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A^ AND THE GREEN FUNCTION

JANG-MEI WU

Let Gr(jc) be the Green function in a domain Ω C l m with a
fixed pole, and Γ be an (ra — 1)-dimensional hyperplane. We give
conditions on Ω and Ω n Γ so that |VG| is Aoo with respect to the
(m - l)-dimensional measure on Ω n Γ . Certain properties of the
Riemann mapping of a simply-connected domain in I 2 are extended
to the Green function of domains in l m .

In [3], Fernandez, Heinonen and Martio have proved the following:

THEOREM A. Let f be a conformal mapping from a simply-
connected planar domain Ω onto the unit disk Δ and L be a line
segment in Ω. Then f(L) is a quasiconformal arc. Moreover, if L is
a line segment on the boundary of a half plane contained in Ω, then
I/'I € Aoo(ds) on L with respect to the linear measure ds.

If L is any line segment in Ω, |/ ' | need not be in A^ds) on L.
In fact, Heinonen and Nakki [9] have proved the following:

THEOREM B. Let f be a conformal mapping from a simply-
connected domain Ω onto the unit disk Δ and L be a line segment
in Ω. Then the following are equivalent:

(1) \f\eAooids) onLf

(2) f\L is quasisymmetric,
(3) there exists a chord arc domain D c Ω so that LCD,
(4) there exists a quasidisk D C Ω so that LCD.

Let μ and v be two measures on Rm (m > 2). Recall that μ
belongs to the Muckenhoupt class A^du) if there exist a, β e (0, 1)
such that whenever E is a measurable subset of a cube Q,

(0.1) u(E)/u(Q)<a implies μ(E)/μ{Q)<β.

If μ and v have the doubling property, then μ e A^dv) if and
only if v e A^{dμ) ([2]). We say a function is in A^dv) on L,
provided that (0.1) holds with dμ = gdv for all cubes QCL.

f\L is quasisymmetric provided that for all a, b, x E L, \a — x\<
\b-x\ implies \f(a)-f(x)\ < c\f(b)-f(x)\ for some constant c > 0.
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Let G be the Green function for Ω with pole f~ι(0) and δ(z) be
dist(z, dΩ). From the distortion theorem, it follows that

(0.2) |V(?(z)| - \f'(z)\ = 1 [ { ( Z ) I %ΞΪ[{ } =
when f(z) is away from 0. Thus it is natural to study the analogue
of Theorem B for general domains Ω in Rm (m > 2), that is, to
find conditions on Ω and the planar section L C Ω, so that |VG| e
A^dσ) on L with respect to the (m — 1)-dimensional measure dσ.
Because |VG| may vanish, we study G(z)/δ(z) instead. :

From now on, Ω denotes a domain in Rm (m > 2), G the Green
function on Ω, P a fixed point in Ω and G(x) = G(P, x). Let Γ be
an (m -1)-dimensional hyperplane in Rm which does not contain P,
and σ be the (m - l)-dimensional measure on Γ. If L is a domain
in Γ, denote by d'L its boundary relative to Γ. We shall prove the
following:

THEOREM 1. Suppose that Ω is a nontangentially accessible (NTA)
domain and that L C ί l is a uniform domain on the hyperplane Γ.
Furthermore, there exists 0 < c < 1 so that for each x e L, at least
one component of B(x, cdist(x, d'L))\L is contained in Ω. Then
^J\L can be extended to become an A^dσ) function on the entire
hyperplane Γ.

THEOREM 2. Suppose that Ω is a quasiball and is a BMOi domain.
Then fτfτ|rnΩ c a n be extended to become an A^dσ) function on the
entire hyperplane Γ.

The assumption that L is a uniform domain arises naturally in
defining ^ and in extending G(x)/δ(x) by the method of reflection.
The additional condition on L is needed in view of the following:

EXAMPLE. For each m > 2, there exists an NTA domain so that
= 0} is an (m - l)-dimensional cube, but ^ ^ £ A^dσ) on

The additional condition on L is satisfied when L C Z) for some
domain D C Ω whose complement Rm\D has the linearly locally
connected property (LLC). Examples of such D are quasidisks in R2

or domains quasiconformally equivalent to a ball in Rm (m > 3), see
[7] and [8].
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In Theorem 2, no condition is imposed on Ω n Γ , and it may be
any open set. Lipschitz domains which are homeomorphic to a ball
satisfy the conditions in Theorem 2. The theorem remains true for all
quasidisks in R2 (Theorem B).

In the core of our proof is the following theorem, which in its most
general form is proved by B. Davis [4] by probabilistic methods. Spe-
cial cases and related results can be found in [5], [13] and [15].

