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STUDYING LINKS VIA CLOSED BRAIDS VI:
A NON-FINITENESS THEOREM

JOAN S. BIRMAN AND WILLIAM W. MENASCO

Exchange moves were introduced in an earlier paper by the same
authors. They take one closed n-braid representative of a link to
another, and can lead to examples where there are infinitely many
conjugacy classes of n-braids representing a single link type.

THEOREM I. If a link type has infinitely many conjugacy classes
of closed n-braid representatives, then n > 4 and the infinitely many
classes divide into finitely many equivalence classes under the equiva-
lence relation generated by exchange moves.

This theorem is the last of the preliminary steps in the authors'
program for the development of a calculus on links in S3.

THEOREM 2. Choose integers n, g > 1. Then there are at most
finitely many link types with braid index n and genus g.

Introduction. This paper is the sixth in a series in which the authors
study the closed braid representatives of an oriented link type J?
in oriented 3-space. The earlier papers in the series are [B-M,I]-[B-
M,V]. An overall view of the program may be found in [B-M]. The
long-range goal of the program is to classify link types, up to isotopy
in oriented 3-space, using techniques based upon the theory of braids.
This paper is the last of the preliminary steps on the way to so doing.

Let ££ be an oriented link in oriented 3-space, and let L be a
closed «-braid representative of S*, with braid axis A. If the iso-
topy class of L in S3 - A has a representative which has the very
special form illustrated in Figure 1 (see next page), then L is said
to admit an exchange move, as illustrated in Figure 1. (The exam-
ple shown there is a 4-braid; however if each strand is replaced by
some number of parallel strands, it can be reinterpreted as an n-
braid, for any n.) Exchange moves take closed n-braids to closed
ft-braids, in general changing the conjugacy class. Figure 2 (see next
page) shows how n-braids which admit exchange moves may be mod-
ified to produce infinitely many closed n-braid representatives of £f.
In effect, the exchange move allows one to replace the sub-braid X
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Exchange move

FIGURE 1

FIGURE 2

by a very special conjugate of itself, leaving Y invariant. For generic
braids X and Y the infinitely many ^-braids so produced will be
in distinct conjugacy classes, because the isotopy which is shown is
in general not realizable as an isotopy in the complement of A. See
[VB] for a proof of this assertion, for specific choices of X and Y. To
understand how this phenomenon can lead to serious complications
in the n-braid representations of knots and links, recall that it was
shown in [B-M,V] that there is a 4-braid representative of the unknot
which admits an exchange move, and that by modifying it as in Fig-
ure 2 one obtains infinitely many distinct conjugacy classes of 4-braid
representatives of the unknot. But then, any closed braid representa-
tive of any link may be connect-summed with this particular closed
braid representative of the unknot, to produce infinitely many simϊfer
examples for every link type.

The main result in this paper is that in fact exchange moves are
the only way to produce infinitely many distinct conjugacy classes
of closed /2-braid representatives of a link type.
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THEOREM 1. Assume that <S? admits infinitely many conjugacy
classes of n-braid representatives. Then n > 4, and the infinitely many
conjugacy classes divide into finitely many equivalence classes under the
equivalence relation generated by exchange moves.

As a corollary to Theorem 1, we will be able to say something about
the exponent sum of a minimum-string braid representative of a link.
Our corollary relates to

The Jones Conjecture. Let y b e a link of braid index n, and let
L and U be any two n-braid representatives. Express L and L' in
any way as words W and W in the elementary braids ((Ti)±ι. Then
the exponent sums of W and W coincide.

By the work of Vaughan Jones [J] this conjecture is known to be
true for n = 3 and 4. Our contribution is a weak version of the Jones
Conjecture, which follows directly from Theorem 1.

COROLLARY. Let 3? be a link of braid index n. Then, among the
n-braid representatives of \S?, at most finitely many exponent sums can
occur.

The referee has observed that there is another result which follows
from the proof of Theorem 1:

THEOREM 2. Choose integers n, g > 1. Then there are at most
finitely many link types with braid index n and genus g.

Most of this paper will be devoted to the proof of Theorem 1. At
the very end, after we have completed our proof of Theorem 1, we
will prove the Corollary and Theorem 2.

Acknowledgment. We thank the referee for the detailed attention
which he or she gave to our work, and for pointing out Theorem 2 to
us.

