A_{∞} AND THE GREEN FUNCTION

Jang-Mei Wu

Abstract

Let $G(x)$ be the Green function in a domain $\Omega \subseteq \mathbb{R}^{m}$ with a fixed pole, and Γ be an ($m-1$)-dimensional hyperplane. We give conditions on Ω and $\Omega \cap \Gamma$ so that $|\nabla G|$ is A_{∞} with respect to the ($m-1$)-dimensional measure on $\Omega \cap \Gamma$. Certain properties of the Riemann mapping of a simply-connected domain in \mathbb{R}^{2} are extended to the Green function of domains in \mathbb{R}^{m}.

In [3], Fernández, Heinonen and Martio have proved the following:
Theorem A. Let f be a conformal mapping from a simplyconnected planar domain Ω onto the unit disk Δ and L be a line segment in Ω. Then $f(L)$ is a quasiconformal arc. Moreover, if L is a line segment on the boundary of a half plane contained in Ω, then $\left|f^{\prime}\right| \in A_{\infty}(d s)$ on L with respect to the linear measure $d s$.

If L is any line segment in $\Omega,\left|f^{\prime}\right|$ need not be in $A_{\infty}(d s)$ on L. In fact, Heinonen and Näkki [9] have proved the following:

Theorem B. Let f be a conformal mapping from a simplyconnected domain Ω onto the unit disk Δ and L be a line segment in Ω. Then the following are equivalent:
(1) $\left|f^{\prime}\right| \in A_{\infty}(d s)$ on L,
(2) $f \mid L$ is quasisymmetric,
(3) there exists a chord arc domain $D \subseteq \Omega$ so that $L \subseteq \bar{D}$,
(4) there exists a quasidisk $D \subseteq \Omega$ so that $L \subseteq \bar{D}$.

Let μ and ν be two measures on $\mathbb{R}^{m}(m \geq 2)$. Recall that μ belongs to the Muckenhoupt class $A_{\infty}(d \nu)$ if there exist $\alpha, \beta \in(0,1)$ such that whenever E is a measurable subset of a cube Q,

$$
\begin{equation*}
\nu(E) / \nu(Q)<\alpha \text { implies } \mu(E) / \mu(Q)<\beta . \tag{0.1}
\end{equation*}
$$

If μ and ν have the doubling property, then $\mu \in A_{\infty}(d \nu)$ if and only if $\nu \in A_{\infty}(d \mu)$ ([2]). We say a function is in $A_{\infty}(d \nu)$ on L, provided that (0.1) holds with $d \mu=g d \nu$ for all cubes $Q \subseteq L$.
$f \mid L$ is quasisymmetric provided that for all $a, b, x \in L,|a-x| \leq$ $|b-x|$ implies $|f(a)-f(x)| \leq c|f(b)-f(x)|$ for some constant $c>0$.

Let G be the Green function for Ω with pole $f^{-1}(0)$ and $\delta(z)$ be $\operatorname{dist}(z, \partial \Omega)$. From the distortion theorem, it follows that

$$
\begin{equation*}
|\nabla G(z)| \cong\left|f^{\prime}(z)\right| \cong \frac{1-|f(z)|}{\delta(z)} \cong \frac{G(z)}{\delta(z)} \tag{0.2}
\end{equation*}
$$

when $f(z)$ is away from 0 . Thus it is natural to study the analogue of Theorem B for general domains Ω in $\mathbb{R}^{m}(m \geq 2)$, that is, to find conditions on Ω and the planar section $L \subseteq \Omega$, so that $|\nabla G| \in$ $A_{\infty}(d \sigma)$ on L with respect to the $(m-1)$-dimensional measure $d \sigma$. Because $|\nabla G|$ may vanish, we study $G(z) / \delta(z)$ instead.

From now on, Ω denotes a domain in $\mathbb{R}^{m}(m \geq 2), G$ the Green function on Ω, P a fixed point in Ω and $G(x)=G(P, x)$. Let Γ be an ($m-1$)-dimensional hyperplane in \mathbb{R}^{m} which does not contain P, and σ be the ($m-1$)-dimensional measure on Γ. If L is a domain in Γ, denote by $\partial^{\prime} L$ its boundary relative to Γ. We shall prove the following:

Theorem 1. Suppose that Ω is a nontangentially accessible (NTA) domain and that $L \subseteq \Omega$ is a uniform domain on the hyperplane Γ. Furthermore, there exists $0<c<1$ so that for each $x \in L$, at least one component of $B\left(x, c \operatorname{dist}\left(x, \partial^{\prime} L\right)\right) \backslash L$ is contained in Ω. Then $\left.\frac{G(x)}{\delta(x)}\right|_{L}$ can be extended to become an $A_{\infty}(d \sigma)$ function on the entire hyperplane Γ.

Theorem 2. Suppose that Ω is a quasiball and is a BMO_{1} domain. Then $\left.\frac{G(x)}{\delta(x)}\right|_{\Gamma \cap \Omega}$ can be extended to become an $A_{\infty}(d \sigma)$ function on the entire hyperplane Γ.

The assumption that L is a uniform domain arises naturally in defining A_{∞} and in extending $G(x) / \delta(x)$ by the method of reflection. The additional condition on L is needed in view of the following:

Example. For each $m \geq 2$, there exists an NTA domain so that $\Omega \cap\left\{x_{m}=0\right\}$ is an ($m-1$)-dimensional cube, but $\frac{G(x)}{\delta(x)} \notin A_{\infty}(d \sigma)$ on $\Omega \cap\left\{x_{m}=0\right\}$.

The additional condition on L is satisfied when $L \subseteq \bar{D}$ for some domain $D \subseteq \Omega$ whose complement $\mathbb{R}^{m} \backslash D$ has the linearly locally connected property (LLC). Examples of such D are quasidisks in \mathbb{R}^{2} or domains quasiconformally equivalent to a ball in $\mathbb{R}^{m}(m \geq 3)$, see [7] and [8].

In Theorem 2, no condition is imposed on $\Omega \cap \Gamma$, and it may be any open set. Lipschitz domains which are homeomorphic to a ball satisfy the conditions in Theorem 2. The theorem remains true for all quasidisks in \mathbb{R}^{2} (Theorem B).

In the core of our proof is the following theorem, which in its most general form is proved by B. Davis [4] by probabilistic methods. Special cases and related results can be found in [5], [13] and [15].