THEOREM C. Let Ω be a domain in R m , m > 2, and {Dj} be a
sequence of closed sets contained in Ω with dist(A, Dj) > 0 whenever
i φ j . Set Ωj = Ω\ [Jk^j A : If {Dj} a r e uniformly separated in the
sense:

(0.3) inf inf ω(z, dΩ, Ωj) = a > 0,

then for any x eΩ\\JDj,

< \ω (x, (JDJ9Ω\[JDj) .

1. Preliminary Theorems. For a domain Ω and a set S in
denote by δ(S) the distance from S to dΩ, d{S) the diameter of S
and l(S) the side length of S if S is a cube. If S is a ball, a cube or
a square, denote by cS the ball, the cube, or the square on the same
hyperplane, concentric to S, of diameter cd(S). Denote by B(x9 r)
the ball centered at x of radius r.

Ω is called a nontangentially accessible (NTA) domain [10], if it
is bounded and there exist constants r0 > 0, M > 10 and N > 10
depending on Ω so that the following conditions are satisfied:

(1.1) Corkscrew condition: for any Z edΩ, 0 < r < r 0 , there exist
A = Ar{Z) e Ω such that M'ιr <\A-Z\ < r and dist(A,dΩ) >
M~ιr.

(1.2) RW\Ω satisfies the corkscrew condition.

(1.3) Harnack chain condition: if X\ and Xι are in Ω, dist(JΓ/,dΩ)
> ε > 0, i = 1, 2, and |Xi - ΛΓ2| < 10Mε, then there exist balls
Bj = B(Yj, η)9 1 < j < n with n < N9 so that YΊ = Xi and
Yn = X2 and that the balls satisfy

M-ιη < dist(Bj, dΩ) < Mη, 1 < j < n,

and

5 (ϊ) ,ψ)nB (Yj+ι >
r-ψ)φz>, 1 < j < n - 1.
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Suppose Ω is an NTA domain. For Z e <9Ω, denote by Δ(Z, r)
the surface ball B(Z , r) n <9Ω. Let P be a fixed point in Ω. Then
the Green function in Ω and the harmonic measure ω on ΘΩ have
the following properties, [10]:

(1.4) Doubling property of ω : there exists C > 0 depending only
on Ω and P so that

ω(P, Δ(Z, 2r), Ω) < Cω(P, Δ(Z , r), Ω)

for any surface ball Δ(Z , r) = J5(Z, r) n 0Ω.

(1.5) Relation between ω and G: suppose that A e Ω, Z e <9Ω
with c " 1 ^ ) < |̂ 4 - Z| < c<5(̂ 4) then there exists C > 0 depending
on Ω , P and c only so that

x G(P,A)δ(Ar
- ( P Δ ( Z £ μ ) ) Ω ) "

Let Ω be an NTA domain, Q be a cube in Ω satisfying dist(P, Q)
> δ(Q) > d(Q) > \δ(Q), and Γ be an {m - 1)-dimensional hyper-
plane in Rm passing through the center of Q. Following the argu-
ments in [10], we may find constants c, C > 0 depending on Ω and
P, so that

C-ιω(P, Q, Q\β) < G(P,x)δ(xΓ~2

<Cω(P,Q,Ω\Q), xeQ,

and

(1.7) ω(x, dΩ\Γ, Ω\(Γ\β)) > c, x e ^ .

Ω is called a uniform domain if it satisfies the interior corkscrew
condition (1.1) and the interior Harnack chain condition (1.2) in the
definition of NTA domain. It is also called a BMO extension do-
main because of its characterization in terms of extension properties
of BMO(Ω) by Jones [11]. For properties of uniform domains, see
[7]. In M2, a simply-connected uniform domain is a quasidisk.

A bounded domain Ω c Rm is called a BMOi domain if its bound-
ary is given locally in some C°° coordinate system as the graph of a
function φ with Vφ e BMO. BMOi domains are defined and stud^
ied by Jerison and Kenig in [10]. They are NTA domains and can be
regarded as the analogue of chord arc domains in Rm (m > 3) note
that the graph of y = φ(x) is a chord arc curve if φ' e BMO(R1). It
is proved in [10] that
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THEOREM D. If Ω is a BMOi domain, then the harmonic measure
ω on dΩ belongs to A^dσ).

An extension of Hall's Lemma is proved in [19]; it is stated here
with constants given more precisely.

THEOREM E. Let Ω be a BMOi domain and Q > 1 be given.
There exist constants λ, c > 0 depending on Ω and CQ only, so that
for any point A e Ω and closed set E c Ω n B(A,

ω(A,E, Ω\E) >

where Mm_\ is the (m — lydimensional content.