Proof of Theorem 1. By hypothesis we are given a link type S*
which has infinitely many conjugacy classes {[L/] / = 1,2,3, . . . }
of n-braid representatives. We will first show that all but finitely many
of the conjugacy classes {[Lz] / = 1 ,2 ,3 , . . . } admit an exchange
move. We will then show that this implies the stronger assertion.
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We may assume that n > 4. For, clearly n Φ 1, because the un-
knot is the only link of braid index 1. Also, n > 2, because B2 is
infinite cyclic, and since we are considering oriented links, each type
(2, p) torus link has a unique conjugacy class of 2-braid representa-
tives, whereas the unknot has exactly 2. The case n = 3 is non-trivial;
however it is proved in [B-M,III] that a link of braid index 3 (respec-
tively 2, 1) has 1 or 2 (respectively 2, 3) conjugacy classes of 3-braid
representatives. So n > 4.

Let L = Lq . Assume that L is the boundary of a not necessarily
connected surface F which is oriented so that the positive normal
bundle to F has the orientation induced by that on L. Assume that
F has been chosen to have maximum Euler characteristic / among
all such oriented spanning surfaces. A link L will in general have a
multiplicity of such spanning surfaces; however having selected one
we will stick with it throughout this paper. Thus each link L/ in
our sequence will be assumed to be the boundary of Fz , where if
/ Φ k there is a homeomorphism hik of S3 such that hik(Fk) = F, .
In general hik will not fix the braid axis A, because by hypothesis
Lf = <9F; is in a different conjugacy class from Lk = d¥k .

The complement of the braid axis A in R3 is an open cylinder,
which is fibered by half-planes Hθ through A. Let H denote a choice
of this fibration. The proof begins with a study of the foliation which
is induced on F, by its intersections with the fibers H# of H . This
foliation was first studied by D. Bennequin in [Be], in connection with
his studies of contact structures on R3. It was proved by Bennequin
that F, may be assumed to be a Markov surface. The first two prop-
erties of these surfaces are achieved by general position techniques:

(Mi) A intersects F/ transversally in a finite set of points p\, . . . ,pk

which we will refer to as "vertices." There is a neighborhood on F,
of each vertex which is foliated radially.

(Mii) All but finitely many fibers Hθ of H meet F, transversally,
and those which do not (the singular fibers) are each tangent to F/ at
exactly one point in the interior of both F/ and Hθ . Moreover, the
tangencies are assumed to be either local maxima or minima or saddle
points.

A third property is obtained by Bennequin [Be] by small modifica-
tions in the F/'s. A proof is also given in Lemma 2 of [B-M,I]:

(Miii) There are no simple closed curves in the foliation of F, . If
Hθ is a non-singular fiber, then each component of H^ n F/ is an arc.
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Following [B-M,I], pairs (F, H) and (F', H') which satisfy (Mi),
(Mii) and (Miii) will be said to be equivalent if there is an isotopy ht

of R3 , t e [0, 1], which takes (0F, 0H) to ( 0 F , 0H') in such a way
that each ht(F, H) satisfies (Mi), (Mii) and (Miii). Let [F, H] be the
equivalence class of (F, H ) . Let |AnF| denote the number of points
of intersection of A with F . Let |H F| be the number of tangencies
between F and fibers of H . The complexity C([F, H]) is defined to
be the pair ( |AnF|, |H F|) . It is well-defined on equivalence classes.

We continue to investigate F f . The next property, established in
Lemma 1 of [B-M,I], follows from the fact that Lf = <9F, is a closed
braid, so that all its intersections with fibers of H are coherently
oriented:

(Miv) An arc of intersection of F f with a non-singular fiber of H
never has both of its endpoints on L;.

It follows from (Miv) that the arcs in F/ Π H^ for non-singular Hθ

are restricted to two types:

n-arcs: one endpoint is on A and the other is on L;,

b-arcs: both endpoints are on A,

and that the singularities are restricted to three types:

aa (if the arcs which come together are both type a),

bb (if the arcs which come together are both type b),

ab (if one is type a and the other type b).

