COBCAT AND SINGULAR BORDISM

A. K. Das and S. S. Khare

Dold proved that a homomorphism $\phi: H^{n}(\mathrm{BO}) \rightarrow \mathbb{Z}_{2}$ corresponds to a manifold M^{n} if and only if $\phi\left(\mathrm{Sq}^{p} u+v_{p} \cdot u\right)=0, \forall p \geq 0$ and $\forall u \in H^{n-p}(\mathrm{BO}), v_{p}$ being the Wu class. The object of the present work is to have a singular analogue of this result and to study the bordism classification of singular manifolds in BO.

1. Introduction. Singh [1] has developed the notion of cobcat for a manifold M^{n} and has classified, upto bordism, all manifolds M^{n} with $\operatorname{cobcat}\left(M^{n}\right) \leq 3$. $\operatorname{Cobcat}\left(M^{n}\right)$ was defined to be the smallest positive integer k such that the number $\left\langle W_{i_{1}} \cdots W_{i_{p}},\left[M^{n}\right]\right\rangle=0$ for all partitions $i_{1}+\cdots+i_{p}=n$ with $k \leq p \leq n$.

Here we develop the notion of cobcat for a singular manifold (M^{n}, f) in a space X and discuss the bordism classification of all singular manifolds $\left(M^{n}, f\right)$ in BO with $\operatorname{cobcat}\left(M^{n}, f\right) \leq 3, n=2^{r}$.
Here all the manifolds are to be unoriented, smooth and closed, and all the homology and cohomology coefficients are to be in \mathbb{Z}_{2}. The space X is such that for each $n, H_{n}(X)$ and hence $H^{n}(X)$ is a finite dimensional vector space over \mathbb{Z}_{2}.

We are thankful to Dr. H. K. Mukharjee of NEHU (India) for giving helpful suggestions. The first author is also grateful to NBHM for its financial support during the course of this work.
2. Preliminaries. Consider the set $N_{n}(X)$ of bordism classes of n dimensional singular manifolds $\left(M^{n}, f\right)$ in $X, f: M^{n} \rightarrow X$ being a continuous map. We know that $N_{n}(X)$ is an abelian group under the operation "disjoint union"

$$
\left[M_{1}^{n}, f_{1}\right]+\left[M_{2}^{n}, f_{2}\right]=\left[M_{1}^{n} \sqcup M_{2}^{n}, f_{1} \sqcup f_{2}\right],
$$

where $f_{1} \sqcup f_{2}: M_{1}^{n} \sqcup M_{2}^{n} \rightarrow X$ is given by

$$
f_{1} \sqcup f_{2}(x)= \begin{cases}f_{1}(x) & \text { if } x \in M_{1}^{n}, \\ f_{2}(x) & \text { if } x \in M_{2}^{n} .\end{cases}
$$

Further, we have

$$
N_{*}(X)=\bigoplus_{n \geq 0} N_{n}(X) .
$$

We know that for a point, $N_{*}(p t)=N_{*}$, the unoriented bordism ring, and there is a N_{*}-module structure in $N_{*}(X)$ given by

$$
\left[M^{n}, f\right] \times\left[N^{m}\right]=\left[M^{n} \times N^{m}, f \pi\right],
$$

where $\pi: M^{n} \times N^{m} \rightarrow M^{n}$ is the projection.
For a singular manifold $\left(M^{n}, f\right)$ in X let $\tau: M^{n} \rightarrow \mathrm{BO}$ be the classifying map of the tangent bundle over M^{n}. Then there is defined a homomorphism $t: H^{n}(\mathrm{BO} \times X) \rightarrow \mathbb{Z}_{2}$ given by

$$
t(w \otimes x)=\left\langle(\tau, f)^{*}(w \otimes x),\left[M^{n}\right]\right\rangle=\left\langle\tau^{*}(w) f^{*}(x),\left[M^{n}\right]\right\rangle
$$

where $w \otimes x \in H^{n}(\mathrm{BO} \times X)=\bigoplus_{i=0}^{n} H^{n-i}(\mathrm{BO}) \otimes H^{i}(X)$ and (τ, f) : $M^{n} \rightarrow \mathrm{BO} \times X$ is given by $(\tau, f)(z)=(\tau(z), f(z))$.

The number $\left\langle W_{i_{1}} \cdots W_{i_{r}} f^{*}\left(x_{n-p}\right),\left[M^{n}\right]\right\rangle$ is called the StiefelWhitney number of $\left(M^{n}, f\right)$ associated to the cohomology class $x_{n-p} \in H^{n-p}(X)$ corresponding to the partition $i_{1}+\cdots+i_{r}=p$. Moreover, this number is as usual bordism invariant [2].

Analogous to [1], given a singular manifold $\left(M^{n}, f\right)$ in X there is associated a Poincaré algebra P^{*} given as follows:

Let $J=\left\{z \in H^{*}(\mathrm{BO} \times X)\right.$: either $\operatorname{dim} z>n$, or for all $z^{\prime} \in$ $\left.H^{n-\operatorname{dim} z}(\mathrm{BO} \times X),\left\langle(\tau, f)^{*} z(\tau, f)^{*} z^{\prime},\left[M^{n}\right]\right\rangle=0\right\}$.

It is easy to see that J is an ideal of the graded algebra $H^{*}(\mathrm{BO} \times X)$. Set

$$
P^{*}=\frac{H^{*}(\mathrm{BO} \times X)}{J} \text {, the quotient algebra. }
$$

Let $q: H^{*}(\mathrm{BO} \times X) \rightarrow P^{*}$ be the quotient map. Clearly, $P^{*}=0$ if and only if (M^{n}, f) bounds. Let $z \in H^{*}(\mathrm{BO} \times X)$; we say, " $z=0$ in $P^{*} "$ if $q(z)=0$.