The a-dimensional content Ma(E) of a set E is defined to be
^Ί2n

rn 5 w i th the infimum taken over all coverings of E consist-
ing of countably many balls with radii rn .

We also need the following estimate of harmonic measures [19],
which is first proved by Carleson [1] for the half plane. Again, the
constants are described more precisely here.

THEOREM F. Let Ω be a BMOi domain in Rm (m > 3), Co > 1,
A e Ω and E be a closed set in Ω n B(A, Coδ(A)). Let Jί be the
family of positive measures v on E, which satisfy, for each cube Q in
Ω with l6d{Q)<δ{Q)<256d(Q),

and for each cube Q in Rm that meets dΩ,

Then there exist constants y, c > 0, depending only on Ω and Q so
that

ω{A,E, Ω\E) >

Here cap is the Newtonian capacity.

Let Φ: Rm —• Rm be a ^-quasiconformal mapping. Following are
some properties of Φ due to Gehring and Vaisala [17]; all constants
depend on m and K only unless otherwise mentioned.
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LEMMA 1. There exists CQ > 0 so that if 0 < c < CQ, B\ and
B2 are balls with d{Bx) < cd(B2) and dist(#i, B2) < cd{Bx), then
d(Φ(Bι)) < cocad(Φ(B2)) for some a > 0 depending only on K.

LEMMA 2. Let B be a ball with center X then there exist balls
B' and B" with center Φ{X), so that B" c Φ(B) c B' and d(B') <
Cd(B").

The next theorem is due to Gehring [6].

THEOREM G. The Jacobian of Φ is in A^dx) on Rm. Thus there
exists a > 0 so that

for any ball B and F CB.

LEMMA 3. There exists a > 1 depending on K so that if U is a
ring {x:r < \x - XQ\ < ar} then Φ(U) contains a ring in the form
{x:p < \x -Φ(xo)l < 2/?} for some p > 0.

Proof. Let B\ = B(XQ, r) and B2 = B(XQ, ar). Then there exist
balls B[, B'{,B'l9B'ί centered at Φ(JC0) so that B'{ c Φ(Bχ) c B[,
^2 £ 0O&2) c 5^ ? d i a m ^ < CdiamB'{ and d i a m ^ <
Because of Theorem G, (dmmBf{/diamB'2) < Cα~α. Hence
<αjrαdiam2?2 and Φ(ί7) contains the ring B2\B[ provided that α
is sufficiently large.

Let Ω = Φ(2?(0, 1)) and Φ* be the quasiconformal reflection about
defined by

Then Ω is an NTA domain [10], and Φ* is quasiconformal on {c~ι <
\x - Φ(0)| < c}. Denote by S* the reflection Φ*(5).

LEMMA 4. G/ven c i , c2 > 1 ίΛere ex^ίΛ c = c(ci, C2, K) > 1 ^α3

that if Q is a cube in {cf1 < \x - Φ(0)| < c j wΛ/cA does not meet
dΩ and satisfies c2

ι < l(Q)/δ(Q) < c2 then

δ(Q*)
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Moreover, there exists a ball B C Q* so that

And if Q is a cube in {cf1 < \x - Φ(0)| < c\} that meets <9Ω, then
d(Q*)<cl(Q).

By a = b, we mean a/b is bounded above and below by positive
constants.

This lemma is a simple consequence of Lemmas 1, 2 and 3.

LEMMA 5. Let h > 3 and H be the circular right cylinder
{x: Σ?~l xj < 1 and 0<xm<h}. Let E be the base {x: Σ?~l x)
< 1 and xm = 0} of H, and A be the point (0, 0, . . . , 0, λ - 1).
Then there exists c> 0 depending on m, h and K only so that

(1.9) ω(Φ(A),Φ(E),Φ(H))>c.

Proof Note that each Φ({x: Σ?~l x] < I, j < xm < j + 2}) is
a C-quasiball (0 < j < h - 2). Hence (1.9) follows from successive
applications of the Harnack inequality.

2. Proof of Theorem 1. Constants in this section depend on Ω, L,
D, P and dist(P,Γ).

Assume from now on that Γ = {xm = 0} and fix a partition ^ =
{Sj} of Γ n Ω so that Sj?'s are (m - 1)-dimensional closed dyadic
squares on Γ with mutually disjoint interiors and that

Let Yj be the center of Sj, Bj = B{Yj, JQI(SJ)) and Dj = BjΠT.
Let {Sj}j be any subcollection of &. Because Ω is an NTA

domain, it follows from (2.1) and the exterior corkscrew condition
(1.2) that the disks {Dj}j are uniformly separated as in (0.3). It
follows from Theorem C and the maximum principle that for any

φ 5 Dj, Ω\Dj)
J

<cω(x9\jDj9a\\jDj\
\ j J J
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The last two inequalities can easily be reversed; thus

(2.2) J>(x, Sj9Ω\Sj) = ω (x, \JSJ9Ω\\JsΛ
j \ j J /

which is a weak substitute for the additivity and is essential in our
proof.