Theorem C. Let Ω be a domain in $\mathbb{R}^{m}, m \geq 2$, and $\left\{D_{j}\right\}$ be a sequence of closed sets contained in Ω with $\operatorname{dist}\left(D_{i}, D_{j}\right)>0$ whenever $i \neq j$. Set $\Omega_{j}=\Omega \backslash \bigcup_{k \neq j} D_{k}$. If $\left\{D_{j}\right\}$ are uniformly separated in the sense:

$$
\begin{equation*}
\inf _{j} \inf _{z \in D_{j}} \omega\left(z, \partial \Omega, \Omega_{j}\right)=a>0 \tag{0.3}
\end{equation*}
$$

then for any $x \in \Omega \backslash \cup D_{j}$,

$$
\sum_{j} \omega\left(x, D_{j}, \Omega \backslash D_{j}\right)<\frac{1}{a} \omega\left(x, \bigcup D_{j}, \Omega \backslash \bigcup D_{j}\right)
$$

1. Preliminary Theorems. For a domain Ω and a set S in \mathbb{R}^{m}, denote by $\delta(S)$ the distance from S to $\partial \Omega, d(S)$ the diameter of S and $l(S)$ the side length of S if S is a cube. If S is a ball, a cube or a square, denote by $c S$ the ball, the cube, or the square on the same hyperplane, concentric to S, of diameter $c d(S)$. Denote by $B(x, r)$ the ball centered at x of radius r.
Ω is called a nontangentially accessible (NTA) domain [10], if it is bounded and there exist constants $r_{0}>0, M>10$ and $N>10$ depending on Ω so that the following conditions are satisfied:
(1.1) Corkscrew condition: for any $Z \in \partial \Omega, 0<r<r_{0}$, there exist $A=A_{r}(Z) \in \Omega$ such that $M^{-1} r<|A-Z|<r$ and $\operatorname{dist}(A, \partial \Omega)>$ $M^{-1} r$.
(1.2) $\mathbb{R}^{m} \backslash \bar{\Omega}$ satisfies the corkscrew condition.
(1.3) Harnack chain condition: if X_{1} and X_{2} are in $\Omega, \operatorname{dist}\left(X_{i}, \partial \Omega\right)$ $>\varepsilon>0, i=1,2$, and $\left|X_{1}-X_{2}\right| \leq 10 M \varepsilon$, then there exist balls $B_{j}=B\left(Y_{j}, r_{j}\right), 1 \leq j \leq n$ with $n \leq N$, so that $Y_{1}=X_{1}$ and $Y_{n}=X_{2}$ and that the balls satisfy

$$
M^{-1} r_{j}<\operatorname{dist}\left(B_{j}, \partial \Omega\right)<M r_{j}, \quad 1<j<n,
$$

and

$$
B\left(Y_{j}, \frac{r_{j}}{2}\right) \cap B\left(Y_{j+1}, \frac{r_{j+1}}{2}\right) \neq \varnothing, \quad 1 \leq j \leq n-1
$$

Suppose Ω is an NTA domain. For $Z \in \partial \Omega$, denote by $\Delta(Z, r)$ the surface ball $B(Z, r) \cap \partial \Omega$. Let P be a fixed point in Ω. Then the Green function in Ω and the harmonic measure ω on $\partial \Omega$ have the following properties, [10]:
(1.4) Doubling property of ω : there exists $C>0$ depending only on Ω and P so that

$$
\omega(P, \Delta(Z, 2 r), \Omega) \leq C \omega(P, \Delta(Z, r), \Omega)
$$

for any surface ball $\Delta(Z, r) \equiv B(Z, r) \cap \partial \Omega$.
(1.5) Relation between ω and G : suppose that $A \in \Omega, Z \in \partial \Omega$ with $c^{-1} \delta(A) \leq|A-Z| \leq c \delta(A)$; then there exists $C>0$ depending on Ω, P and c only so that

$$
C^{-1} \leq \frac{G(P, A) \delta(A)^{m-2}}{\omega(P, \Delta(Z, \delta(A)), \Omega)} \leq C .
$$

Let Ω be an NTA domain, Q be a cube in Ω satisfying $\operatorname{dist}(P, Q)$ $\geq \delta(Q) \geq d(Q) \geq \frac{1}{2} \delta(Q)$, and Γ be an ($m-1$)-dimensional hyperplane in \mathbb{R}^{m} passing through the center of Q. Following the arguments in [10], we may find constants $c, C>0$ depending on Ω and P, so that

$$
\begin{align*}
C^{-1} \omega(P, Q, \Omega \backslash Q) & \leq G(P, x) \delta(x)^{m-2} \tag{1.6}\\
& \leq C \omega(P, Q, \Omega \backslash Q), \quad x \in Q
\end{align*}
$$

and

$$
\begin{equation*}
\omega(x, \partial \Omega \backslash \Gamma, \Omega \backslash(\Gamma \backslash Q))>c, \quad x \in \frac{1}{2} Q . \tag{1.7}
\end{equation*}
$$

Ω is called a uniform domain if it satisfies the interior corkscrew condition (1.1) and the interior Harnack chain condition (1.2) in the definition of NTA domain. It is also called a BMO extension domain because of its characterization in terms of extension properties of $\operatorname{BMO}(\Omega)$ by Jones [11]. For properties of uniform domains, see [7]. In \mathbb{R}^{2}, a simply-connected uniform domain is a quasidisk.

A bounded domain $\Omega \subseteq \mathbb{R}^{m}$ is called a BMO_{1} domain if its boundary is given locally in some C^{∞} coordinate system as the graph of a function ϕ with $\nabla \phi \in \mathrm{BMO} . \mathrm{BMO}_{1}$ domains are defined and studied by Jerison and Kenig in [10]. They are NTA domains and can be regarded as the analogue of chord arc domains in $\mathbb{R}^{m}(m \geq 3)$; note that the graph of $y=\phi(x)$ is a chord arc curve if $\phi^{\prime} \in \operatorname{BMO}\left(\mathbb{R}^{1}\right)$. It is proved in [10] that

Theorem D . If Ω is a BMO_{1} domain, then the harmonic measure ω on $\partial \Omega$ belongs to $A_{\infty}(d \sigma)$.

An extension of Hall's Lemma is proved in [19]; it is stated here with constants given more precisely.