As in [1], we have the following proposition, whose verification is a routine matter.

Proposition 2.1. If $\left(M^{n}, f\right)$ is not a boundary then
(a) P^{*} is an n-dimensional graded algebra with Poincaré duality,
(b) the Steenrod algebra acts on P^{*} with the action given by

$$
\operatorname{Sq}^{i}(q(z))=q\left(\mathbf{S q}^{i}(z)\right),
$$

(c) if $z \in H^{n}(\mathrm{BO} \times X)$ then $q(z)=0$ if and only if

$$
t(z)=\left\langle(\tau, f)^{*} z,\left[M^{n}\right]\right\rangle=0
$$

It is easy to see that for all $p \geq 0$, and for all $z \in H^{n-p}(\mathrm{BO} \times X)$,

$$
t\left(\mathbf{S q}^{p}(z)+\left(v_{p} \otimes 1\right) z\right)=0
$$

where $v_{p} \in H^{p}(\mathrm{BO})$ is the Wu class. So, in view of the above proposition, we have $\mathrm{Sq}^{p}(z)=\left(v_{p} \otimes 1\right) z$ in P^{*}.
3. Extension of Dold's and Milnor's results to singular case. Dold [3] has proved the following

Result 3.1. For each integer $n \geq 0$, if $\phi: H^{n}(\mathrm{BO}) \rightarrow \mathbb{Z}_{2}$ is a homomorphism then there is an n-dimensional closed manifold M^{n} with $\phi(w)=\left\langle\tau(w),\left[M^{n}\right]\right\rangle$ for all $w \in H^{n}(\mathbf{B O})$ if and only if $\phi\left(\mathrm{Sq}^{p}(u)+\right.$ $\left.v_{p} \cdot u\right)=0$ for all $u \in H^{n-p}(\mathrm{BO})$ and for all $p \geq 0, v_{p} \in H^{p}(\mathrm{BO})$ being the Wu class.

Here we shall extend this result to the singular case as follows:
THEOREM 3.2. For each $n \geq 0$, if $h: H^{n}(\mathrm{BO} \times X) \rightarrow \mathbb{Z}_{2}$ is a homomorphism then there is an n-dimensional singular manifold (M^{n}, f) with $h(w \otimes x)=\left\langle\tau^{*}(w) f^{*}(x),\left[M^{n}\right]\right\rangle$ for all $w \otimes x \in H^{n}(\mathrm{BO} \times X)$ if and only if $h\left(\mathrm{Sq}^{p}(u \otimes y)+\left(v_{p} \cdot u\right) \otimes y\right)=0$ for all $u \otimes y \in H^{n-p}(\mathrm{BO} \times X)$ and for all $p \geq 0, v_{p} \in H^{p}(\mathrm{BO})$ being the $W u$ class.

Proof. It is easy to see that the condition is necessary. We prove that the condition is sufficient also. Let $\left\{c_{m, i}\right\}_{i \in I_{m}}$ denote a basis for the vector space $H_{m}(X)$ over $\mathbb{Z}_{2}, m \geq 0$. Let $c^{m, i} \in H^{m}(X)$ be the cohomology class dual to $c_{m, i}$ i.e. $\left\langle c^{m, i}, c_{m, j}\right\rangle=\delta_{i j}$. Note that $\left\{c^{m, i}\right\}$ forms a basis for $H^{m}(X)$. Now, for each $c_{m, j}$ we can choose a singular manifold $\left(M_{j}^{m}, f_{j}^{m}\right)$ with $\left(f_{j}^{m}\right)_{*}\left(\left[M_{j}^{m}\right]\right)=c_{m, j},[2]$. Thus, we have

$$
\left\langle\left(f_{j}^{m}\right)^{*} c^{m, i},\left[M_{j}^{m}\right]\right\rangle=\delta_{i j}
$$

Now,

$$
H^{n}(\mathrm{BO} \times X)=\bigoplus_{l=0}^{n} H^{l}(\mathrm{BO}) \otimes H^{n-l}(X)
$$

Define,

$$
h_{i}^{0}: H^{0}(\mathrm{BO}) \rightarrow \mathbb{Z}_{2}
$$

by

$$
h_{i}^{0}(1)=h\left(1 \otimes c^{n, i}\right)
$$

Clearly, h_{i}^{0} satisfies the condition given in Result (3.1) and so there exists a manifold V_{i}^{0} such that

$$
h_{i}^{0}(1)=\left\langle\tau^{*}(1),\left[V_{i}^{0}\right]\right\rangle=\left\langle 1,\left[V_{i}^{0}\right]\right\rangle
$$

for each $i \in I_{n}$.