Suppose that / is a dyadic square on Γ with center in Γ n Ω and
that

(2.3) 7nΩ = | JS 7 for some {SJ}JCC.

j

Then δ(I) < C3l(I) for some c3 > 1, because δ(I) < δ{Sj) =
l(Sj) < 1(1) for any j e J. Let Z be a point on <9Ω that satis-
fies dist(Z, /) = δ(I), and let B = B(Z, 4C3d(I)) , A = BndΩ.
Clearly that / c ^B. Because of (1.1), we may choose and fix a point
A e Ω\Γ with

Sc3l(I)<\A-Z\<cl(I)

and δ(A) = 1(1). We claim that

(2.4) ω(P, 57 , Ω\Sj) = ω(P,A, Ω)ω(A, 5,-, Ω\5»

for each j e J. If S) were on 9Ω, (2.4) would follow from Lemma
4.11 in [10]. Since Sj is interior to Ω, (2.4) can be obtained by
modifying the proof of that lemma; or by applying it to the NTA
domain Ω\Bj and then using the Harnack inequality.

Suppose that F = \JjSj for some / c / . It follows from (2.2)
and (2.4) that

(2.5) ω(P9F9 Ω\F) = ̂ ω ( P , Sj,

7
= ω(P,A,Ω)ω(A,F,Ω\F).

So far, only the NTA assumption on Ω is used; this part of the
proof also applies to Theorem 2. To localize the problem, we need the
estimate ω(P, / n Ω, Ω\7) = ω(P, Δ, Ω) which may not hold even
when Ω n Γ is a square (example in §4).

Let

(2.6) μ(F)= [
JF

forFCΓnΩ.
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LEMMA 6. There exist a, β e (0, 1) so that if I is a closed square
on Γ centered in T and F c / n L then

Proof, Suppose that / is a dyadic square. Then either / c S)o for
some Sjo e & or (2.3) holds.

When / C Sj , from the Harnack inequality, it follows that

μ(F)/μ(InL)^σ(F)/σ(IΠL);

and thus (2.7).
Proceed with the assumption (2.3) and assume as we may that

/(/) < 4diam(L). Because L is a uniform domain on Γ and the
center of / is in L, there exists a square S C I nL satisfying

(2.8) /(/) = l(S) = dist(S, d'L).

Notice that dist(S, ΘΩ) < cl(I) and that in general they are not com-
parable. To get around this difficulty, we deduce from the additional
assumption on L that there exists a cube Q C Ω so that Q has one
face lying on S and l(Q) = l(S). Let AQ be the center of Q thus

It follows from (1.5), (1.6) and the Harnack inequality that

ω{P, / n L , Ω\(7nL)) >ω(P,S, Ω\S) > cG(P, AQ)δ(A0)
m-2

and from Lemma 4.2 in [10] and I Q jB that

ω(P, IΠL, Ω\(IΠL)) < cω(P, A, Ω).

Thus

(2.9) ω(P, / n l , Ω\(/ΠI)) = ω(P, Δ, Ω).

Let F = (Jj-S} for some J c / . We deduce form (1.6), (2.5), and
(2.9) and the Harnack inequality that

μ(F) s ^ G(P, Yj)d(Sj)m-2 = J ] ω(P, 57

7 7

= ω ( ? 5 / n L , Ω\(7nL))ωμ, F , Ω\F).

Note also from the Harnack inequality that

ω(A, F,Ω\F)*ω(Ao, F,Ω\F)
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and that

ω(A, / n

Thus,

We note that

ω(A0,F,

JANG-MEI WU

L, Ω\(/ΠJL)) = ω

μ(F)/μ(lDL)

Ω\F)>ω(AQ,F,

<7(FΓ^I

= ω(A0,F,

Q) > co(A0

[dQnS))

Ω\(/ni))>

a\F).

,Fn$(dQn

I/2m.

S),Q)

σ{dQf)S) *

Because σ(^(ΘQ Π S)) > c^σil n L) for some C4 > 0, we conclude

4

provided that σ(F)/σ(I Π L) > 1 - c4/2. This implies (2.7) when
F = ΌjSj.

Let α and β be the constants associated with (2.7) for all previ-
ously proved special cases.