Theorem E. Let Ω be a BMO_{1} domain and $C_{0}>1$ be given. There exist constants $\lambda, c>0$ depending on Ω and C_{0} only, so that for any point $A \in \Omega$ and closed set $E \subseteq \Omega \cap B\left(A, C_{0} \delta(A)\right)$,

$$
\omega(A, E, \Omega \backslash E) \geq c\left(M_{m-1}(E) \delta(A)^{-m+1}\right)^{\lambda},
$$

where M_{m-1} is the ($m-1$)-dimensional content.
The α-dimensional content $M_{\alpha}(E)$ of a set E is defined to be $\inf \sum_{n} r_{n}^{\alpha}$, with the infimum taken over all coverings of E consisting of countably many balls with radii r_{n}.

We also need the following estimate of harmonic measures [19], which is first proved by Carleson [1] for the half plane. Again, the constants are described more precisely here.

Theorem F . Let Ω be a BMO_{1} domain in $\mathbb{R}^{m}(m \geq 3), C_{0}>1$, $A \in \Omega$ and E be a closed set in $\Omega \cap B\left(A, C_{0} \delta(A)\right)$. Let \mathscr{M} be the family of positive measures ν on E, which satisfy, for each cube Q in Ω with $16 d(Q) \leq \delta(Q) \leq 256 d(Q)$,

$$
\nu(Q) \leq \operatorname{cap}(E \cap Q) l(Q) ;
$$

and for each cube Q in \mathbb{R}^{m} that meets $\partial \Omega$,

$$
\nu(Q)<l(Q)^{m-1} .
$$

Then there exist constants $\gamma, c>0$, depending only on Ω and C_{0} so that

$$
\omega(A, E, \Omega \backslash E) \geq c \sup _{\mathscr{M}}\left(\nu(E) \delta(A)^{-m+1}\right)^{\gamma} .
$$

Here cap is the Newtonian capacity.
Let $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a K-quasiconformal mapping. Following are some properties of Φ due to Gehring and Väisälä [17]; all constants depend on m and K only unless otherwise mentioned.

Lemma 1. There exists $c_{0}>0$ so that if $0<c<c_{0}, B_{1}$ and B_{2} are balls with $d\left(B_{1}\right)<c d\left(B_{2}\right)$ and dist $\left(B_{1}, B_{2}\right)<\operatorname{cd}\left(B_{1}\right)$, then $d\left(\Phi\left(B_{1}\right)\right)<c_{0} c^{\alpha} d\left(\Phi\left(B_{2}\right)\right)$ for some $\alpha>0$ depending only on K.

Lemma 2. Let B be a ball with center X; then there exist balls B^{\prime} and $B^{\prime \prime}$ with center $\Phi(X)$, so that $B^{\prime \prime} \subseteq \Phi(B) \subseteq B^{\prime}$ and $d\left(B^{\prime}\right)<$ $C d\left(B^{\prime \prime}\right)$.

The next theorem is due to Gehring [6].
Theorem G. The Jacobian of Φ is in $A_{\infty}(d x)$ on \mathbb{R}^{m}. Thus there exists $\alpha>0$ so that

$$
\frac{|\Phi(F)|}{|\Phi(B)|} \leq C\left(\frac{|F|}{|B|}\right)^{\alpha}
$$

for any ball B and $F \subseteq B$.
Lemma 3. There exists $a>1$ depending on K so that if U is a ring $\left\{x: r<\left|x-x_{0}\right|<a r\right\}$ then $\Phi(U)$ contains a ring in the form $\left\{x: \rho<\left|x-\Phi\left(x_{0}\right)\right|<2 \rho\right\}$ for some $\rho>0$.

Proof. Let $B_{1}=B\left(x_{0}, r\right)$ and $B_{2}=B\left(x_{0}, a r\right)$. Then there exist balls $B_{1}^{\prime}, B_{1}^{\prime \prime}, B_{2}^{\prime}, B_{2}^{\prime \prime}$ centered at $\Phi\left(x_{0}\right)$ so that $B_{1}^{\prime \prime} \subseteq \Phi\left(B_{1}\right) \subseteq B_{1}^{\prime}$, $B_{2}^{\prime \prime} \subseteq \phi\left(B_{2}\right) \subseteq B_{2}^{\prime}, \operatorname{diam} B_{1}^{\prime} \leq C \operatorname{diam} B_{1}^{\prime \prime}$ and $\operatorname{diam} B_{2}^{\prime} \leq C \operatorname{diam} B_{2}^{\prime \prime}$. Because of Theorem G, ($\left.\operatorname{diam} B_{1}^{\prime \prime} / \operatorname{diam} B_{2}^{\prime}\right) \leq C a^{-\alpha}$. Hence diam B_{1}^{\prime} $\leq c a^{-\alpha} \operatorname{diam} B_{2}^{\prime \prime}$ and $\Phi(U)$ contains the ring $B_{2}^{\prime \prime} \backslash \overline{B_{1}^{\prime}}$ provided that a is sufficiently large.

Let $\Omega=\Phi(B(0,1))$ and Φ^{*} be the quasiconformal reflection about $\partial \Omega$ defined by

$$
\begin{equation*}
\Phi^{*}(x)=\Phi\left(\frac{\Phi^{-1}(x)}{\left\|\Phi^{-1}(x)\right\|^{2}}\right) . \tag{1.8}
\end{equation*}
$$

Then Ω is an NTA domain [10], and Φ^{*} is quasiconformal on $\left\{c^{-1}<\right.$ $|x-\Phi(0)|<c\}$. Denote by S^{*} the reflection $\Phi^{*}(S)$.

Lemma 4. Given $c_{1}, c_{2}>1$ there exists $c=c\left(c_{1}, c_{2}, K\right)>1$ so that if Q is a cube in $\left\{c_{1}^{-1}<|x-\Phi(0)|<c_{1}\right\}$ which does not meet $\partial \Omega$ and satisfies $c_{2}^{-1}<l(Q) / \delta(Q)<c_{2}$ then

$$
c^{-1}<\frac{d\left(Q^{*}\right)}{\delta\left(Q^{*}\right)}<c .
$$

Moreover, there exists a ball $B \subseteq Q^{*}$ so that

$$
d\left(Q^{*}\right) \cong l(Q) \cong d(B)
$$

And if Q is a cube in $\left\{c_{1}^{-1}<|x-\Phi(0)|<c_{1}\right\}$ that meets $\partial \Omega$, then $d\left(Q^{*}\right) \leq c l(Q)$.