Define $h_{i}^{1}: H^{1}(\mathrm{BO}) \rightarrow \mathbb{Z}_{2}$ by

$$
\begin{aligned}
h_{i}^{1}(w)= & h\left(w \otimes c^{n-1, i}\right) \\
& +\sum_{j \in I_{n}}\left\langle\tau^{*}(w)\left(f_{j}^{n} \pi\right)^{*}\left(c^{n-1, i}\right),\left[M_{j}^{n} \times V_{j}^{0}\right]\right\rangle \\
= & h\left(w \otimes c^{n-1, i}\right) \\
& +\sum_{j}\left\langle\tau^{*} w \cdot\left(\left(f_{j}^{n}\right)^{*} c^{n-1, i} \otimes 1\right),\left[M_{j}^{n} \times V_{j}^{0}\right]\right\rangle .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& h_{i}^{1}\left(\mathbf{S q}^{1}(1)+v_{1} \cdot 1\right) \\
& \quad=h\left(v_{1} \otimes c^{n-1, i}\right)+\sum_{j}\left\langle\tau^{*} v_{1} \cdot\left(\left(f_{j}^{n}\right)^{*} c^{n-1, i} \otimes 1\right),\left[M_{j}^{n} \times V_{j}^{0}\right]\right\rangle \\
& \quad= h\left(\mathbf{S q}^{1}\left(1 \otimes c^{n-1, i}\right)\right)+\sum_{j}\left\langle\mathbf{S q}^{1}\left(\left(f_{j}^{n}\right)^{*} c^{n-1, i} \otimes 1\right),\left[M_{j}^{n} \times V_{j}^{0}\right]\right\rangle \\
& \quad= h\left(1 \otimes \mathbf{S q}^{1} c^{n-1, i}\right)+\sum_{j}\left\langle\left(f_{j}^{n}\right)^{*} \operatorname{Sq}^{1} c^{n-1, i},\left[M_{j}^{n}\right]\right\rangle\left\langle 1,\left[V_{j}^{0}\right]\right\rangle .
\end{aligned}
$$

Since, $\mathrm{Sq}^{1} c^{n-1, i} \in H^{n}(X)$, there is a subset $K_{n} \subset I_{n}$ such that

$$
\mathrm{Sq}^{1} c^{n-1, i}=\sum_{k \in K_{n}} c^{n, k}
$$

Therefore,

$$
\begin{aligned}
& h_{i}^{1}\left(\mathbf{S q}^{1}(1)+v_{1} \cdot 1\right) \\
& \quad=\sum_{k \in K_{n}} h\left(1 \otimes c^{n, k}\right)+\sum_{j} \sum_{k \in K_{n}}\left\langle\left(f_{j}^{n}\right)^{*} c^{n, k},\left[M_{j}^{n}\right]\right\rangle h_{j}^{0}(1) \\
& \quad=\sum_{k} h_{k}^{0}(1)+\sum_{k} h_{k}^{0}(1), \quad \text { since }\left\langle\left(f_{j}^{n}\right)^{*} c^{n, k},\left[M_{j}^{n}\right]\right\rangle=\delta_{k j} \\
& \quad=0 .
\end{aligned}
$$

So, by Result (3.1), there exists a manifold V_{i}^{1} such that

$$
h_{i}^{1}(w)=\left\langle\tau^{*} w,\left[V_{i}^{1}\right]\right\rangle,
$$

for each $i \in I_{n-1}$.
Now, using induction, we define $h_{i}^{l}: H^{l}(\mathrm{BO}) \rightarrow \mathbb{Z}_{2}$ by

$$
\begin{aligned}
h_{i}^{l}(w)= & h\left(w \otimes c^{n-l, i}\right) \\
& +\sum_{\substack{j \in I_{n-m} \\
0 \leq m<1}}\left\langle\tau^{*} w \cdot\left(\left(f_{j}^{n-m}\right)^{*} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle
\end{aligned}
$$

where $1 \leq l \leq n$, and each V_{j}^{m} is given by $h_{j}^{m}(m<l)$.

Now, it is enough to show that h_{i}^{l} satisfies the condition given in (3.1). For if it is so, then there exists a family $\left\{V_{i}^{l}\right\}_{i \in I_{n-l}}$ of manifolds such that for each $i \in I_{n-l}$,

$$
h_{i}^{l}(w)=\left\langle\tau^{*} w,\left[V_{i}^{l}\right]\right\rangle \quad(1 \leq l \leq n) .
$$

Also, we already have a family $\left\{V_{i}^{0}\right\}_{i \in I_{n}}$ of manifolds such that

$$
h_{i}^{0}(1)=\left\langle 1,\left[V_{i}^{0}\right]\right\rangle,
$$

for each $i \in I_{n}$. It is then easy to see that the given homomorphism $h: H^{n}(\mathrm{BO} \times X) \rightarrow \mathbb{Z}_{2}$ corresponds to the singular manifold (M^{n}, f) given by

$$
M^{n}=\bigsqcup M_{i}^{n-l} \times V_{i}^{l} \quad \text { and } \quad f=\bigsqcup\left(f_{i}^{n-l} \pi\right)
$$

where the disjoint union \bigsqcup is taken over all $i \in I_{n-l}$ and all $0 \leq l \leq$ n, and $\pi: M_{i}^{n-l} \times V_{i}^{l} \rightarrow M_{i}^{n-l}$ denotes the projection map.

Note that, for each $p \geq 0$ and for each $u \in H^{l-p}(\mathrm{BO})$,

$$
h_{i}^{l}\left(\mathbf{S q}^{p} u+v_{p} \cdot u\right)=\mathrm{I}+\mathrm{II}+\mathrm{III},
$$

where

$$
\begin{aligned}
\mathrm{I} & =h\left(\left(\mathbf{S q}^{p} u+v_{p} \cdot u\right) \otimes c^{n-l, i}\right) \\
& =h\left(\mathbf{S q}^{p} u \otimes c^{n-l, i}+\left(v_{p} \cdot u\right) \otimes c^{n-l, i}\right) \\
& =h\left(\sum_{\substack{r+s=p \\
r \neq p}} \mathbf{S q}^{r} u \otimes \mathbf{S q}^{s} c^{n-l, i}\right), \quad \text { by hypothesis on } h, \\
& =\sum_{\substack{r+s=p \\
r \neq p}} h\left(\mathbf{S q}^{r} u \otimes \mathbf{S q}^{s} c^{n-l, i}\right), \\
\mathrm{II} & =\sum_{j \in I_{n-m}}\left\langle\tau^{*}\left(\mathbf{S q}^{p} u\right)\left(\left(f_{j}^{n-m}\right)^{*} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle \\
& =\sum_{j, m}^{0 \leq m<l}\left\langle\mathbf{S q}^{p}\left(\tau^{*} u\right)\left(\left(f_{j}^{n-m}\right)^{*} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle, \quad \text { and } \\
\mathrm{III} & =\sum_{j, m}\left\langle\tau^{*}\left(v_{p} \cdot u\right)\left(\left(f_{j}^{n-m}\right)^{*} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle \\
& =\sum_{j, m}\left\langle\mathbf{S q}^{p}\left(\tau^{*} u\left(\left(f_{j}^{n-m}\right)^{*} c^{n-l, i} \otimes 1\right)\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle .
\end{aligned}
$$