In general, for F C / n L, we may write F = \JjFj where Fj C 57

and J C J. Suppose that

σ(F) 1 + a
σ(IΠL) 2 "

Let h = V e /: σ(Fj)/σ(Sj) > (1 - α)/2} and 72 = Λ A Then

^ ) < ̂  Σ σ ( ^ ) ̂  ̂ σ ( 7 n L )

Since £ r σ(F,) < Σ r σ(Sj), we have Σ r σ(<Sy) > ασ(/nL). There-

fore 5Z7 /*(£./) > βμ{I ΓiL). It follows from the Harnack inequality

and the choice of J\ that

μ(F) > Σ//(F7) > c Σ M 5 » > ci»M/ Π L).
7X

This proves (2.7) for dyadic squares / .
For general /, (2.7) follows from the fact that I is a uniform

domain and the following doubling property (2.10) of μ.
Doubling property: for any square / on Γ centered in L,

(2.10)
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Again, we assume as we may that /(/) < 4diamL. Let I\ be the
union of the squares in {Sj} that meet 2/, and S be a square in InL
that satisfies (2.8). Then l(h) = 1(1) = l(S). If δ(Ix) > l(h), (2.10)
follows from the Harnack principle. Otherwise, let Z\ be a point
on <9Ω that satisfies dist(Zi,/i) = δ(I{), Bx = B(ZU 4c3d(Ix)),
Aι=B\Γ\dΩ and A\ be a point in Ω satisfying %c$d{I\)<\A\—Z\\ <
cd(I\) and δ(A\) = d(I\). Following the argument before, we con-
clude that

μ(IιΠL) = ω(P, Ix ΠΩ, Ω\Iγ) = ω(P, Aγ, Ω)
= G{P,A\W)m~2 = ω(P,S, Ω\S) < cμ(InL).

This proves (2.10) and Lemma 6.

The extension of JΓQ\L to Γ follows from the next lemma.

LEMMA 7. Let L be a uniform domain in W1 and σ be the Lebesgue
measure on W1. Let μ be a measure on L which is absolutely con-
tinuous with respect to σ, and satisfies the restricted doubling property
on L:

μ(2I Π L) < cμ{I Π L)

for any cube I centered in T, and the restricted Aoo property on L:
there exist α, β e (0, 1) so that if I is a cube centered in T and
FCI, then

σ{IΠL) μ(IΓ)L)

Then μ can be extended to W1 so that μ < σ, μ has the doubling
property and μ e A^dσ) on n

Proof. Let & = {Qk} be a dyadic Whitney decomposition of L,
<£' = {Tj} be a dyadic Whitney decomposition of RW\Γ, and Q\ be
one of the largest cubes in %? . Following Jones ([11] and [12]), we
define the reflection Tj of Tj e <§?' as follows: If L is unbounded,
Tj is chosen to be a cube Qk in ^ nearest to 7} and that l{Qk) >
l{Tj)\ if L is bounded, define Tj as above provided that l(Tj) <
KQ\) 9 otherwise define Tj = Qγ. Because L is a uniform domain,
dist(7), Tj) < cl(Tj) and that l{Tj) = l(fj) unless l(Tj) > l(Qx).
See [11] and [12] for detailed properties of this reflection.
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Because L is a uniform domain, σ(dL) = 0 ([12]). Extend μ to
Rm by defining μ(dL) = 0 and

ldσ on Tj.

The proof of the doubling property and the A^ property of μ is
based on the following observation: let / be a dyadic cube that meets
dL then either IΠL or I\L contains a large Whitney cube. More
precisely, if \l Π L φ 0 , then due to the fact that L is uniform,
there exists a Whitney cube Qk c InL with l(Qk) >cl(I); otherwise
\I c Rn\L, and hence there exists Tj e g7' so that 7) c 7\Γ and
/(?)) > ^/(/) The rest of the proof is routine verification.

3. Proof of Theorem 2. Let Ω - Φ (B(0, 1)), where Φ: Mw -> Rm is
ίΓ-quasiconformal and P = Φ(0). When m = 2, Theorem 2 follows
from Theorem B. We assume that m > 3 and constants depend on
K, dist(P, Γ), and dist(P, dΩ) only.

Assume Γ = {xm = 0} and O G Γ Π Ω . Let ^ = {Sj} be the
partition of Γ n Ω in §2, M be the integer satisfying 32diamΩ <
2M < 64diamΩ, and D be the (m — 1)-dimensional square on Γ
centered at 0 with sides parallel to the axes and of length 2 M + 1 . Let
Ω' = Rm\Ω and W = {Rj} be a partition of ΓnΩ' by dyadic squares
with mutually disjoint interiors so that

and D\Ω = \JK Rj for a subcollection {Rj}κ of ^ " .