By $a \cong b$, we mean a / b is bounded above and below by positive constants.

This lemma is a simple consequence of Lemmas 1,2 and 3.
Lemma 5. Let $h>3$ and H be the circular right cylinder $\left\{x: \sum_{1}^{m-1} x_{j}^{2}<1\right.$ and $\left.0<x_{m}<h\right\}$. Let E be the base $\left\{x: \sum_{1}^{m-1} x_{j}^{2}\right.$ ≤ 1 and $\left.x_{m}=0\right\}$ of H, and A be the point $(0,0, \ldots, 0, h-1)$. Then there exists $c>0$ depending on m, h and K only so that

$$
\begin{equation*}
\omega(\Phi(A), \Phi(E), \Phi(H))>c . \tag{1.9}
\end{equation*}
$$

Proof. Note that each $\Phi\left(\left\{x: \sum_{1}^{m-1} x_{j}^{2}<1, j<x_{m}<j+2\right\}\right)$ is a C-quasiball ($0 \leq j \leq h-2$). Hence (1.9) follows from successive applications of the Harnack inequality.
2. Proof of Theorem 1. Constants in this section depend on Ω, L, D, P and $\operatorname{dist}(P, \Gamma)$.

Assume from now on that $\Gamma=\left\{x_{m}=0\right\}$ and fix a partition $\mathscr{C}=$ $\left\{S_{j}\right\}$ of $\Gamma \cap \Omega$ so that S_{j} 's are ($m-1$)-dimensional closed dyadic squares on Γ with mutually disjoint interiors and that

$$
\begin{equation*}
0<c<\frac{l\left(S_{j}\right)}{\delta\left(S_{j}\right)} \leq \frac{1}{10} \tag{2.1}
\end{equation*}
$$

Let Y_{j} be the center of $S_{j}, B_{j}=B\left(Y_{j}, \frac{1}{10} l\left(S_{j}\right)\right)$ and $D_{j}=B_{j} \cap \Gamma$.
Let $\left\{S_{j}\right\}_{J}$ be any subcollection of \mathscr{C}. Because Ω is an NTA domain, it follows from (2.1) and the exterior corkscrew condition (1.2) that the disks $\left\{D_{j}\right\}_{J}$ are uniformly separated as in (0.3). It follows from Theorem C and the maximum principle that for any $x \in \Omega \backslash \bigcup_{J} D_{j}$,

$$
\begin{aligned}
& \sum_{J} \omega\left(x, S_{j}, \Omega \backslash S_{j}\right) \cong \sum_{J} \omega\left(x, D_{j}, \Omega \backslash D_{j}\right) \\
& \quad \leq c \omega\left(x, \bigcup_{J} D_{j}, \Omega \backslash \bigcup_{J} D_{j}\right) \\
& \quad \leq c \omega\left(x, \bigcup_{J} S_{j}, \Omega \backslash \bigcup_{J} S_{j}\right)
\end{aligned}
$$

The last two inequalities can easily be reversed; thus

$$
\begin{equation*}
\sum_{J} \omega\left(x, S_{j}, \Omega \backslash S_{j}\right) \cong \omega\left(x, \bigcup_{J} S_{j}, \Omega \backslash \bigcup_{J} S_{j}\right) \tag{2.2}
\end{equation*}
$$

which is a weak substitute for the additivity and is essential in our proof.

Suppose that I is a dyadic square on Γ with center in $\Gamma \cap \Omega$ and that

$$
\begin{equation*}
I \cap \Omega=\bigcup_{J} S_{j} \quad \text { for some }\left\{S_{j}\right\}_{J} \subseteq C . \tag{2.3}
\end{equation*}
$$

Then $\delta(I) \leq C_{3} l(I)$ for some $c_{3}>1$, because $\delta(I) \leq \delta\left(S_{j}\right) \cong$ $l\left(S_{j}\right) \leq l(I)$ for any $j \in J$. Let Z be a point on $\partial \Omega$ that satisfies $\operatorname{dist}(Z, I)=\delta(I)$, and let $B \equiv B\left(Z, 4 C_{3} d(I)\right), \Delta=B \cap \partial \Omega$. Clearly that $I \subseteq \frac{1}{2} B$. Because of (1.1), we may choose and fix a point $A \in \Omega \backslash \Gamma$ with

$$
8 c_{3} l(I) \leq|A-Z| \leq c l(I)
$$

and $\delta(A) \cong l(I)$. We claim that

$$
\begin{equation*}
\omega\left(P, S_{j}, \Omega \backslash S_{j}\right) \cong \omega(P, \Delta, \Omega) \omega\left(A, S_{j}, \Omega \backslash S_{j}\right) \tag{2.4}
\end{equation*}
$$

for each $j \in J$. If S_{j} were on $\partial \Omega$, (2.4) would follow from Lemma 4.11 in [10]. Since S_{j} is interior to Ω, (2.4) can be obtained by modifying the proof of that lemma; or by applying it to the NTA domain $\Omega \backslash \overline{B_{j}}$ and then using the Harnack inequality.

Suppose that $F=\bigcup_{\widetilde{J}} S_{j}$ for some $\widetilde{J} \subseteq J$. It follows from (2.2) and (2.4) that

$$
\begin{align*}
\omega(P, F, \Omega \backslash F) & \cong \sum_{\widetilde{J}} \omega\left(P, S_{j}, \Omega \backslash S_{j}\right) \tag{2.5}\\
& \cong \sum_{\widetilde{J}} \omega(P, \Delta, \Omega) \omega\left(A, S_{j}, \Omega \backslash S_{j}\right) \\
& \cong \omega(P, \Delta, \Omega) \omega(A, F, \Omega \backslash F)
\end{align*}
$$

So far, only the NTA assumption on Ω is used; this part of the proof also applies to Theorem 2. To localize the problem, we need the estimate $\omega(P, I \cap \Omega, \Omega \backslash I) \cong \omega(P, \Delta, \Omega)$ which may not hold even when $\Omega \cap \Gamma$ is a square (example in $\S 4)$.