So,

$$
\begin{aligned}
\mathrm{II}+\mathrm{III} & =\sum_{j, m} \sum_{\substack{r+s=p \\
r \neq p}}\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right)\left(\mathrm{Sq}^{s}\left(f_{j}^{n-m}\right)^{*} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle \\
& =\sum_{j, m} \sum_{\substack{r+s=p \\
r \neq p}}\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right)\left(\left(f_{j}^{n-m}\right)^{*} \mathrm{Sq}^{s} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle
\end{aligned}
$$

Now, since $\mathrm{Sq}^{s} c^{n-l, i} \in H^{n-l+s}(X)$, there is a subset K_{n-l+s} of I_{n-l+s} such that

$$
\mathrm{Sq}^{s} c^{n-l, i}=\sum_{k \in K_{n-l+s}} c^{n-l+s, k}, \quad(1 \leq s \leq p)
$$

So,
(1) $h\left(\mathrm{Sq}^{r} u \otimes \mathrm{Sq}^{s} c^{n-l, i}\right)$

$$
\begin{aligned}
& =\sum_{k \in K_{n-l+s}} h\left(\mathrm{Sq}^{r} u \otimes c^{n-l+s, k}\right) \\
& =\sum_{k}\left\{\sum_{\substack{j, m \\
(m<l-s)}}\left\langle\tau^{*}\left(\mathrm{Sq}^{r} u\right)\left(\left(f_{j}^{n-m}\right)^{*} c^{n-l+s, k} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle\right.
\end{aligned}
$$

$$
\left.+\left\langle\tau^{*}\left(\mathrm{Sq}^{r} u\right),\left[V_{k}^{l-s}\right]\right\rangle\right\}
$$

$$
\begin{aligned}
= & \sum_{\substack{j, m \\
(m<l-s)}}\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right)\left(\left(f_{j}^{n-m}\right)^{*} \mathrm{Sq}^{s} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle
\end{aligned} \quad \begin{aligned}
& \text { noting that } l-s<l
\end{aligned}
$$

Also,
(*) $\sum_{\substack{j, m \\(l-s \leq m<l)}}\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right)\left(\left(f_{j}^{n-m}\right)^{*} \mathrm{Sq}^{s} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-m} \times V_{j}^{m}\right]\right\rangle$

$$
=\sum_{j}\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right)\left(\left(f_{j}^{n-l+s}\right)^{*} \mathrm{Sq}^{s} c^{n-l, i} \otimes 1\right),\left[M_{j}^{n-l+s} \times V_{j}^{l-s}\right]\right\rangle
$$

by dimensional consideration, since $m \geq l-s$. Further, we note that u is a polynomial in Stiefel-Whitney classes of BO , so that $\mathrm{Sq}^{r}\left(\tau^{*} u\right)$ is
a polynomial in Stiefel-Whitney classes of $M_{j}^{n-l+s} \times V_{j}^{l-s}$. Therefore the above expression (*) becomes equal to

$$
\begin{align*}
& \sum_{j}\left\langle\left(f_{j}^{n-l+s}\right)^{*} \mathrm{Sq}^{s} c^{n-l, i},\left[M_{j}^{n-l+s}\right]\right\rangle\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right),\left[V_{j}^{l-s}\right]\right\rangle \tag{2}\\
& =\sum_{j} \sum_{k \in K_{n-l+s}}\left\langle\left(f_{j}^{n-l+s}\right)^{*} c^{n-l+s, k},\left[M_{j}^{n-l+s}\right]\right\rangle\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right),\left[V_{j}^{l-s}\right]\right\rangle \\
& =\sum_{k}\left\langle\mathrm{Sq}^{r}\left(\tau^{*} u\right),\left[V_{k}^{l-s}\right]\right\rangle
\end{align*}
$$

Hence, combining I with (1) and II + III with (2), it follows that

$$
h_{i}^{l}\left(\mathrm{Sq}^{p} u+v_{p} \cdot u\right)=\mathrm{I}+\mathrm{II}+\mathrm{III}=0
$$

That is, h_{i}^{l} satisfies the condition given in (3.1).