Let Φ* be the quasiconformal reflection about dΩ defined in (1.8),
Xj be the center of Rj and XJ = Φ(Xj). Define μ on Γ so that

ScΓnΩ,

G(P,X')

μ(S) =
Σj^m^^SnRj), SCDΠΩ',

ω(P,S,Ω), SCΓndΩ,

σ(S), S c Γ\D.

Let Uj = B(Xj, -fel(Rj)), Vj = UjΠΓ and {Rj}κ be a subcollec-
tion of {Rj}κ0 • We note that {Vj*}κ lie on a quasisphere; and claim
that {Vj*}κ are uniformly separated, that is,

(3.1) inf inf ω(x, 3Ω, Ω") > c> 0
K xev; J

where Ω'> = Ω\{jkφj JeK V£ .
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To prove this, we fix j e K and recall that δ(Rj) = l(Rj) <
CdiamΩ. Recall also that Ω is a quasiball thus an NTA domain
and that dist(P, <9Ω) > cdiamΩ. From these facts and elementary
geometry, we may find a circular cylinder Hj c R m \Γ, whose base
has radius YJ = l(Rj) and whose height is hjVj (3 < h} < C), joining
Uj to Ω. Moreover, we may require one base Ej lying in Ω, and the
point Aj which is on the axis of Hj and of distance ΐj to the other
base, lying in Uj\T. Because Hj• C\ Γ = 0 , we have HJ n Ω c Ω^.
Applying Lemma 5 to Φ*, Hj, hj, we obtain from the maximum
principle that

ω(A) , dΩ, Ω'j) > ω(A*, ΘΩ n HJ, HJ Π Ω)

> ω{A) , EJ ΓΊ HJ , HJ) > c> 0.

In view of Lemmas 1 and 5, we conclude (3.1) by applying the Harnack
inequality to ω(x9dΩ9Ω'j) on UJ .

Therefore Theorem C implies that

(3.2)
K

= ω(x,\JV*,Ω\{Jvλ ΐovxeΩ\[jVf.
\ K K ) K

Also note from (3.2), Lemmas 1 and 5 and the Harnack inequality
that

= ω(P, UJ,Ω\UJ) = ω(P9 Vf 9 Ω\Vf).

The last equivalence relation holds because ω(x, V*, Ω\V*) > c > 0
on UJ.

Let / be a dyadic square in D. Then either / c Sj for some
Si e W or / c Rf for some i?7 G ̂ ' or

(3.3) / = (/ n aΩ) u U Sj u U Rj
J K

for some {Sj} c ^ and {i?j}^ e g 7 7 . In the first two cases, by the
Harnack inequality,
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We proceed with the assumption of (3.3), and denote by

/ K

Let Z be a point on dΩ so that dist(Z, /) = δ{I). Because
Ω = Φ(2?(0, 1)), in view of Lemmas 1 and 5 we may find Cs > 0 so
that /* UI C B(Z, c5l(I)) let B ΞΞ B(Z, 4csd(I)), Δ = B n <9Ω and
A be a point in Ω so that δ(A) = /(/) and Sc5d(I) < \A-Z\ < Cl{I).

Since Ω is NTA, it follows from the argument for (2.4) that

(3.4) ω(P, Vf,a\V;) = ω(P, A, O)ω(A, V*, Ω\F/).

We claim that there exist a, β e (0, 1) so that if F c I,

Assume first that F is in one of the three forms: (1) F C / n
(2) jr = U j ^ for some JCJ or (3) F = \JχRj f o Γ s o m e K CK.

If F is in the form (1) or (2), we deduce from theorems in [9] or
arguments in §2 respectively, that

μ(F) = ω(P,F, Ω\F) = ω(P, Δ, O)ω(A, F, Ω\F).

If F is in the form (3), then it follows from (3.2), (3.4) and the
Harnack inequality that

(3.6)

K K

= ω(P, Δ, Ω)ω(Λ, F*, Ω\F*)

= ω(P, Δ, Ω)ω IA 9 [j UJ 9 Q\\J UJ
\ K K

Again the last two equivalence relations follow from

ωlx,(jv;,Ω\\JvA >c>0
V K K )

on F* and on M~ Uf. Similarly,
A. J

(3.7) μ(I) = ω(P,A, O)ω{A, h,
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Thus

(3.8) ^>c6ω(A,F,Ω\F) or c6ω(A, F*, Q\F*)

depending onFCΩorFCΩ'.
If F C IndΩ and μ(F)/μ(I) < a, then ω(A, F, Ω) < c^a.

Following the proof that ω is Aoo with respect to the surface measure
on the boundary of a BMOi domain [10, p. 133], we obtain

< i c Ί + c;(c;a)\

where 0 < Cη < 1 and λ > 0 depend only on the BMOi constant of
Ω. Thus, if a is sufficiently small, σ(F)/σ(I) < 1 - c7/2.