Let

$$
\begin{equation*}
\mu(F)=\int_{F} \frac{G(x)}{\delta(x)} d \sigma(x) \quad \text { for } F \subseteq \Gamma \cap \Omega . \tag{2.6}
\end{equation*}
$$

Lemma 6. There exist $\alpha, \beta \in(0,1)$ so that if I is a closed square on Γ centered in \bar{L} and $F \subseteq I \cap L$ then

$$
\begin{equation*}
\frac{\sigma(F)}{\sigma(I \cap L)}>\alpha \Rightarrow \frac{\mu(F)}{\mu(I \cap L)}>\beta . \tag{2.7}
\end{equation*}
$$

Proof. Suppose that I is a dyadic square. Then either $I \subseteq S_{j_{0}}$ for some $S_{j_{0}} \in \mathscr{C}$ or (2.3) holds.

When $I \subseteq S_{j_{0}}$, from the Harnack inequality, it follows that

$$
\mu(F) / \mu(I \cap L) \cong \sigma(F) / \sigma(I \cap L) ;
$$

and thus (2.7).
Proceed with the assumption (2.3) and assume as we may that $l(I) \leq 4 \operatorname{diam}(L)$. Because L is a uniform domain on Γ and the center of I is in \bar{L}, there exists a square $S \subseteq I \cap L$ satisfying

$$
\begin{equation*}
l(I) \cong l(S) \cong \operatorname{dist}\left(S, \partial^{\prime} L\right) \tag{2.8}
\end{equation*}
$$

Notice that $\operatorname{dist}(S, \partial \Omega) \leq c l(I)$ and that in general they are not comparable. To get around this difficulty, we deduce from the additional assumption on L that there exists a cube $Q \subseteq \Omega$ so that Q has one face lying on S and $l(Q) \cong l(S)$. Let A_{0} be the center of Q; thus $\delta\left(A_{0}\right) \cong l(Q)+\delta(S) \cong l(I)$.

It follows from (1.5), (1.6) and the Harnack inequality that

$$
\begin{aligned}
\omega(P, I \cap L, \Omega \backslash(I \cap L)) & \geq \omega(P, S, \Omega \backslash S) \geq c G\left(P, A_{0}\right) \delta\left(A_{0}\right)^{m-2} \\
& \cong \omega(P, \Delta, \Omega) ;
\end{aligned}
$$

and from Lemma 4.2 in [10] and $I \subseteq \frac{1}{2} B$ that

$$
\omega(P, I \cap L, \Omega \backslash(I \cap L)) \leq c \omega(P, \Delta, \Omega)
$$

Thus

$$
\begin{equation*}
\omega(P, I \cap L, \Omega \backslash(I \cap L)) \cong \omega(P, \Delta, \Omega) \tag{2.9}
\end{equation*}
$$

Let $F=\bigcup_{\widetilde{J}} S_{j}$ for some $\widetilde{J} \subseteq J$. We deduce form (1.6), (2.5), and (2.9) and the Harnack inequality that

$$
\begin{aligned}
\mu(F) & \cong \sum_{\widetilde{J}} G\left(P, Y_{j}\right) d\left(S_{j}\right)^{m-2} \cong \sum_{\widetilde{J}} \omega\left(P, S_{j}, \Omega \backslash S_{j}\right) \\
& \cong \omega(P, I \cap L, \Omega \backslash(I \cap L)) \omega(A, F, \Omega \backslash F)
\end{aligned}
$$

Note also from the Harnack inequality that

$$
\omega(A, F, \Omega \backslash F) \cong \omega\left(A_{0}, F, \Omega \backslash F\right)
$$

and that

$$
\omega(A, I \cap L, \Omega \backslash(I \cap L)) \cong \omega\left(A_{0}, I \cap L, \Omega \backslash(I \cap L)\right) \geq 1 / 2 m
$$

Thus,

$$
\mu(F) / \mu(I \cap L) \cong \omega\left(A_{0}, F, \Omega \backslash F\right)
$$

We note that

$$
\begin{aligned}
\omega\left(A_{0}, F, \Omega \backslash F\right) & \geq \omega\left(A_{0}, F, Q\right) \geq \omega\left(A_{0}, F \cap \frac{1}{2}(\partial Q \cap S), Q\right) \\
& \geq c \frac{\sigma\left(F \cap \frac{1}{2}(\partial Q \cap S)\right)}{\sigma(\partial Q \cap S)}
\end{aligned}
$$

Because $\sigma\left(\frac{1}{2}(\partial Q \cap S)\right) \geq c_{4} \sigma(I \cap L)$ for some $c_{4}>0$, we conclude

$$
\frac{\sigma\left(F \cap \frac{1}{2}(\partial Q \cap S)\right)}{\sigma\left(\frac{1}{2}(\partial Q \cap S)\right)}>c_{4}
$$

provided that $\sigma(F) / \sigma(I \cap L)>1-c_{4} / 2$. This implies (2.7) when $F=\bigcup_{\widetilde{J}} S_{j}$.

Let α and β be the constants associated with (2.7) for all previously proved special cases.

In general, for $F \subseteq I \cap L$, we may write $F=\bigcup_{\widetilde{J}} F_{j}$ where $F_{j} \subseteq S_{j}$ and $\widetilde{J} \subseteq J$. Suppose that

$$
\frac{\sigma(F)}{\sigma(I \cap L)}>\frac{1+\alpha}{2}
$$

Let $\widetilde{J}_{1}=\left\{j \in \widetilde{J}: \sigma\left(F_{j}\right) / \sigma\left(S_{j}\right)>(1-\alpha) / 2\right\}$ and $\widetilde{J}_{2}=\widetilde{J} \backslash \widetilde{J}_{1}$. Then

$$
\sum_{\widetilde{J}_{2}} \sigma\left(F_{j}\right) \leq \frac{1-\alpha}{2} \sum_{\widetilde{J}_{2}} \sigma\left(S_{j}\right) \leq \frac{1-\alpha}{2} \sigma(I \cap L) .
$$

Since $\sum_{\widetilde{J}_{1}} \sigma\left(F_{j}\right) \leq \sum_{\widetilde{J}_{1}} \sigma\left(S_{j}\right)$, we have $\sum_{\widetilde{J}_{1}} \sigma\left(S_{j}\right) \geq \alpha \sigma(I \cap L)$. Therefore $\sum_{\widetilde{J}_{1}} \mu\left(S_{j}\right) \geq \beta \mu(I \cap L)$. It follows from the Harnack inequality and the choice of \widetilde{J}_{1} that

$$
\mu(F) \geq \sum_{\widetilde{J}_{1}} \mu\left(F_{j}\right) \geq c \sum_{\widetilde{J}_{1}} \mu\left(S_{j}\right) \geq c \beta \mu(I \cap L)
$$

This proves (2.7) for dyadic squares I.
For general I, (2.7) follows from the fact that L is a uniform domain and the following doubling property (2.10) of μ.