A b-arc β in H Θ Π F; is essential if both sides of HΘ split along β
are pierced by L. If β is inessential, then β and a subarc α of A
will co-bound a disc D on H# which is not pierced by L;. The axis
A may then be pushed across D to eliminate two points of A n F / ,
and so to reduce the number of points in An F f . After the reduction,
one may recover (Mi)-(Miv) without increasing the complexity (see
[B-MJV] for details), so from now on we may assume:

(Mv) Every b-arc in the foliation is essential.
Finally, a component of F; is trivially foliated if F/ is a disc which
is pierced once by A, and if F/ is radially foliated by its arcs of
intersection with fibers of H . Since the boundary of a trivially foliated
component is necessarily a 1-braid representative of the unknot, a case
which is not of interest in this paper, we assume from now on that:

(Mvi) No component of F/ is trivially foliated.
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We begin to study the combinatorics of the foliation of F, . To
simplify the notation we will assume (until near the end of the proof)
that F| is connected. Later we will show how to modify things if
F; is disconnected. As in [B-M,I] we may choose a finite collection
#/ of a-arcs and b-arcs such that F; split along iζ is a union of
foliated 2-cells ,57, which we call tiles. See Figure 3. The arcs in <§/
are chosen so that there is exactly one singularity of the foliation in
the interior of each tile. The left column in Figure 3 shows the three
types of tiles which occur. The tile edges are the arcs in <g/, shown as
dotted lines. The singular leaves as solid lines, and subarcs of L are
thick solid lines. The singularities are indicated by black dots. The
tile vertices Ψ{ are the points where A pierces F, . They are labeled
P\ 9 Pi 9 - We have also labeled the L-endpoints of the singular
leaves with symbols λ\9λ2, . . . . The tiles are denoted as being types
aa, ab and bb, according as the singularity is type aa, ab or bb. There
are four a-arcs in the boundary of an aa-tile and four b-arcs in the
boundary of a bb-tile, and two of each type in the boundary of an
ab-tile.

For future use, we record at this time two other features of the
combinatorics which we will use in this paper. The foliation of F,
was assumed to be radial about each vertex, so as we push forward
in the positive direction through the fibration, the arcs of intersection
of F| with fibers of H will flow radially about the vertices. This flow
will be anticlockwise or clockwise, according as the oriented axis A
intersects F; from the positive or from the negative side. Call a vertex
positive in the former case and negative in the latter. Notice that the
braid index is the number of positive vertices minus the number of
negative vertices.

The type of a vertex is the cyclically ordered array of a's and b's
which records the tile edges meeting at that vertex. We shall not need
it here as an oriented symbol, but we might as well orient it by the
flow about the vertex. Later we will need the fact (see Figure 3) that
the flow is always positive about a vertex which contains an a in its
type symbol. On the other hand, a vertex of type bb b could be
either positive or negative. The valence of a vertex is the number of
symbols in its type symbol.

In the right column of Figure 3 we have shown how the singular
leaves would look if they are viewed on the singular fiber Hθ of H .
We have used the same cyclic order for the four endpoints of the
singular leaves in the left and right columns; this means that the view
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type Foliated tile, viewed on F+
Singular leaves, viewed on Hθ

aa

ab

bb

FIGURE 3

on F| must be interpreted as being on the positive or negative side of
F, , according as the oriented normal to F at the singularity points in
the direction of increasing or decreasing θ. Figure 4 (see next page)
gives an example to indicate to the reader how distinct tile types might
fit together, in the case where F; is a disc. (This example can be
realized by the unknot, represented as a 2-braid L.)

Recall that 2^, 8% and 3[ are the sets of tile vertices, edges and
tiles in the tiling of F, . Notice that our method of counting is rather
special. We do not count subarcs of L, which are in the boundary of
a tile as an edge. Thus each tile has exactly four "edges." Similarly,
we do not include in Ψΐ the points where a tile edge meets L;. Let
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Example: a tiling of a disc with no vertices of valence 1

F I G U R E 4

Vi, Et and 7/ be the cardinality of Ύi, <̂  and 31 respectively. The
next two lemmas relate to results established by the authors in other
papers of this series.

LEMMA 3. If the tiling of F/ has a vertex of valence 1, then Lz

admits an exchange move.

Proof. It is proved in Lemma 5 of [B-M,V] that if there is a vertex
of valence 1, then Lz has a trivial loop. But then, as is shown in
Figure 5, we may reconfigure the closed braid so that L; is seen to
admit an exchange move.

closed braid which
has a trivial loop

the same closed braid,
re-configured so

it admits exchange move

FIGURE 5
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Since our initial goal was to show that all but finitely many re-
admit an exchange, we will have achieved our goal if there is a vertex
of valence 1 in the tiling of F;. Therefore we may assume from now
on that the tiling of Fz has no vertices of valence 1. Let Vi(a9 β)
denote the number of vertices in the tiling of F; which have α a-arcs
and β b-arcs in their type symbols.