Now, consider the universal bundle $\gamma: \mathrm{EO} \rightarrow \mathrm{BO}$ and the cartesian product $\gamma \times \gamma$ over $\mathrm{BO} \times \mathrm{BO}$. Let $\mu: \mathrm{BO} \times \mathrm{BO} \rightarrow \mathrm{BO}$ be the classifying map of $\gamma \times \gamma . \mu$ has the property that

$$
\mu^{*}\left(W_{i}\right)=\sum_{k=0}^{i} W_{k} \otimes W_{i-k}
$$

The product of two singular manifolds $\left(M^{m}, f\right)$ and $\left(M^{n}, g\right)$ in BO is given by $\left(M^{m} \times M^{n}, \mu \circ(f \times g)\right.$), and this product induces a multiplication in $N_{*}(\mathrm{BO})$ given by

$$
\left[M^{m}, f\right] \times\left[M^{n}, g\right]=\left[M^{m} \times M^{n}, \mu \circ(f \times g)\right]
$$

which makes $N_{*}(\mathrm{BO})$ an algebra over \mathbb{Z}_{2}.
Analogous to [4], we have

Lemma 3.3. The Stiefel-Whitney numbers

$$
\left\langle W_{2 i_{1}} \cdots W_{2 i_{r}}(\mu \circ(g \times g))^{*}\left(W_{2 i_{r+1}} \cdots W_{2 i_{r+s}}\right),[N \times N]\right\rangle
$$

of the product $(N, g) \times(N, g)$ in BO are equal to

$$
\left\langle W_{i_{1}} \cdots W_{i_{r}} g^{*}\left(W_{i_{r+1}} \cdots W_{i_{r+s}}\right),[N]\right\rangle
$$

while the numbers

$$
\left\langle W_{j_{1}} \cdots W_{j_{p}}(\mu \circ(g \times g))^{*}\left(W_{j_{p+1}} \cdots W_{j_{p+q}}\right),[N \times N]\right\rangle
$$

are zero if some j_{h} is odd.
Proof. Routine verification.

Theorem 3.4. Let $\left(M^{2 n}, f\right)$ be a singular manifold in BO, such that

$$
\left\langle W_{j_{1}} \cdots W_{j_{p}} f^{*}\left(W_{j_{p+1}} \cdots W_{j_{p+q}}\right),\left[M^{2 n}\right]\right\rangle=0
$$

whenever some j_{h} is odd. Then

$$
\left[M^{2 n}, f\right]=\left[\left(N^{n}, g\right) \times\left(N^{n}, g\right)\right] \quad \text { in } N_{2 n}(\mathrm{BO}) .
$$

Proof. We shall construct a singular manifold (N^{n}, g) in BO whose Stiefel-Whitney numbers

$$
\left\langle W_{i_{1}} \cdots W_{i_{r}} g^{*}\left(W_{i_{r+1}} \cdots W_{i_{r+s}}\right),\left[N^{n}\right]\right\rangle
$$

are equal to

$$
\left\langle W_{2 i_{1}} \cdots W_{2 i_{r}} f^{*}\left(W_{2 i_{r+1}} \cdots W_{2 i_{r+s}}\right),\left[M^{2 n}\right]\right\rangle .
$$

This will imply that $\left(M^{2 n}, f\right)$ is cobordant to $\left(N^{n}, g\right) \times\left(N^{n}, g\right)$, by (3.3).

Let $R^{n} \subset H^{n}(\mathrm{BO} \times \mathrm{BO})$ be the vector space generated by all elements of the form $\mathrm{Sq}^{p}(x \otimes y)+\left(v_{p} \cdot x\right) \otimes y$. The Stiefel-Whitney numbers of each manifold (N^{n}, g) determine a homomorphism

$$
h_{N}: H^{n}(\mathrm{BO} \times \mathrm{BO}) \rightarrow \mathbb{Z}_{2}
$$

given by $h_{N}(x \otimes y)=\left\langle(\tau, g)^{*}(x \otimes y),[N]\right\rangle$, and by Theorem (3.2) we know that a given homomorphism $H^{n}(\mathrm{BO} \times \mathrm{BO}) \rightarrow \mathbb{Z}_{2}$ corresponds to a singular manifold in BO if and only if it annihilates R^{n}.

Define the "doubling homomorphism"

$$
d: H^{*}(\mathrm{BO} \times \mathrm{BO}) \rightarrow H^{*}(\mathrm{BO} \times \mathrm{BO})
$$

by

$$
d\left(W_{i} \otimes W_{j}\right)=W_{2 i} \otimes W_{2 j}
$$

Let ($M^{2 n}, f$) satisfy the hypothesis of Theorem (3.4). Then we shall show that $h_{M} \circ d: H^{n}(\mathrm{BO} \times \mathrm{BO}) \rightarrow \mathbb{Z}_{2}$ annihilates R^{n}. This will prove the existence of the required manifold (N^{n}, g).

Let $I \subset H^{*}(\mathrm{BO} \times \mathrm{BO})$ denote the ideal generated by the family $\left\{W_{i} \otimes 1,1 \otimes W_{i}\right\}_{i \text { odd }}$. Note that

$$
\begin{aligned}
\mathrm{Sq}^{2 i} d\left(W_{j} \otimes 1\right) & =\left(\mathrm{Sq}^{2 i} W_{2 j}\right) \otimes 1 \\
& =\left(\sum_{k=0}^{2 i}\binom{2 j-2 i+k-1}{k} W_{2 i-k} W_{2 j+k}\right) \otimes 1,
\end{aligned}
$$

where $\binom{p}{q}$ denotes the binomial coefficients reduced modulo 2 . Therefore using the fact that

$$
\binom{2 j-2 i+2 l-1}{2 l}=\binom{j-i+l-1}{l}
$$

we get

$$
\begin{aligned}
\mathrm{Sq}^{2 i} d\left(W_{j} \otimes 1\right) & \equiv\left(\sum_{l=0}^{i}\binom{j-i+l-1}{l} W_{2 i-2 l} W_{2 j+2 l}\right) \otimes 1 \bmod I \\
& \equiv d\left(\mathrm{Sq}^{i}\left(W_{j} \otimes 1\right)\right) \bmod I .
\end{aligned}
$$