Doubling property: for any square I on Γ centered in \bar{L},

$$
\begin{equation*}
\mu(2 I \cap L) \cong \mu(I \cap L) \tag{2.10}
\end{equation*}
$$

Again, we assume as we may that $l(I) \leq 4 \operatorname{diam} L$. Let I_{1} be the union of the squares in $\left\{S_{j}\right\}$ that meet $2 I$, and S be a square in $I \cap L$ that satisfies (2.8). Then $l\left(I_{1}\right) \cong l(I) \cong l(S)$. If $\delta\left(I_{1}\right)>l\left(I_{1}\right),(2.10)$ follows from the Harnack principle. Otherwise, let Z_{1} be a point on $\partial \Omega$ that satisfies $\operatorname{dist}\left(Z_{1}, I_{1}\right)=\delta\left(I_{1}\right), B_{1} \equiv B\left(Z_{1}, 4 c_{3} d\left(I_{1}\right)\right)$, $\Delta_{1}=B_{1} \cap \partial \Omega$ and A_{1} be a point in Ω satisfying $8 c_{3} d\left(I_{1}\right) \leq\left|A_{1}-Z_{1}\right| \leq$ $c d\left(I_{1}\right)$ and $\delta\left(A_{1}\right) \cong d\left(I_{1}\right)$. Following the argument before, we conclude that

$$
\begin{aligned}
\mu\left(I_{1} \cap L\right) & \cong \omega\left(P, I_{1} \cap \Omega, \Omega \backslash I_{1}\right) \cong \omega\left(P, \Delta_{1}, \Omega\right) \\
& \cong G\left(P, A_{1}\right) l(I)^{m-2} \cong \omega(P, S, \Omega \backslash S) \leq c \mu(I \cap L) .
\end{aligned}
$$

This proves (2.10) and Lemma 6.
The extension of $\left.\frac{G(x)}{\delta(x)}\right|_{L}$ to Γ follows from the next lemma.
Lemma 7. Let L be a uniform domain in \mathbb{R}^{n} and σ be the Lebesgue measure on \mathbb{R}^{n}. Let μ be a measure on L which is absolutely continuous with respect to σ, and satisfies the restricted doubling property on \bar{L} :

$$
\mu(2 I \cap L) \leq c \mu(I \cap L)
$$

for any cube I centered in \bar{L}, and the restricted A_{∞} property on L : there exist $\alpha, \beta \in(0,1)$ so that if I is a cube centered in \bar{L} and $F \subseteq I$, then

$$
\frac{\sigma(F)}{\sigma(I \cap L)}>\alpha \Rightarrow \frac{\mu(F)}{\mu(I \cap L)}>\beta .
$$

Then μ can be extended to \mathbb{R}^{n} so that $\mu \ll \sigma, \mu$ has the doubling property and $\mu \in A_{\infty}(d \sigma)$ on \mathbb{R}^{n}.

Proof. Let $\mathscr{C}=\left\{Q_{k}\right\}$ be a dyadic Whitney decomposition of L, $\mathscr{C}^{\prime}=\left\{T_{j}\right\}$ be a dyadic Whitney decomposition of $\mathbb{R}^{n} \backslash \bar{L}$, and Q_{1} be one of the largest cubes in \mathscr{C}. Following Jones ([11] and [12]), we define the reflection \widetilde{T}_{j} of $T_{j} \in \mathscr{C}^{\prime}$ as follows: If L is unbounded, \widetilde{T}_{j} is chosen to be a cube Q_{k} in \mathscr{C} nearest to T_{j} and that $l\left(Q_{k}\right) \geq$ $l\left(T_{j}\right)$; if L is bounded, define \widetilde{T}_{j} as above provided that $l\left(T_{j}\right) \leq$ $l\left(Q_{1}\right)$, otherwise define $\widetilde{T}_{j}=Q_{1}$. Because L is a uniform domain, $\operatorname{dist}\left(T_{j}, \widetilde{T}_{j}\right) \leq c l\left(T_{j}\right)$ and that $l\left(T_{j}\right) \cong l\left(\widetilde{T}_{j}\right)$ unless $l\left(T_{j}\right)>l\left(Q_{1}\right)$. See [11] and [12] for detailed properties of this reflection.

Because L is a uniform domain, $\sigma(\partial L)=0([12])$. Extend μ to \mathbb{R}^{m} by defining $\mu(\partial L)=0$ and

$$
d \mu=\frac{\mu\left(\widetilde{T}_{j}\right)}{\sigma\left(\widetilde{T}_{j}\right)} d \sigma \quad \text { on } T_{j} .
$$

The proof of the doubling property and the A_{∞} property of μ is based on the following observation: let I be a dyadic cube that meets ∂L; then either $I \cap L$ or $I \backslash \bar{L}$ contains a large Whitney cube. More precisely, if $\frac{1}{3} I \cap \bar{L} \neq \varnothing$, then due to the fact that L is uniform, there exists a Whitney cube $Q_{k} \subseteq I \cap L$ with $l\left(Q_{k}\right) \geq c l(I)$; otherwise $\frac{1}{3} I \subseteq \mathbb{R}^{n} \backslash \bar{L}$, and hence there exists $T_{j} \in \mathscr{C}^{\prime}$ so that $T_{j} \subseteq I \backslash \bar{L}$ and $l\left(T_{j}\right) \geq c l(I)$. The rest of the proof is routine verification.
3. Proof of Theorem 2. Let $\Omega=\Phi(B(0,1))$, where $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is K-quasiconformal and $P=\Phi(0)$. When $m=2$, Theorem 2 follows from Theorem B. We assume that $m \geq 3$ and constants depend on $K, \operatorname{dist}(P, \Gamma)$, and $\operatorname{dist}(P, \partial \Omega)$ only.
Assume $\Gamma=\left\{x_{m}=0\right\}$ and $0 \in \Gamma \cap \Omega$. Let $\mathscr{C}=\left\{S_{j}\right\}$ be the partition of $\Gamma \cap \Omega$ in $\S 2, M$ be the integer satisfying $32 \operatorname{diam} \Omega \leq$ $2^{M}<64 \operatorname{diam} \Omega$, and D be the ($m-1$)-dimensional square on Γ centered at 0 with sides parallel to the axes and of length 2^{M+1}. Let $\Omega^{\prime}=\mathbb{R}^{m} \backslash \bar{\Omega}$ and $\mathscr{C}^{\prime}=\left\{R_{j}\right\}$ be a partition of $\Gamma \cap \Omega^{\prime}$ by dyadic squares with mutually disjoint interiors so that