LEMMA 4. If any one of Vj(l, 1) or Vf(09 2) or Ĵ  (0, 3) is non-
zero, then L| admits a complexity-reducing exchange move.

Proof. It was proved in Lemma 5 of [B-M,IV] that if there is a vertex
of type bb in the tiling of F, , then L, = <9F; admits a complexity-
reducing exchange. The corresponding statement for vertices of type
ab is proved in Lemma 4 of [B-M,V], when the array of signs of the
singularities in the tiles which meet at the vertex are ( H — ) . The case
of vertices of type bbb is reduced to the case of vertices of type bb by
Lemma 8 of [B-M,V]. Type ab, with sign sequence (++) or ( — ) ,
is reduced to the case where there is a vertex of valance 1 by Lemma
9 of [B-M,V]. (Remark: this sign sequence is independent of the sign
of a vertex, as we defined it earlier.) Thus, in every case L, admits a
complexity-reducing exchange. D

We now proceed to analyze the consequences of our hypothesis that
we have an infinite sequence {Lz i e N} of closed fl-braid repre-
sentatives of o§*, with L| in a different conjugacy class from L^ if
/ φ k. We look to the tiling of F; for information about the existence
of exchange moves.

LEMMA 5. The number Vi+ of positive vertices in the tiling ofF; and
also the number V^ of negative vertices goes to infinity as i -> oo, with
Vι+ - Vi- remaining constant.

Proof. The surface F f admits a non-trivial tiling, relative to our
particular choice of fibration H of S3 - A. We now use the tiling
to make an Euler characteristic count. Since there are no vertices of
valence 1, it follows that if one shrinks <9F; to a point, the image of
each tile under the collapsing map will be a 2-cell with 4 edges and 4
vertices. Thus:

(1) 2Ti = Ei.

The collapsing map increases the number of tile vertices by 1, but it
also raises the Euler characteristic of F/ by 1. The two effects cancel,
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so we also have:

(2) Vi-Ti = χ.

Recall that the complexity of [F;, H] is the pair {Vt?, 7}), or equiv-
alently (in view of equation (2)) the pair (Vi9 Vj—χ). It was proved in
Theorem 2 of [B-M,I] that there are at most finitely many equivalence
classes [F/, H] for each fixed value of the complexity. This means
that there are at most finitely many distinct conjugacy classes [L, ] for
each fixed value of the complexity. Since χ is fixed, and since by
hypothesis infinitely many distinct conjugacy classes [L, ] occur, the
only possibility is that Vj goes to infinity as / —• oo.

Now recall that Vt = Vj+ + Vj- and Vi+ -Vi- = n, the braid index.
Since n is by hypothesis independent of /, the assertion follows. D

We continue our proof of Theorem 1. The symbol Vj(a9v -a)
denotes the number of vertices in the tiling of F; which have valence υ
and have a a-arcs as edges. Thus, we can express Vf as the following
sum of the Vj(a, v - α)'s:

oo v

(3) Vt^

Let Ej(ά) and Ej(b) denote the number of type a and b edges, re-
spectively, in the tiling, so that Ej = Ej(a) + Ej(b). Since each type a
edge is incident at one vertex, whereas each type b edge is incident at
two vertices, we have related sums Ei{a) and Ej(b):

(4) Ei(a) =

OO V

(5) 2Ei(b) = ΣΣ{v-ά)Vi{a, v-a).
v=2a=0

Using equation (1) to rewrite equation (2) in the form 4 ^ - 2Eι(a) -
2Ej(b) = 4χ, we may then combine it with equations (3), (4) and (5)
to obtain:

OO V

(6) 4χ = ΣΣ(4-i;-αW(α,t;-α).
v=2α=0

Note that when υ > 4 the coefficient (4 — v — a) will be non-positive.
We may thus alter equation (6) so that all terms on both sides of the
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equation, except possibly 4χ, are non-negative. This gives:

( ' ) OO

+ ΣΣ(V + α-4)^(α, V -OL).
u=4α=0

Recall that the type of a vertex p in the tiling of F, was defined to
be the cyclic array of a's and b's which records the types of the tile
edges which meet at p. Thus if ^ ( 1 , 1 ) ^ 0 (respectively F/(0, 2) φ
0, Vi(0, 3) Φ 0) there is a vertex of type ab (respectively bb, bbb) in
the tiling of F/.