Similarly, $\mathrm{Sq}^{2 i} d\left(1 \otimes W_{j}\right) \equiv d\left(\mathrm{Sq}^{i}\left(1 \otimes W_{j}\right)\right) \bmod I$. Further, if

$$
\begin{aligned}
& \mathrm{Sq}^{2 i} d(x \otimes y) \equiv d\left(\mathrm{Sq}^{i}(x \otimes y)\right) \bmod I \text { and } \\
& \mathrm{Sq}^{2 i} d(x \otimes y) \equiv d\left(\mathrm{Sq}^{i}\left(x^{\prime} \otimes y^{\prime}\right)\right) \bmod I
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathrm{Sq}^{2 i} d\left((x \otimes y)\left(x^{\prime} \otimes y^{\prime}\right)\right) \\
& \quad \equiv \sum_{p+q=i}\left(\mathbf{S q}^{2 p} d(x \otimes y)\right)\left(\mathbf{S q}^{2 q} d\left(x^{\prime} \otimes y^{\prime}\right)\right) \bmod I \\
& \quad \equiv \sum_{p+q=i}\left(d\left(\mathbf{S q}^{p}(x \otimes y)\right)\right)\left(d\left(\mathbf{S q}^{q}\left(x^{\prime} \otimes y^{\prime}\right)\right)\right) \bmod I \\
& \quad \equiv d\left(\mathbf{S q}^{i}\left((x \otimes y)\left(x^{\prime} \otimes y^{\prime}\right)\right)\right) \quad \bmod I .
\end{aligned}
$$

Hence, by induction, it follows that

$$
\mathbf{S q}^{2 i} d(x \otimes y) \equiv d\left(\mathbf{S q}^{i}(x \otimes y)\right) \quad \bmod I
$$

for each $x \otimes y \in H^{*}(\mathrm{BO} \times \mathrm{BO})$.
It is simple to verify that I is closed under Steenrod squaring operation. Applying induction on p, one gets

$$
d\left(v_{p} \otimes 1\right) \equiv\left(v_{2 p} \otimes 1\right) \quad \bmod I .
$$

Now, consider the manifold $\left(M^{2 n}, f\right)$. By the hypothesis on ($M^{2 n}, f$) we have

$$
h_{M}\left(I^{2 n}\right)=0, \quad \text { where } I^{2 n}=I \cap H^{2 n}(\mathrm{BO} \times \mathrm{BO}) .
$$

Therefore, for any generator $\mathrm{Sq}^{p}(x \otimes y)+\left(v_{p} \otimes 1\right)(x \otimes y)$ of R^{n} we have, using the congruences established above,

$$
\begin{aligned}
& \left(h_{M} \circ d\right)\left(\mathrm{Sq}^{p}(x \otimes y)+\left(v_{p} \otimes 1\right)(x \otimes y)\right) \\
& \quad=h_{M}\left(\mathrm{Sq}^{2 p}(d(x \otimes y))+\left(v_{2 p} \otimes 1\right) d(x \otimes y)+\left(\text { terms in } I^{2 n}\right)\right) \\
& \quad=0 .
\end{aligned}
$$

That is, $h_{M} \circ d$ annihilates R^{n} and so by Theorem (3.2) there exists a singular manifold (N^{n}, g) in BO such that $h_{M} \circ d=h_{N}$. Hence, the theorem follows.
4. Cobcat and singular bordism in BO. Analogous to [1], we define the cobcat for a singular manifold (M^{n}, f) in X as follows

Definition. Cobcat $\left(M^{n}, f\right)$ is the smallest positive integer k such that for each $m, 0 \leq m \leq n$, the number

$$
\left\langle W_{i_{1}} \cdots W_{i_{p}} f^{*}\left(x_{j_{1}} \cdots x_{j_{q}}\right),\left[M^{n}\right]\right\rangle=0
$$

for all partitions $i_{1}+\cdots+i_{p}$ of m and for all partitions $j_{1}+\cdots+j_{q}$ of $n-m$, with $k \leq p+q \leq n\left(x_{j_{h}} \in H^{j_{h}}(X)\right.$ for all $\left.j_{h}\right)$. If no such k exists define $\operatorname{cobcat}\left(M^{n}, f\right)=n+1$.

Remark 4.1. (a) $\operatorname{Cobcat}\left(M^{n}\right) \leq \operatorname{cobcat}\left(M^{n}, f\right)$,
(b) $\operatorname{cobcat}\left(M^{n}, f\right)=1$ if and only if (M^{n}, f) bounds,
(c) $\operatorname{cobcat}\left(M^{n}, f\right) \leq \operatorname{nil}\left(\operatorname{Im}(\tau, f)^{*}\right) \leq \operatorname{cat}(\tau, f) \leq \operatorname{cat}\left(M^{n}\right)$,
(d)
$\operatorname{cobcat}\left(M_{1}^{n} \sqcup M_{2}^{n}, f_{1} \sqcup f_{2}\right) \leq \max \left\{\operatorname{cobcat}\left(M_{1}^{n}, f_{1}\right), \operatorname{cobcat}\left(M_{2}^{n}, f_{2}\right)\right\}$.
Now we shall discuss the singular version of some results proved in [1]. Let P^{*} be the Poincaré algebra associated to the singular manifold $\left(M^{n}, f\right)$ in X. As in [1], an element z of any graded algebra A^{*} will be called k-decomposable if it is zero or is the sum of the products $z_{1} \cdot z_{2} \cdots \cdot z_{p}$ where $z_{i} \in A^{*}$ with $\operatorname{dim} z_{i}>0$ for each i, and $p \geq k$.

Proposition 4.2. Let $\operatorname{cobcat}\left(M^{n}, f\right) \leq k$.
(a) If $z \in P^{*}$ is k-decomposable, then z is zero.
(b) If $z \in P^{*}$ is $(k-1)$-decomposable and $\operatorname{dim} z<n$ then z is zero.