$$
0<c<\frac{l\left(R_{j}\right)}{\delta\left(R_{j}\right)} \leq \frac{1}{10}
$$

and $D \backslash \bar{\Omega}=\bigcup_{K_{0}} R_{j}$ for a subcollection $\left\{R_{j}\right\}_{K_{0}}$ of \mathscr{C}^{\prime}.
Let Φ^{*} be the quasiconformal reflection about $\partial \Omega$ defined in (1.8), X_{j} be the center of R_{j} and $X_{j}^{*}=\Phi\left(X_{j}\right)$. Define μ on Γ so that

$$
\mu(S)= \begin{cases}\int_{S} \frac{G(x)}{\delta(x)} d x, & S \subseteq \Gamma \cap \Omega, \\ \sum_{j} \frac{G\left(P, X_{j}^{*}\right)}{d\left(R_{j}\right)} \sigma\left(S \cap R_{j}\right), & S \subseteq D \cap \Omega^{\prime}, \\ \omega(P, S, \Omega), & S \subseteq \Gamma \cap \partial \Omega, \\ \sigma(S), & S \subseteq \Gamma \backslash D .\end{cases}
$$

Let $U_{j}=B\left(X_{j}, \frac{1}{10} l\left(R_{j}\right)\right), V_{j}=U_{j} \cap \Gamma$ and $\left\{R_{j}\right\}_{K}$ be a subcollection of $\left\{R_{j}\right\}_{K_{0}}$. We note that $\left\{V_{j}^{*}\right\}_{K}$ lie on a quasisphere; and claim that $\left\{V_{j}^{*}\right\}_{K}$ are uniformly separated, that is,

$$
\begin{equation*}
\inf _{K} \inf _{x \in V_{j}^{*}} \omega\left(x, \partial \Omega, \Omega_{j}^{\prime \prime}\right)>c>0 \tag{3.1}
\end{equation*}
$$

where $\Omega_{j}^{\prime \prime}=\Omega \backslash \bigcup_{k \neq j, j \in K} V_{k}^{*}$.

To prove this, we fix $j \in K$ and recall that $\delta\left(R_{j}\right) \cong l\left(R_{j}\right) \leq$ C diam Ω. Recall also that Ω is a quasiball thus an NTA domain and that $\operatorname{dist}(P, \partial \Omega)>c \operatorname{diam} \Omega$. From these facts and elementary geometry, we may find a circular cylinder $H_{j} \subseteq \mathbb{R}^{m} \backslash \Gamma$, whose base has radius $r_{j} \cong l\left(R_{j}\right)$ and whose height is $h_{j} r_{j}\left(3<h_{j}<C\right)$, joining U_{j} to Ω. Moreover, we may require one base E_{j} lying in Ω, and the point A_{j} which is on the axis of H_{j} and of distance r_{j} to the other base, lying in $U_{j} \backslash \Gamma$. Because $H_{j} \cap \Gamma=\varnothing$, we have $H_{j}^{*} \cap \Omega \subseteq \Omega_{j}^{\prime \prime}$. Applying Lemma 5 to Φ^{*}, H_{j}, h_{j}, we obtain from the maximum principle that

$$
\begin{aligned}
\omega\left(A_{j}^{*}, \partial \Omega, \Omega_{j}^{\prime \prime}\right) & \geq \omega\left(A_{j}^{*}, \partial \Omega \cap H_{j}^{*}, H_{j}^{*} \cap \Omega\right) \\
& \geq \omega\left(A_{j}^{*}, E_{j}^{*} \cap H_{j}^{*}, H_{j}^{*}\right)>c>0
\end{aligned}
$$

In view of Lemmas 1 and 5, we conclude (3.1) by applying the Harnack inequality to $\omega\left(x, \partial \Omega, \Omega_{j}^{\prime \prime}\right)$ on U_{j}^{*}.

Therefore Theorem C implies that

$$
\begin{align*}
& \sum_{K} \omega\left(x, V_{j}^{*}, \Omega \backslash V_{j}^{*}\right) \tag{3.2}\\
& \quad \cong \omega\left(x, \bigcup_{K} V_{j}^{*}, \Omega \backslash \bigcup_{K} V_{j}^{*}\right) \quad \text { for } x \in \Omega \backslash \bigcup_{K} V_{j}^{*} .
\end{align*}
$$

Also note from (3.2), Lemmas 1 and 5 and the Harnack inequality that

$$
\begin{aligned}
\mu\left(R_{j}\right) & \cong G\left(P, X_{j}^{*}\right)\left(d\left(R_{j}\right)\right)^{m-2} \\
& \cong \omega\left(P, U_{j}^{*}, \Omega \backslash U_{j}^{*}\right) \cong \omega\left(P, V_{j}^{*}, \Omega \backslash V_{j}^{*}\right)
\end{aligned}
$$

The last equivalence relation holds because $\omega\left(x, V_{j}^{*}, \Omega \backslash V_{j}^{*}\right)>c>0$ on U_{j}^{*}.

Let I be a dyadic square in D. Then either $I \subseteq S_{j_{0}}$ for some $S_{j_{0}} \in \mathscr{C}$ or $I \subseteq R_{j_{1}}$ for some $R_{j_{1}} \in \mathscr{C}^{\prime}$ or

$$
\begin{equation*}
I=(I \cap \partial \Omega) \cup \bigcup_{J} S_{j} \cup \bigcup_{K} R_{j} \tag{3.3}
\end{equation*}
$$

for some $\left\{S_{j}\right\} \subseteq \mathscr{C}$ and $\left\{R_{j}\right\}_{K} \subseteq \mathscr{C}^{\prime}$. In the first two cases, by the Harnack inequality,

$$
\frac{\mu(F)}{\mu(I)} \cong \frac{\sigma(F)}{\sigma(I)} \quad \text { for any } F \subseteq I
$$

We proceed with the assumption of (3.3), and denote by

$$
I_{*}=(I \cap \partial \Omega) \cup \bigcup_{J} S_{j} \cup \bigcup_{K} R_{j}^{*} .
$$

Let Z be a point on $\partial \Omega$ so that $\operatorname{dist}(Z, I)=\delta(I)$. Because $\Omega=\boldsymbol{\Phi}(B(0,1))$, in view of Lemmas 1 and 5 we may find $c_{5}>0$ so that $I_{*} \cup I \subseteq B\left(Z, c_{5} l(I)\right)$; let $B \equiv B\left(Z, 4 c_{5} d(I)\right), \Delta=B \cap \partial \Omega$ and A be a point in Ω so that $\delta(A) \cong l(I)$ and $8 c_{5} d(I) \leq|A-Z| \leq C l(I)$.