We now consider the possible ways in which Vx| —• oo. Equation
(7) will record any change in the differing values of the Vi(a,υ — α)'s,
except for the cases (a, v - a) = (1, 2), (2, 0) and (0, 4), since in
those cases the coefficient (v + a — 4) which occurred in equation (6)
was zero, so that the corresponding terms do not appear in equation
(7). For all other values of (α, υ - a) we see that if Vj(a, υ - a)
increases without bound the left-hand side of equation (7) would be
forced to be non-zero. Thus there are two possibilities:

possibility 1:

At least one of Vt{l, 1), F (0, 2) or F (0, 3) φ 0.

possibility 2:

Vi(l, 1) = ^ ( 0 , 2) = Vi(09 3) = 0 for all i, also at least one
of the following holds:

V(( 1, 2)

Vi(2, 0)

V((0, 4)

and also (passing to a subsequence if necessary) Vϊ(a, β) is
independent of / for all other (α, β).

If possibility 1 occurs, then by Lemma 4 we conclude that L/ admits
an exchange move. Thus we are reduced to possibility 2.

LEMMA 6. In the situation of possibility 2, the cases Vj(2, 0) —• oo
and Vj(l, 2) -* oo rfo noί occwr.

Proof of Lemma 6. We first show that 1^(2, 0) —• oo is impossible,
i.e. that the number of vertices of type aa cannot grow without bound
as i —> oo. Such a vertex can only occur when two aa tiles are joined

oo
oo

oo

as
as

as

I

i

i

- • 0 0 ,

- • o o ,

- • 0 0 ,
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\

Po is a vertex of type aa

FIGURE 6

together along a pair of common edges. We need to see how this
situation would look in 3-space, and to do so we ask how two aa tiles
appear imbedded in 3-space. The left picture in Figure 6 shows two
aa tiles glued together along two common a-edges, to give a vertex
of type aa. We focus first on the tile with vertices po and p\. Its
singular leaves lie on some fiber Hθ of H, with one of them having
its endpoints at points /?o and p\ on the axis A, and the other having
its endpoints at λ and λ' on L; Π Hθ. The right picture in Figure
6 shows these leaves in 3-space (to be imagined as lying on a single
fiber). Since the embedded tile is transverse to the fibers everywhere
else, the final picture (which is determined up to reversal of the half-
twist in the band) must be as in the right picture in Figure 6. The
second tile will have a similar imbedding (ambiguous up to the choice
of the order of the three vertices on A and the senses of the haξf-
twists), but in all cases we see that if ^ ( 2 , 0 ) were to grow without
bound the braid index n would too, contrary to hypothesis.

Suppose next that F/(l, 2) —> oo as / —• oo, i.e. the number of
vertices of type abb grows without bound. Let p be a vertex of type
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FIGURE 7

abb. Then p is positive, and the a edge which is incident at p must
be on an ab tile. Thus there are necessarily two ab tiles glued together
along a common a-edge which meet p. We can think of them as a
pair of attached houses, as in the left picture of Figure 7. Since the
unique vertex which is at the peak of the roof in an ab tile is a negative
vertex, we cannot glue an ab tile into the trough. So the only way to
fill in the trough is with a bb tile, as illustrated. So, if the number
of vertices of type abb goes to infinity as / —• oo, we will necessarily
find tiles in our sequence with arbitrarily long rows of attached houses
glued together in a row as in the right picture in Figure 7, with a bb
tile in the trough between each pair of adjacent roofs.

We now investigate the contributions to Vι+ from our row of houses.
The sum of the signs in each bb tile is zero, but the sum of the signs in
each ab tile is + 1 . If our sequence contained fc/ tiles of type ab, we
would also have k\ tiles of type bb, and so there would be a net partial
contribution of k\ to Ĵ  +. Since (F/+ — ̂ _) must be independent
of /, this means that we will need to have k\ extra negative vertices
somewhere else. However, that is impossible, because the sum of the
signs of the vertices in our 3 tile types is + 2 , +1 and 0. Thus, if
Vi{\, 2) —• oc as / —» oo, the braid index will be forced to increase
without bound, contrary to hypothesis. D

Possibility 2 has been reduced to the situation where F/(0, 4) —• oo
as / —• oo. Passing to a subsequence if necessary, we may assume that
Vi(\, 2) and F/(2, 0) are independent of /.