Proof. Note that any k-decomposable element z of $H^{*}(\mathrm{BO} \times X) \cong$ $H^{*}(\mathrm{BO}) \otimes H^{*}(X)$ can be written as a sum of the products $z_{1} \cdot z_{2} \cdot \cdots$. z_{p}, where each z_{i} is of the type $W_{j} \otimes 1$ or $1 \otimes x_{j}$, and $p \geq k$. Also for any $z^{\prime} \in H^{n-\operatorname{dim} z}(\mathrm{BO} \times X)$ we have

$$
\left\langle(\tau, f)^{*} z_{1}(\tau, f)^{*} z_{2} \cdots(\tau, f)^{*} z_{p}(\tau, f)^{*} z^{\prime},\left[M^{n}\right]\right\rangle=0
$$

since $\operatorname{cobcat}\left(M^{n}, f\right) \leq k$ and $p \geq k$. Hence (a) follows, using the fact that any k-decomposable element of P^{*} can be obtained from a k-decomposable element of $H^{*}(\mathrm{BO} \times X)$.

As in ([1], 1.2), (b) follows from (a).

From now on, the ambient space X will be taken to be the universal base space BO and (M^{n}, f) will denote a singular manifold in BO with $\operatorname{cobcat}\left(M^{n}, f\right) \leq 3$.

Lemma 4.3. (a) If $z\left(W_{i} \otimes 1\right)=0$ and $z\left(1 \otimes W_{i}\right)=0$ in P^{*}, where $z \in H^{n-i}(\mathrm{BO} \times \mathrm{BO})$ and $0<i<n$, then $z=0$ in P^{*}.
(b) For $j>0$,

$$
W_{2 j+1} \otimes 1= \begin{cases}\mathrm{Sq}^{1}\left(W_{2 j} \otimes 1\right) & \text { if } 2 j+1<n, \\ 0 & \text { if } 2 j+1=n,\end{cases}
$$

and

$$
1 \otimes W_{2 j+1}=\operatorname{Sq}^{1}\left(1 \otimes W_{2 j}\right) \quad \text { if } 2 j+1<n
$$

in P^{*}.
Proof. (a) By the hypothesis, the last proposition and the fact that $\operatorname{cobcat}\left(M^{n}, f\right) \leq 3$, we have

$$
\left\langle(\tau, f)^{*} z(\tau, f)^{*} z^{\prime},\left[M^{n}\right]\right\rangle=\left\langle(\tau, f)^{*}\left(z \cdot z^{\prime}\right),\left[M^{n}\right]\right\rangle=0
$$

for all $z^{\prime} \in H^{i}(\mathrm{BO} \times \mathrm{BO})$. So $z=0$ in P^{*}.
(b) Note that

$$
\operatorname{Sq}^{1}\left(W_{2 j} \otimes 1\right)=\left(W_{1} \otimes 1\right)\left(W_{2 j} \otimes 1\right)+W_{2 j+1} \otimes 1 .
$$

If $2 j+1<n$ then $\left(W_{1} \otimes 1\right)\left(W_{2 j} \otimes 1\right)$, being decomposable, is zero in P^{*}. If $2 j+1=n$, then $\left(W_{1} \otimes 1\right)\left(W_{2 j} \otimes 1\right)=\operatorname{Sq}^{1}\left(W_{2 j} \otimes 1\right)$ in P^{*}. For the last part of (b) one has

$$
\mathrm{Sq}^{1}\left(1 \otimes W_{2 j}\right)=\left(1 \otimes W_{1}\right)\left(1 \otimes W_{2 j}\right)+1 \otimes W_{2 j+1} .
$$

Lemma 4.4. If n is even and $n>2$, then $W_{i} \otimes 1=0$ and $1 \otimes W_{i}=0$ in P^{*} for all odd i.

Proof. By Lemma (4.3), it is enough to show that
(a) $\left(W_{i} \otimes 1\right)\left(W_{n-i} \otimes 1\right)=0$,
(b) $\left(W_{i} \otimes 1\right)\left(1 \otimes W_{n-i}\right)=0$,
(c) $\left(1 \otimes W_{i}\right)\left(1 \otimes W_{n-i}\right)=0$ in P^{*} for all odd i.

For (a), let $i=1$; then
$\left(W_{1} \otimes 1\right)\left(W_{n-1} \otimes 1\right)=\operatorname{Sq}^{1}\left(W_{n-1} \otimes 1\right)=\operatorname{Sq}^{1}{ }^{2} q^{1}\left(W_{n-2} \otimes 1\right)=0$ in P^{*}, using (4.3) and the fact that $\mathrm{Sq}^{1} \mathrm{Sq}^{1}=0$. Now let $i=2 j+1$,
$j>0$ and $n-i=2 k+1, k>0$; then by (4.3)

$$
\begin{aligned}
& \left(W_{i} \otimes 1\right)\left(W_{n-i} \otimes 1\right)=\operatorname{Sq}^{1}\left(W_{2 j} \otimes 1\right) \mathrm{Sq}^{1}\left(W_{2 k} \otimes 1\right) \\
& \quad=\operatorname{Sq}^{1}\left(\left(W_{2 j} \otimes 1\right) \operatorname{Sq}^{1}\left(W_{2 k} \otimes 1\right)\right) \\
& \quad=\left(W_{1} \otimes 1\right)\left(W_{2 j} \otimes 1\right) \operatorname{Sq}^{1}\left(W_{2 k} \otimes 1\right)=0
\end{aligned}
$$

in P^{*}, as it is 3-decomposable. Hence (a) follows. For (b), using the same technique as in (a), we have $\left(W_{i} \otimes 1\right)\left(1 \otimes W_{n-i}\right)=0$ in P^{*} for all odd $i<n-1$. However, for $i=n-1$, we have by (4.3)