In the case F = \JjSj, σ(F) = Afm_i(F) because F is contained
in an (m - 1)-dimensional hyperplane Γ. In view of Theorem E,
σ(F)/σ(I) < cΊ/A if μ(F)/μ(I) is sufficiently small.

When F = [JgRj > (3-5) would follow from Theorem E if we could
prove that

(3.9) Mm_x{F*)>cσ{F).

In view of the examples in [14], [16] and [18] on contents, it is not
clear whether (3.9) is true. We shall apply Theorem F, and define a
measure v on E = |J~ J7* with support UίK^?} > s o

Clearly ι/(U^ I//) = <τ(F). We claim that cv is in the class Jξ
defined in Theorem F.

In fact, let Q be a cube in Ω satisfying l6d(Q) < δ{Q) < 256d(Q).
If X] e Q for some j , then by Lemma 4, d{Q) s δ{Q) s <J(X*) s
rf(C7J) = d(Rj). Since each ί/J contains a ball of diameter com-
parable to d(Uj), there are at most C distinct Xj"s in Q; thus
u(Q) < Cd{Q)m-K Moreover, if X* e Q, then cap(β Π U*) ^
d(UJ)m-2 = d(Q)m~2. Hence

HQ)<ccap(QnE)l(Q).

Next, let Q be a cube that meets dΩ, and note from Lemma 4 that
d(Φ*(β)) < cd(Q). Note also that if XJ e Q then Xj e Φ*(Q Π Ω)
and <5(i?7 ) s ί(A» < d(Φ*{Q)). Thus dist(i?;-, Φ*(βnΩ)) < J(i?7) +

< cδ(Rj) + d{Φ*{Q)) < cd(Φ*{Q)) < cd(Q). Therefore

u(Q)=
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This shows that cv e J[ for some c > 0. We conclude from Theorem
Fthat

Recall from (3.6) that ω(A, E, Ω\£) = ω(Λ, .F*, Ω\F*). Thus in
view of (3.8) and (3.10), σ(F)/σ(I) < cΊ/4 if μ(F)/μ(I) is suffi-
ciently small.

To obtain (3.5) for general F, we follow the corresponding argu-
ments in §2.

It follows from (3.5) that for dyadic I CD

(3.11) ω(A,h9Ω\I*)>c>0.

We extend (3.5) to all squares / c D by the doubling property: let
/ be a dyadic square in D,

(3.12) μ(2I)<cμ(I).

In fact, when 5/ΠdΩ = 0,(3.12) follows from the Harnack inequal-
ity; when 5/ΠdΩ φ 0 , (3.12) follows from (1.4), (3.7) and (3.11).

To obtain (3.5) for all squares / c Γ, we use the facts that μ(D) = 1
and dμ/dσ = 1 on Rm\\D. This completes the proof of Theorem
2.

4. The example. The construction is given in R2 for simplicity; it
can easily be extended to Rm , m > 3. If one is only interested in an
example in R 2, some steps can be further reduced.

Let Yk^p be the point {(p + \)/2k, |/2*) in R2 and BkyP be the
disk B(Ykp, 2~k~10) for any integers k and p. Let

Ωo = {x: 0 < X! < 1, 0 < x2 < 1}\ ( J ^ , p

and note that ΩQ is an NTA domain. Note also that \Jk,p^kfp does
not meet any line x2 = 2~k or any line segment {x:x\ = p/2^ and
0 < x2 < 2~k}.

Let sequences {δn} and {An} be given so that {δn} c {2"^^:
positive integer}, lim<JΛ = 0, 4̂« > 0 and lim^4Λ = oo. Let {λn} c
{2~k:k positive integer} be another sequence with λn < δn2~10. We
shall construct a domain Ω C R2, by adding another part in the lower
half-plane and restoring some of the disks Bkp which were originally
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removed. For each n > 1, let

Un = {x: (xι , 0) e Si,, -λn2-n <x2< δn2-n},

Vn = {x: (JC!, 0) e (1 - 2δn)Sn, λn2~n <x2< δn2~n~3},

where (1—2<5/,)S
f

Λ is the interval on x2 = 0 concentric to *SΛ of length
(1 - 2<5Λ)2-/I, and Wn = Un\Vn and note that dWn does not meet
U* , » * , . Let

Ω = interior of

and P be the point (\, JQ) . Then Ω is an NTA domain.
Denoting by In = (1 - 2δn)Sn and /„ = (1 - δn)Sn\In , we have the

following lemma.