LEMMA 7. Allowing J^(0, 4) to go to oo as i —• oo on/y #/ves
finitely many distinct conjugacy classes of closed n-braids representing
our link S*.
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o o o

FIGURE 8

Proof of Lemma 7. Assume that Vj(09 4) —> oc as i —> oc. By
Lemma 5 the number of positive vertices of type bbbb and also the
number of negative vertices of type bbbb must go to infinity as / —• oo,
with Vi+ - Vi_ remaining constant. From Figure 3 we see that the only
tile type which contains a positive vertex at which b-arcs are incident
is a type bb tile, so the only way to obtain a positive vertex of type
bbbb is as in Figure 8. So this picture occurs infinitely often.

Now notice that the sum of the signs of the vertices in a bb tile is
zero. It then follows that the negative vertices of type bbbb must also
lie at the intersection of four bb tiles, because if there were infinitely
many such negative vertices which included an ab tile, the difference
Vi+ - Vi- would not remain constant. Thus there must be interior
regions of Fz which are tiled entirely by bb tiles. Moreover (passing
to a subsequence if necessary) we may assume that the tiling remains
fixed outside one such region, whereas the number of bb tiles in the
region increases without bound as / is increased. Since the Euler
characteristic is independent of /, the region in question must be an
annulus. The tiling on the boundary of our annulus must be fixed,
so the only way things can change is if the number of tiles between
the two boundary components grows without bound as / —• oo. See
Figure 9 for an example of one way this could occur. The difference
Vj+ - Vi- will thus remain independent of tube length, as will the
characteristic of F, .

Recall our assumption that Vi(a,β) is independent of / if {
( 0 , 4 ) . Even more, by passing to a subsequence if necessary, we may
assume that the tiling of F/ is fixed in the component of our annulus.
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FIGURE 9

An additional property then follows immediately from equation (4):

(8) Ei(a) is independent of i.

Let Tj(aa) and Tι(ab) denote the number of tiles of type aa and
ab in the tiling of F f . Notice that a tile of type aa (respectively ab)
contains 4 (respectively 2) edges of type a. Since each edge is an edge
of two tiles, we then have:

(9) i(a) = 2Ti(aa) + Ti(ab).

Since Ej(a) is independent of /, by (8), we conclude that 2Ti(aa) +
Ti(ab) is too. Thus

Ti(aa) is independent of i,

is independent of /.

(10)

(11)

It will be convenient now to assume that £? is a knot. Later we will
modify the proof to the case where S> is a link. Our idea is to show
that a finite set of combinatorial data in the tiling of F/ determines
L| as an embedded simple closed curve, relative to A and fibers of
H . It will turn out that the embedding of Lf is determined entirely
by data in the aa and ab tiles, and is independent of the bb tiles (which
lie in the interior of F, ) . Since, by (10) and (11), the number of aa
and ab tiles is independent of i, we will thus be able to conclude that
even though the tiling of F, is changing, the changes do not affect
the boundary, so there cannot be infinitely many conjugacy classes of
closed braids.
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With that plan in mind, let

τ = the number of singularities of types aa and ab, i.e. |aa| + |ab|.
ω = the number of points of A n F/ which are vertices of these τ

tiles.
p = the number of endpoints of singular leaves which are on L;.

Since each singular leaf on an aa (respectively ab) tile meets
L| twice (respectively once) the integer p = 2|aa| + |ab|.

Let S\, . . . , sτ be the singular points on the τ tiles of type aa and ab,
ordered to correspond to their cyclic order in the fibers of H . That
is, each sk is in Hθ n F, , where 0 < θγ < θι < < θτ < 2π. Let
Pi 9 > Pω be the vertices of these τ tiles, ordered to correspond
to their cyclic order on A. Finally, let λ\9 ... 9λp be the points
where the L-endpoints of the singular leaves in the tiling intersect
the singular fibers of H, ordered to correspond to their natural cyclic
order on L,.

We now associate signs to the sk's and p/s. The sign ξk of sk is
+ or - according as the sense of increasing θ agrees or disagrees
with that of the outward-drawn normal to F, at sk . The sign δj of
Pj is + or - , according as the orientation of A agrees or disagrees
with that of the outward-drawn normal to F, at Pj .

Finally, we associate to the tiling of F/ a combinatorial symbol.
Let H0 be a singular fiber containing the singularity sk on an aa
tile, as depicted in the right column of Figure 3. The singular leaves
through sk have four endpoints, and these are alternately in the sets
{pi > ? Pω} and {λ\, . . . , λp}, so we can associate to H# a cycli-
cally ordered 4-tuple 4k = ζk{P\k > ^2k, P3k > h). The sign ξk is the
sign of the singularity at sk . The order of the 4 points is determined by
their cyclic order on Hg . In the case of an ab tile (again see Figure 3)
three of the four endpoints of the singular leaves are in {p\, . . . , pω}
and one is in {λ\, . . . , λp}. There is a signed and cyclically ordered
4-tuple 4k = ζkiP\k 9 Pik > P3k > ^4k) associated to the tile. Our combi-
natorial symbol is the array:

((τ, ω, p), (si, . . . , J T ) , (δι, . . . , δω), {λu . . . , λp}, (4i, . . . , 4 τ)).