$$
\begin{aligned}
& \left(W_{n-1} \otimes 1\right)\left(1 \otimes W_{1}\right)=\operatorname{Sq}^{1}\left(W_{n-2} \otimes 1\right)\left(1 \otimes W_{1}\right) \\
& \quad=\operatorname{Sq}^{1}\left(\left(W_{n-2} \otimes 1\right)\left(1 \otimes W_{1}\right)\right)+\left(W_{n-2} \otimes 1\right) \operatorname{Sq}^{1}\left(1 \otimes W_{1}\right) \\
& =\left(W_{1} \otimes 1\right)\left(W_{n-2} \otimes 1\right)\left(1 \otimes W_{1}\right) \\
& \quad+\left(W_{n-2} \otimes 1\right)\left(1 \otimes W_{1}\right)\left(1 \otimes W_{1}\right)=0
\end{aligned}
$$

in P^{*}, as it is 3-decomposable. Thus (b) follows. Now, (c) can be proved by the same technique used in (a) and (b) above.

Proposition 4.5. If $\left(M^{n}, f\right)$ is a non-bounding n-dimensional singular manifold in BO with $\operatorname{cobcat}\left(M^{n}, f\right) \leq 3$, where n is even and $n>2$, then $\left(M^{n}, f\right)$ is cobordant to a product $(N, g) \times(N, g)$ in BO , where (N, g) is also non-bounding and $\operatorname{cobcat}(N, g) \leq 3$.

Proof. By Theorem (3.4) and Lemma (4.4), there exists a singular manifold (N, g) is BO of dimension $n / 2$ such that $\left(M^{n}, f\right)$ is cobordant to the product $(N, g) \times(N, g)$. Also,

$$
\begin{aligned}
\left\langle W_{i_{1}}\right. & \left.\cdots W_{i_{p}} g^{*}\left(W_{i_{p+1}} \cdots W_{i_{p+q}}\right),[N]\right\rangle \\
& =\left\langle W_{2 i_{1}} \cdots W_{2 i_{p}} f^{*}\left(W_{2 i_{p+1}} \cdots W_{2 i_{p+q}}\right),[M]\right\rangle
\end{aligned}
$$

where $i_{1}+\cdots+i_{p+q}=n / 2$ is a partition of $n / 2$. Hence the proposition follows.

In the above proposition one can observe that if the underlying manifold M^{n} in $\left(M^{n}, f\right)$ were a boundary then N in (N, g) would also be a boundary. Further, using induction, one can easily get the following

Corollary 4.6. Let $\left(M^{n}, f\right)$ be an n-dimensional singular manifold in BO with $\operatorname{cobcat}\left(M^{n}, f\right) \leq 3$. Let $n=2^{r} \cdot m$ where either m is odd and $m \geq 3$, or $m=2$. Then either $\left(M^{n}, f\right)$ is a boundary or else $\left(M^{n}, f\right)$ is cobordant to $(N, g)^{2^{\prime}}$, where (N, g) is a non-bounding m-dimensional singular manifold in BO with $\operatorname{cobcat}(N, g) \leq 3$.

Finally, in view of the above results and the fact that $N_{2}(\mathrm{BO})$ is generated by the bordism classes $\left[\left(R P^{1}, \tau_{1}\right)^{2}\right],\left[R P^{2}, \tau_{1}\right]$ and $\left[R P^{2}, c\right]$, where $\tau_{1}: R P^{i} \rightarrow \mathrm{BO}$ is the classifying map of the canonical line bundle over $R P^{i}(i=1,2)$ and $c: R P^{2} \rightarrow \mathrm{BO}$ is the constant map, we can make the following remarks.

Remark 4.7. Let (M^{n}, f) be as in (4.6) and $n=2^{r}, r \geq 1$. Then either (M^{n}, f) is a boundary or else (M^{n}, f) is cobordant to $(N, g)^{r^{-1}}$, where (N, g) is a 2-dimensional singular manifold generated by $\left(R P^{1}, \tau_{l}\right)^{2},\left(R P^{2}, \tau_{l}\right)$ and/or $\left(R P^{2}, c\right)$.

Remark 4.8. In Remark (4.7) if, in addition, the underlying manifold M^{n} in $\left(M^{n}, f\right)$ were a boundary then (N, g) would be equal to exactly one of the following
(i) $\left(R P^{1}, \tau_{l}\right)^{2}$,
(ii) $\left(R P^{2}, c\right) \sqcup\left(R P^{2}, \tau_{l}\right)$, or
(iii) $\left(R P^{1}, \tau_{l}\right)^{2} \sqcup\left(R P^{2}, c\right) \sqcup\left(R P^{2}, \tau_{l}\right)$,
where $\left(M_{1}, f_{1}\right) \sqcup\left(M_{2}, f_{2}\right)=\left(M_{1} \sqcup M_{2}, f_{1} \sqcup f_{2}\right)$.

References

[1] H. Singh, Lusternik-Schnirelmann category and cobordism, Proc. Amer. Math. Soc., 102 (1) (1988), 183-190.
[2] P. E. Conner, Differentiable Periodic Maps, Lecture Notes in Mathematics, vol. 738, Springer-Verlag, Berlin-Heidelberg-New York 1978.
[3] R. E. Stong, Notes on Cobordism Theory, Math. Notes, Princeton Univ. Press, Princeton, N.J., 1968.
[4] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and spin manifolds, Topology, 3 (1965), 223-230.

Received February 19, 1991 and in revised form July 8, 1991.

North Eastern Hill University
Shillong, 793003
Meghalaya, India

