ < \z\ < 1}. Then the state space
K = {μ e A*: μ(l) = 1 = ||μ||} of A is not a simplex, but dK is
closed and every extreme point of K is a split face [4; p. 108].
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Let si be a complex function algebra on a compact Hausdorff space
X and let K = {μ e J / * : μ(l) = 1 = ||μ||} be its state space. Then
dK identifies with the Choquet boundary C h j / of J/ (cf. [4; p.
12]) and the uniform closure r e j / of r e j / in C R ( X ) is isometrically
isomorphic to A(K) [4; Theorem 1.4.9]. By Bishop's characterization
of C h j / , every x e dAΓ is a weak peak point.

COROLLARY 13. Let sf and 38 be separable function algebras. If
there is an isomorphism φ: r e j / —• r e ^ such that \φ\\φ~x\ < 2,
then their Choquet boundaries are homeomorphic.

COROLLARY 14. Let sf and 38 be function algebras with closed
Choquet boundaries. If there is an isomorphism φ: τzsrf —• r e ^ with

1!! < 2, then their Choquet boundaries are homeomorphic.

The above results should be compared with Jarosz's result in [16]
that there exists SQ> 0 such that if there is a complex isomorphism
φ between two function algebras sf and £% with IMIH^"1!! < 1 + ε ,
ε < SQ , then their Choquet boundaries are homeomorphic.
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