We now claim:

* The combinatorial symbol determines the conjugacy —
class of hf as a closed braid, relative to the fibers ofH.

Parenthetical remark. The reader who is familiar with [B-M,I] will
recognize similarities between the proof we are about to give and a
related proof in [B-M,I]; however there is a difference. In [B-M,I] we
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were interested in constructing F; as an embedded surface, whereas
our focus in this proof is entirely on <9F;. We will see that the embed-
ding of <9F; is completely determined by combinatorial data in the aa
and ab tiles.

We return to the matter at hand. To prove *, we assume that we
are given the combinatorial symbol, and proceed to construct L, as
a closed braid. We assume that the braid axis A is the z axis in
i? 3 , and that the fibers of H are the half-planes through A. The
combinatorial symbol gives us the integer ω, and the first step is to
choose ω points on A and label them p\, . . . , pω, in order. Up to
an isotopy of 3-space which preserves A it will not matter where we
put them. The combinatorial symbol also tells us the integer τ , so we
choose τ fibers, selecting a point in the interior of each and labeling
them s\, . . . , sτ, in the cyclic order in which the fibers occur. Passing
to the A th fiber, we may then construct the singular leaves in that fiber,
as in the right column in Figure 3, with the help of the symbol 4^.
One of the singular leaves has both of its endpoints on A, at p\k and
Pik (in the notation of Figure 3). The combinatorial symbol 4k will
tell us which points on A to use for p\k and p^k. The other singular
leaf crosses this one, and its two endpoints will be at λj and A4 (if
the tile is type aa) or at p$ and Λ4 (if it is type ab). The points on
L can be anywhere in the interior of Hθ split along p\ p^k. Moving
them will simply modify the embedding of L by an isotopy of S3

which fixes A and each fiber of H setwise.

We have just described how to embed the singular leaves of the tiles
which are adjacent to L. The next task is to extend this embedding
to a neighborhood of the singular leaves. The first thing to notice is
that we know how to embed a neighborhood of p\, . . . , pω on F/.
For, if we choose a neighborhood which is small enough it is radially
foliated by its intersection with H, so it must be a disc transverse to
A. The sign δj of the point pj tells us the side of the surface which
is pierced by A. Next, notice that we can embed a little neighborhood
of the singular leaves, for such a neighborhood is transverse to fibers
everywhere except at the singular point, moreover the sign ξk of the
singularity tells us which side of F faces in the direction of increasing
θ at the singular point. The last thing to do is to fill in regions on
F which lie between adjacent points λj and λi+\ on L. See Figure
10 (on next page). These regions are foliated by radial arcs which
emanate from the vertex, so they are everywhere transverse to the
fibers of H . The leaves of the foliation are level sets for the polar
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P

FIGURE 10

angle function, so they determine the embedding uniquely, up to an
isotopy of S3 which fixes each fiber setwise. When we are done we
will have embedded a tiled neighborhood of the part of F, which is
closest to L, , and in particular we will have embedded L/ in S3 .

Recall that we have passed to a subsequence in which the changes
which occur in the tiling of F/ as / is increased are restricted to the
interior of Fz and to vertices of type bbbb which are at the intersection
of four type bb tiles. From this it follows that the integers p, ω
and τ are independent of i. Since at most finitely many distinct
combinatorial symbols are possible for fixed values of p, ω and τ,
and since the combinatorial symbol determines the embedding, we
conclude that there are at most finitely many embeddings which are
possible for L! = <9F/. Thus only a finite number of conjugacy classes
can occur among the links L, in our sequence. Since this violates the
hypotheses of Theorem 1, we conclude that this case does not occur.

The only thing we need to change if L, has more than one compo-
nent is the instructions for filling in the pie-shaped regions. Modify
the combinatorial data by changing the labeling of the L-endpoints of
the singular leaves to

where the second subscript indicates the component. We may then
proceed as before, one boundary component at a time, to fill in the
regions next to the link.