Since Ω is NTA, it follows from the argument for (2.4) that

$$
\begin{equation*}
\omega\left(P, V_{j}^{*}, \Omega \backslash V_{j}^{*}\right) \cong \omega(P, \Delta, \Omega) \omega\left(A, V_{j}^{*}, \Omega \backslash V_{j}^{*}\right) . \tag{3.4}
\end{equation*}
$$

We claim that there exist $\alpha, \beta \in(0,1)$ so that if $F \subseteq I$,

$$
\begin{equation*}
\frac{\mu(F)}{\mu(I)}<\alpha \Rightarrow \frac{\sigma(F)}{\sigma(I)}<\beta . \tag{3.5}
\end{equation*}
$$

Assume first that F is in one of the three forms: (1) $F \subseteq I \cap \partial \Omega$, (2) $F=\bigcup_{\widetilde{J}} S_{j}$ for some $\widetilde{J} \subseteq J$ or (3) $F=\bigcup_{\widetilde{K}} R_{j}$ for some $\widetilde{K} \subseteq K$.

If F is in the form (1) or (2), we deduce from theorems in [9] or arguments in $\S 2$ respectively, that

$$
\mu(F) \cong \omega(P, F, \Omega \backslash F) \cong \omega(P, \Delta, \Omega) \omega(A, F, \Omega \backslash F)
$$

If F is in the form (3), then it follows from (3.2), (3.4) and the Harnack inequality that

$$
\begin{align*}
\mu(F) & \cong \sum_{\widetilde{K}} \omega\left(P, V_{j}^{*}, \Omega \backslash V_{j}^{*}\right) \tag{3.6}\\
& \cong \omega(P, \Delta, \Omega) \omega\left(A, \bigcup_{\widetilde{K}} V_{j}^{*}, \Omega \backslash \bigcup_{\widetilde{K}} V_{j}^{*}\right) \\
& \cong \omega(P, \Delta, \Omega) \omega\left(A, F^{*}, \Omega \backslash F^{*}\right) \\
& \cong \omega(P, \Delta, \Omega) \omega\left(A, \bigcup_{\widetilde{K}} U_{j}^{*}, \Omega \backslash \bigcup_{\widetilde{K}} U_{j}^{*}\right)
\end{align*}
$$

Again the last two equivalence relations follow from

$$
\omega\left(x, \bigcup_{\widetilde{K}} V_{j}^{*}, \Omega \backslash \bigcup_{\widetilde{K}} V_{j}^{*}\right)>c>0
$$

on F^{*} and on $\bigcup_{\tilde{K}} U_{j}^{*}$. Similarly,

$$
\begin{equation*}
\mu(I) \cong \omega(P, \Delta, \Omega) \omega\left(A, I_{*}, \Omega \backslash I_{*}\right) . \tag{3.7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\mu(F)}{\mu(I)} \geq c_{6} \omega(A, F, \Omega \backslash F) \quad \text { or } \quad c_{6} \omega\left(A, F^{*}, \Omega \backslash F^{*}\right) \tag{3.8}
\end{equation*}
$$

depending on $F \subseteq \bar{\Omega}$ or $F \subseteq \Omega^{\prime}$.
If $F \subseteq I \cap \partial \Omega$ and $\mu(F) / \mu(I)<\alpha$, then $\omega(A, F, \Omega)<c_{6}^{-1} \alpha$. Following the proof that ω is A_{∞} with respect to the surface measure on the boundary of a BMO_{1} domain [10, p. 133], we obtain

$$
\frac{\sigma(F)}{\sigma(I)}<1-c_{7}+c_{7}^{-1}\left(c_{6}^{-1} \alpha\right)^{\lambda}
$$

where $0<c_{7}<1$ and $\lambda>0$ depend only on the BMO_{1} constant of Ω. Thus, if α is sufficiently small, $\sigma(F) / \sigma(I)<1-c_{7} / 2$.

In the case $F=\bigcup_{\widetilde{J}} S_{j}, \sigma(F) \cong M_{m-1}(F)$ because F is contained in an $(m-1)$-dimensional hyperplane Γ. In view of Theorem E , $\sigma(F) / \sigma(I)<c_{7} / 4$ if $\mu(F) / \mu(I)$ is sufficiently small.

When $F=\bigcup_{\widetilde{K}} R_{j}$, (3.5) would follow from Theorem E if we could prove that

$$
\begin{equation*}
M_{m-1}\left(F^{*}\right) \geq c \sigma(F) . \tag{3.9}
\end{equation*}
$$

In view of the examples in [14], [16] and [18] on contents, it is not clear whether (3.9) is true. We shall apply Theorem F, and define a measure ν on $E \equiv \bigcup_{\widetilde{K}} U_{j}^{*}$ with support $\bigcup_{\widetilde{K}}\left\{X_{j}^{*}\right\}$, so that

$$
\nu\left(\left\{X_{j}^{*}\right\}\right)=l\left(R_{j}\right)^{m-1} .
$$

Clearly $\nu\left(\bigcup_{\widetilde{K}} U_{j}^{*}\right) \cong \sigma(F)$. We claim that $c \nu$ is in the class defined in Theorem F .

In fact, let Q be a cube in Ω satisfying $16 d(Q) \leq \delta(Q) \leq 256 d(Q)$. If $X_{j}^{*} \in Q$ for some j, then by Lemma 4, $d(Q) \cong \delta(Q) \cong \delta\left(X_{j}^{*}\right) \cong$ $d\left(U_{j}^{*}\right) \cong d\left(R_{j}\right)$. Since each U_{j}^{*} contains a ball of diameter comparable to $d\left(U_{j}^{*}\right)$, there are at most C distinct X_{j}^{*} 's in Q; thus $\nu(Q) \leq C d(Q)^{m-1}$. