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GENERALIZED HORSESHOE MAPS
AND INVERSE LIMITS

SARAH E. HOLTE

The now-classical example due to Smale, the horseshoe map, dis-
plays interesting dynamics as well as a topologically complicated at-
tractor. In 1986 Marcy Barge showed that the full attracting sets of
horseshoe maps are homeomorphic to inverse limits of the unit inter-
val with a single bonding map. Here we extend Barge's results to a
more general class of maps.

1. Introduction. In [Ba], Barge describes the attracting sets of horse-
shoe maps as inverse limits of the unit interval with a single bond-
ing map. Topologically these spaces are chainable continua known as
Knaster continua.

In this paper we consider a more general class of maps which we
will refer to as generalized horseshoe maps. We will show that the at-
tractors of these maps are homeomorphic to inverse limits of the unit
interval with a single bonding map. Both the generalized horseshoe
map and the bonding map which defines the inverse limit space de-
scribed above "follow a pattern" in a sense we will define in the next
section. In §3 we will prove two theorems about inverse limit spaces
which will be needed in the proof of the main result given in §4. In
the final section of the paper we will give some examples, and show
that the horseshoe maps which Barge studied in [Ba] are special cases
of the generalized horseshoes we consider here. For basic information
on attractors and inverse limits see [S].

2. Preliminaries. Let / denote the unit interval and {fn}%L\ be a
sequence of maps of / into / . Let

( / , / „ ) = {(x0, xi,...):xn € / and fn{xn+\) = xn , n= 1, 2, . . . }

be the inverse limit space with bonding maps fn and topology induced
by the metric

n=0
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FIGURE 1

For n = 0, 1, . . . , let πn: (I, fn) -+1 be defined by πn((xo > *\ > ))
= Λ:Π . It is often the case that we wish to consider inverse limit spaces
with a single bonding map / , i.e., fn = f for n — 1, 2, . . . . Let
(/, / ) denote such an inverse limit space.

Next, let Q: {0, 1, 2, . . . , m) -> {0, 1, 2, . . . , m) be a function
such that Q(j) φ QC/+1), 0 < j < m-\, and {0, m) c range Q. We
will use the notation Q = (Q(0), Q(l), . . . , Q(m)) to denote the map
β : {0, 1 , . . . , m} -> {0, 1 , . . . , m}. For example, Q = ( 0 , 2 , 1)
denotes the map Q: {0, 1, 2} -> {0, 1, 2} where Q(0) = 0, β ( l ) -
2, and Q(2) = 1. Let Z) denote (/ x /) U Do U Dm where Z)o and
Z)m are half disks attached to the opposites sides {0} x I and {1} x /
respectively. Subdivide / x I as follows: For 1 < j < m - 1, let
Dj = [4-ΐ^, ^ ] x / . Let £Ί = [0, ^ ] x / , £ m = [1 - ^ , 1] x / ,
and for 2 < j < m - 1, let £) = [ ^ ? i ^ i j χ 7 τ h e s p a c e D i s

pictured in Figure 1.
Let π: D —• 7 be defined by π(Do) = 0, π(Dm) = 1, and π |/ x /

be projection onto the first coordinate. Define p: I —> I as follows:
p(0) = 0, p(l) = 1, p(π(Dj)) = £ , 1 < 7 < m - 1, and p is linear
on UyLi ^ ( ^ ). Let P = p o π . Note that P : i) -> / and P(Dy) = ^
for 0 < 7 < m .

We say that a map FQ: D -> D follows Q if Fρ is a homeo-
morphism of D into D which satisfies the following conditions (see
Figure 2):

(i) FQ{P-\P{z))) C P-\P{FQ{Z))) for each zeZ),
(ii) FQ(DJ) C interior Z) β ( ; ) , 0 < 7 < m ,

(iii) diam7^(P-1(P(z))))->0 uniformly in z a s ^ o o .

If FQ: D -> D follows Q w e say that FQ is a Q-horseshoe map.
Let Λβ denote the set f]^L0F^(D) where 7^ is a Q-horseshoe map.
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FIGURE 2

We say that gQ: I - I follows Q if gQφ = Q&, 0 < j < m,
and # e is linear on [^, ^ - ] , 0 < j < m - 1. Let (/, gQ) denote
the inverse limit space of / with the single bonding map gQ. The
following theorem is our main result, and relates Λ β and (/,

THEOREM 2.1. Suppose Q = (Q(0), Q{\), . . . , Q(m)) is a function
such that Q(j) φ Q(j + 1), 0<j<m-l, and {0, m) c rangeβ.
If FQ is a Q-horseshoe map, and gQ: I -> I follows Q, then AQ is
homeomorphic to (I, gQ).

We will prove this theorem in §4. To do so, two results about inverse
limits of the interval are needed. These results constitute §3.

3. Inverse limits.

THEOREM 3.1. Let {fn}^Lι and {gn}^Lχ be sequences of surjective
self-maps of I = [0, 1]. Suppose that A = {0 = a0 < a\ < < am =
1} is a finite subset of I such that for each neN, fn and gn are both
strictly increasing or strictly decreasing on [η, α, +i], fn(aj) = gn(cij),
0 < j <m, and fn and gn are both invariant on A. Then (19 fn) is
homeomorphic to (I, gn).

Proof. Let Ij denote the interval [aj, aj+χ]. We will show that if
(xo, X\, . . . ) 6 (/, fn) then there exists a unique point (y0, y\, ...)e
(I, gn) such that y0 = x 0 and xn e Ij if and only if yn e Ij. Then
we can define φ: (/, /Λ) -• (/, gn) by setting 0((Λ:O, Xi, . . . ) ) equal
to the unique point of (/, gn) described above. To complete the
proof of Theorem 3.1 we will show that φ is one-to-one, onto, and
continuous.

To define φ, let (XQ > *\, ) be an element of ( / , / „ ) . We induc-
tively define a nested sequence {Q«}^L0 of closed, nonempty subsets
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of (/, gn) with the following properties: if (yo, y\, . . .) G Qn , then
y0 = x 0 ? and y, G 7/ if and only if JC, G 7/ for 0 < / < n . Let Qo =
UQ1(XO) C (7, g n ) . Then ζ?o is closed and nonempty. Now suppose
Qn C Qn-ι C -" c Qo satisfy the above properties. Define Qn+\ as
follows: let (y$,y\9 ...) be an element of Qn , 7^) an interval which
contains yn and xn, and Ij(n+\) an interval which contains x n +i.
Then /Λ(X Λ + I) = x« G /y ( r t ) so that /«(/,•(„+!)) n l m φ 0 . Also, /„
is invariant on A, so fn(Ij(n+\)) = [^ > %2]> where a^ and α^ are
elements of A. Thus T ^ c fn(Ij(n+i)) or /7 w n fn(Ij\n+\)) = {*«}•
If //(„) C fn{Ij(n+\)) = gn(Ij{n+\)) then yπ G 7 7 W C gΛ(//(π+i)), SO
there exists yn+\ G Ij(n+\) such that gVzO^+i) = ^Λ I n this case,
set Qn+i = π ^ O v n ) c (/5<?«). If //(„) Π /Λ(//(Λ+i)) = {x«}?

then *„ = fl7 ( π ) or xrt = ^(Λ+I) so ^ = x w . Let yΛ + 1 = xw +i
and Qπ +i = π^(yn+ϊ) c (/, g n ) . Obviously β n + i is closed and
nonempty and it is easy to check that Qn+\ C Qn .

Since each Qn is closed and nonempty, and the sets Qo, Q\9 ...
are nested, it follows that there exists (yo, y\, . . .) G f| G« Suppose
that (^Q , y[, . . .) is another point of f| Qn . Let / be the first coordi-
nate so that y\ Φ y\. Then / > 0 since y'Q=y0 = χ0. Also, yz and y\
are both elements of some interval 7, and ft-iCv/) = ft-i(yj ) = y/-i.
But this contradicts the fact that #/_i is one-to-one on Ij . Therefore
there is only one point in f| Qn . Thus we define φ: (I, fn) —> (I, gn)
by setting 0((*o, J t i , . . . ) ) equal to the unique point ()>o > JΊ > ) i n

(/, ^π) such that XQ = JΌ and xn G 7 ; if and only if yn G /; .
The same construction shows that given a point (yo, y\, . . .) in

(J > 5"rt) we can find a unique point (XQ , Xi, . . . ) G (/,/«) such that
x 0 = y0 ? and Xfl G // if and only if yn G /;. It follows that φ is
one-to-one and onto. We now show that φ is continuous.

Let (*o>x\, .) G (/, /„), (y0, J>i, . . . ) = Φ((*o, X\,...)), mά
L be the minimum of the lengths of the intervals [α,, tf/+i]. Given
ε > 0, choose TV so that Σ™=N jw < f. For each « G N and 7
between 0 and m, ^ ~ ! : ̂ (7/) —• Ij is a homeomorphism since
gn\j_ is one-to-one. From now on, let gJ

n denote g~ι: gn(Ij) -^ Ij -

Note that if yn+χ G Ij, then yn+χ = gJ

n(yn) - Next, for each /, 0 <
/ < iV + 1, define L; as follows: if Xi e A, let Lz = L. If Λ:, ^ ^4,
then c,- G (α ; , Λ7 + i ) . In this case, let L; = min{αJ+i - JC/ , A:, - α7^}.
Note that if |JC/ — JCJ| < L, then x/ and x both lie in some Ij .

As we noted above, gJ

N_ι- gN-\(Ij) ~> Ij is a homeomorphism.

Thus, for each j , 1 < 7 < m, we may choose δJ

N_ι so that if y and
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y are elements of gN-ι(Ij) with \y - y'\ < δJ

N_χ, then \gJ

N_ι(y) -

gJ

N-ι(y')\ < 27v L e t δN-i = m i n { ^ _ 1 ? . . . , δ™_{}. Similarly, for

each j , 1 < j < m — 1, choose δJ

N__2 so that if y and y' are ele-

ments of gN-2(Ij) with \y-y'\ < δJ

N_2 , then \gJ

N_2(y) - gJ

N_2{y')\ <

Continue in this way to choose δJ

N_,i+ι, so that if y and y1 are

elements of g A M / + 1 ) (/ 7 ) with \y-y'\ < ^ _ ( / + 1 ) , then \gJ

N_{i+ι)(y) -

Thus we obtain δo, δ\, ... , ̂ _ i such that if y and y' are elements

of #(/,•) with \y - y'\ < δt, then |β/(y) - g}{y')\ < min{(J/+1, ^ } .
F i n a l l y let (5 = min{<50 9LQ9LI/29... LN+i/2N+ι, ε/2N} . N o w

s u p p o s e t h a t (x'Q, x[, . . . ) G {I, fn) s u c h t h a t

</((x 0 ? ΛΓi , - - - ) » (-̂ 6 , ̂ ί , - - )) < ^ -

L e t (y'o, y i , . . . ) d e n o t e 0 ( ( x £ , x { , . . . ) ) . S i n c e

d((xθ9xι9...)9(x'θ9x[,...))<δ<Li/2i

for 0 < / < Λ^+l, it follows that |x z -x | < L, . Therefore, there exists
//(/) such that x/ and x are both elements of Ij^ . This implies that
yι and ^ are both elements of Ij^ .

We now show inductively that \yι - y[\ < min{(5/, JN) for 0 <
i < N. First, |j/0 - y'0\ = \xo - x'Q\ < δ < min{(50? ^} - Now
suppose that \yt - y[\ < min{^/, j^}. Let //(,-+1) be an interval
which contains yi+\ and y + 1 . Then yt and y are elements of
gi(Ij(i+\)). Furthermore, \yι - y[\ < δi by the induction hypothe-
sis, so \g{(yi) - gj(y'i)\ < min{(5/+1, ^ } . But gjiyi) = yM and
Siiy'i) = y'i+\ - Therefore \yi+ϊ - y'i+ι\ < min{^ + 1 , *fa}. It follows
that

4
./ι N-l

2 2 2N + 2 " £

/=0 ι=ΛΓ Ϊ = 0

Thus φ is continuous, and this completes the proof of Theorem 3.1.



302 SARAH E. HOLTE

FIGURE 3

THEOREM 3.2. Let f: I -> / , A = {0 = a0 < ax < < am = 1},

and Bel which has a finite number of nondegenerate components.
Suppose that f, A, and B satisfy the following conditions:

(i) / is constant on each component of B,
(ii) / is strictly monotone on each component of I - B,

(iii) f\[a >fl ] is monotone, 0 < j < m - 1,

(iv) / is invariant on A,
(v) A c B and A intersects each component of B in at most one

point.

If g: I —• / satisfies g{aj) = f{aj) for aj G A, and g is linear on
1 < 7 < m - 1, then (I, / ) w homeomorphic to (/, # ) .

Proof. We will use the following notation: if i?^ and i?/2 are com-
ponents of 5 such that x < y for each Λ: G 2?/ and y G B^ then
write J5Zi < B^ . Let 5i < Bι < - < Br be the components of 5 .
Then each B\ is an interval, [&z, c/]. Note that 0 = b\ and 1 = cr

since {0, 1} c B. Let L = min{6z+i - c\: 1 < / < r - 1} and choose
TV so that if n > N, then \<%. For each ^ > N, let ^ = &i = 0,
b? = bi - i , 2 < i < r, cn

r = cr = 1, and cf = ct + i , 1 < / < r - 1.

Define /π as follows: /w(x) = /(*) if x G A U U/= ί [^ ? bf+ϊ] - If
5, n -4 = {α7}, define /„ to be linear on [bf, α7] and [α7, cf]. If
Bi-Γ\A = 0 , define /„ to be linear on [6f 9 cf]. The graphs of / and
fn are pictured in Figure 3.

It is a straightforward check that fn —> f uniformly as n —> oo.
Thus it follows from Theorem 3 of [Br] that (7, / ) is homeomorphic
to (/, fnk) where {fnk}^Li is a subsequence of {ΛI^Li I n order to
show that (/, / ) is homeomorphic to (/, g) we show that (/, g) is
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homeomorphic to (/, f H k ) . For each k G N let g^ = g. We will show
that {fnk}^=ι 9 {Sk}^ 9 a n d A satisfy the conditions of Theorem
1. First note that for each k G N and dj G A, gk(^j) = <?(#/) =
f{dj) = fnk(aj). Therefore fΆk and g^ agree on ^4. Furthermore, /
is invariant on A and so fΆk and g^ are also invariant on A.

Next we check that g is strictly monotone on [dj, α/+i] for each
j between 0 and m - 1. Since g is linear on [α,, <Z/+i], it suffices
to show that g(dj) φ g(aj+i). Suppose that #(#/) = g(dj+\). Then
/(α ; ) = f(dj+\). Condition (iii) in the hypothesis of the theorem
says that f\[a.,a +ι] *s monotone, so f{dj) = f(dj+\) implies that /
is constant on [dj, dj+\]. Also, dj G 5, = [fc, , c, ] and α 7 +i G 5, 2 =
[ft/ , C| ] , where i\ < iι. Thus, [c/ , ftf ] c [tf/, Λy+i], which implies
that / is constant on [c, , fe, ] . But [c, , b\ ] must contain at least one
component of / -B, and / is strictly monotone on each component
of / - B. We have reached a contradiction and so it must be the case
that g(aj) Φ gicij+i).

Finally, we check that each fHk is strictly increasing (decreasing) on
[dj, dj+\] if g is strictly increasing (decreasing) on [dj, tf/+i]. Sup-
pose that g is strictly increasing on [dj, dj+\]. Then / is increasing
on [dj, dj+\] and

[aj, aJ+ι] = [aj, c?*] U [ # , ^ , ] U U [<£*,_,, ^ ] U [ ^

It is a straightforward check that fnk is strictly increasing on each of
these subintervals of [dj, fl/+i]. The case where g is strictly decreas-
ing is proved similarly.

Since Theorem 3.1 applies, it follows that (/, fnk) and (/, g^) are
homeomorphic. Furthermore, (/, g^) = (/, g) and (I, fnk) is home-
omorphic to ( / , / ) . Thus (/, g) is homeomorphic to ( / , / ) .

4. Proof of Theorem 2.1. We are now ready for the proof of our
main result, Theorem 2.1. Suppose Q = (Q(0), (2(1), . . . , β(m)) is
a function such that Q(j) Φ Q(j + 1 ) , 0 < j < m - l , and {0, m) c
rangeQ and let Fρ be a Q-horseshoe. Define /Q: I —> I by /ρ(x) =
PCFβίP-H*)). The graph of fQ for β = (1, 3, 0, 1) is pictured in
Figure 4 (see next page) (FQ is pictured in Figure 2).

It is easy to check that fq is well defined, continuous, and that

PoFQ = fQoP. Thus we may define P: AQ -> (/, / β ) by P(z) =

(P(Z),P(FQ1(Z)),P(FQ2(Z)) ,...). It follows from the proof of The-

orem 1 in [Ba] that P is a homeomorphism. Thus Λρ is homeomor-
phic to ( / , / β ) .



304 SARAH E. HOLTE

FIGURE 4

Next, we use Theorem 3.2 to show that (/, /Q) is homeomorphic

to (/, gQ). To this end, let A = {^ : 0 < j < m} and let B =

{JrJLop(FQl(DJnFQ(D))) τ h e n /Q, A,and B satisfy the conditions
of Theorem 3.2. Therefore (/, /Q) is homeomorphic to (/, g) where
g(aj) = /e(<2/) for a,j e A and g is linear on [α,, ajΛ.\]. But

fQ(aj) = P(FQ(P-I(aj))) = P(FQ(Dj)) c P(DQU)) = QU)
m

Therefore g(a,j) = / ρ ( ^ ) = ^ a n d ^ ^s

g follows Q, and the theorem is proved.

o n iaj > aj+ύ - τ h u s

5. Examples. For our first example, we show that the horseshoe
maps studied in [Ba] are special cases of the generalized horseshoes
considered here. Consider

Γ (0, m, 0, m, . . . , m, 0 ) : m even,

I (0, m, 0, m, . . . , 0, m): m odd.

Then any Q-horseshoe map, FQ , is an m-fold horseshoe map de-
scribed in [Ba]. Its attracting set is a Knaster continuum. Next con-
sider Q = (0, 2, 1). Then FQ and gQ are pictured in Figure 5. It is
well known that (/, gQ) is homeomorphic to the sin(i) continuum,
and thus the attracting set of FQ is homeomorphic to this continuum.

Finally consider Q = (1, 2, 0). Then FQ and gQ are pictured in
Figure 6. It is well known that (/, gQ) is homeomorphic to the three
point indecomposable continuum described in [HY], pages 141-142.
Thus the attracting set of FQ is homeomorphic to this continuum.
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F0(D)

FIGURE 5

QKD0)

FIGURE 6
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