If F is not connected, we proceed as before up to Lemma 5. We
then replace Lemma 5 by the assertion that some component of Fz

must have a tiling F/i in which the number of vertices grows without
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bound. In general, there will be, say, t components. So, instead of
a sequence of tiled surfaces {F, / = 1, 2, 3, ...} we will have tiled
surfaces:

where particular surfaces have tilings in which the number of vertices
grows without bound. Some of these subsurfaces may have more than
one boundary component, it will not matter. Lemma 5 applies to each
subsurface. Lemmas 6 and 7 do too.

Thus we have proved: If our link J ? has infinitely many conjugacy
classes of n-braid representatives, then all but finitely many of them
admit exchange moves. This is a weak version of Theorem 1.

To prove the stronger version, we must ask how the infinitely many
conjugacy classes which admit exchange moves are related to one an-
other. By our proof, each time that there is an exchange move, there
is a vertex of type a or of type bb or ab with sign H—, or a vertex
of type bbb. We first prove that we may assume there are no vertices
of type a. Suppose, on the contrary, that there are infinitely many
F 's which contain at least one vertex of type a. A vertex of type a
always occurs on an "end tile," as in Figure 11. One of the singular
leaves in that tile is a separating leaf β. If we cut F; along β, and
then modify the cut edge slightly so that the modified surface F\ is
transverse to the foliation near the cut, the boundary of the modified
surface will be a new closed braid L't which is, in effect, obtained
from L/ by deleting the trivial loop. Notice that the changes we just
made do not alter the tiling in the complement of the end tile. So,
after we delete our trivial loop we will obtain a new tiled surface F̂
with all the properties of the old except: there is one less aa tile and
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the braid index has been reduced by 1. This process may be repeated
on FJ if the tiling of FJ contains a vertex of type a. However, it
must end after k < n such repetitions because each deletion reduces
the braid index. Let {F" / = 1 ,2 ,3 , . . . } be the infinite sequence
of surfaces obtained after all type a vertices have been eliminated.
Divide these into equivalence classes so that the braid index n" is
constant in each equivalence class. At least one of these equivalence
classes must contain infinitely many members, because the original se-
quence did. Moreover, the surfaces in the new infinite sequence must
have infinitely many distinct tilings, because we had infinitely many
distinct tilings in our original sequence and all we did was to cut off
finitely many end tiles from each F/. But then by our earlier work, we
conclude that the tiling of infinitely many F, 's in the original sequence
contains a vertex of type bb or ab with sign H— or bbb.

Passing to a subsequence, we may assume that every F/ contains
a vertex of type bb or ab with sign H— or bbb. By Lemma 4, each
closed braid L/ = <9F/ admits a complexity-reducing exchange move.
When we change an essential b-arc to an inessential one we reduce the
number of vertices in the tiling, and so reduce the complexity. For
details see [B-M,IV and V]. The process of making exchange moves
must therefore end.

Recall that when we began our work, we chose a spanning surface
F for our link which had maximal Euler characteristic. The choice of
F was not unique. The surfaces F, which have been the object of our
investigation here were then determined by finding homeomorphisms
λ, : (S3, L) -• (S3, L, ), and setting F, = Λ, (F). Later we introduced
several types of modifications. Some of those modifications involved
the passage to a subsequence. Others involved an isotopic deforma-
tion of F, . For example, when we changed F f to a Markov surface,
or when we cut off the end tiles, or when we modified L, by an ex-
change move, we were changing F, by isotopy. This means that each
surface FJ in our final sequence is still homeomorphic to our fixed
surface F . If the set of complexities (C(FJ, H) / = 1, 2, 3, . . .)
is bounded, then by the main theorem in [B-M,I] there can be only
finitely many distinct conjugacy classes among the links L̂  = d¥[?. If,
on the other hand, the set of complexities is unbounded, there wilj
be a contradiction to Lemmas 4, 5, 6, 7 of this paper. The proof of
Theorem 1 is complete. D

Proof of the Corollary, Notice that the exchange move as defined in
Figure 1 does not change the exponent sum of an ft-braid. Since, by
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the proof of Theorem 1, it is possible after repeated applications of
exchange moves to produce one of the finitely many conjugacy classes
of Theorem 2 of [B-M,I], we can only have finitely many possible
exponent sums. D

Proof of Theorem 2. The proof is the same as the proof of Theorem
1. Just notice that nowhere is it used that all the L, 's represent the
same link type. The only fact we needed was that all the L/'s bound
incompressible Seifert surfaces of fixed genus.
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