LEMMA 9. G/ven n > 1, λn can be chosen sufficiently small depend-
ing on An and δn only, so that

ω(P, Jn, Ω\Λ) > ̂ wα>(P, In, Ω\/Λ).

Assume Lemma 9 for the moment and let Γ = {x2 = 0}. Then
Γ Π Ω is the unit interval on Γ and δ(x) = λn2~n for x e In U Λ .
From the reasoning in §2, we note that ω(P, Λ , Ω\/rt) = μ(Jn) and
ω{P, In, Ω\/π) = μ(/π) where // is defined in (2.6). Thus

μ(Jn)>(l-CA-ι)μ(In\Jjn),

while

σ(Jn) < 2δnσ(In U Λ)

for all n > 1. Thus μ ̂  A^dσ) on Γ Π Ω.
It remains to prove Lemma 9. Fix n > 1 and let Pi = (2~w, 0) and

p2 = (2-* + 1 , 0) be the end points of Sn , and P 3 = (2-^ + ^ 2 " w , 0),
P 4 = (2-" + 1 -δn2~n , 0), P 5 = (2-« + J M 2 - W - 1 , 0) and P6 = (2-«+1 -
δn2~n~ι, 0) be the end points of the two intervals in /w Note that

Jn = M u M and /„ = ϊ y v Let P7 = P5 - (0, AW2"W)? P8 =
P 6 - ( 0 ? ^ 2 - Λ ) , P 9 = P 5 + (0? J ^ - " - 1 ) and P 1 0 = P5 + (0? ^ 2 ~ " - 1 ) .

In view of the Markov property, it suffices to show that if λn is
sufficiently small then

(4.1) ω(x, Jn, Ω\Λ) > Anω(x, /„, Ω\/Λ)
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for x e PΊP9 u P9Λ0 U PioPs - Let D be the domain Ω n Un and T
be the domain Ω u {x, X\ £ Sn}, and note that their configurations
are independent of δj, Aj and λj for any j φ n. In view of the
maximum principle, it is enough to show that for sufficiently small

(4.2) ω(x, Jn , D\Jn) > Anω(x, In , T\In)

for x e PΊP9 U P9PW U
Consider first x e P5P7; and let Pn = Px - (0, λn2~n), P π =

Λ - (0, Λ«2-"), /ί be the rectangle PιP3Pχ3Pn and M be the semi-
infinite strip {x:2~n < xγ < 2~n + δn2~n , x2 > -λn2-n}. It is easy
to see that there exists ξn, 0 < ξn < δn2~10, depending only on δn

and An , such that if 0 < λn < ζn , then

ω(x, P5P^H) > Anω(x,dM\PnPl3,M)

for x G P5P7. From the maximum principle, we obtain (4.2) for
x e P5PΊ provided that 0 < λn < ξn. Similarly (4.2) holds on P 6 P 8

under the same assumptions.
Denote by K = P5P9 U P9P10 U P\oPβ , it remains to prove (4.2) for

x e K. We note that

ω(x9 Jn,D\Jn)>τn >0, xeK

for some τn depending only on δn .
Let γn be a number in the form 2~k with 0 < γn < δn2~10, Pi5 =

P 3 + (yΛ2-π , 0) and P 1 6 = P4 - (7w2~n , 0). The number γn can be
chosen sufficiently small, depending on δn , An and ίΛ only, so that
if 0 < λn < ξn ,

(4.3) ω(x, P3P15 U Pl6P4, ΛCΛaΛs U Pi6P4)) < W ( 1 0 Λ )

for x G K. (First choose and fix γn so that (4.3) holds when λn = ξn

then extend (4.3) to 0 < λn < ζn by the maximum principle.)
To complete the proof, it remains to show that for sufficiently small

(4.4) ω(x, Pl5Pl6, T\Pί5Pι6) < τn/(10An) on K.

Assume that λn < 2 - 1 0 m i n { ^ , γn}, and let R0 = PιsPi6 = {(xι, 0):
a < xι < b) where a = 2-"+δn2-n + γn2-n and b = 2-n+ι-δn2-n-
γn2-". For k > 1, let Rk be the rectangle {x: a - Xn2~n+k < xx <
b + λn2~n+k and-A«2-« < x2 < λn2-"+k}. We note that T is an
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NTA domain. By the exterior corkscrew condition of T, there exists
a constant e, 0 < ε < 1, independent of k, so that

ω(x, dRk Π T, T\Rk) < ε on Si?^+1 Π Γ

provided that 2k+5 < ynKιl From the Markov property it follows
that

ω(x, TW\~6,

for x eK. Therefore (4.4) holds if λn is sufficiently small, depending
only on δn and An . This completes the proof of Lemma 9.
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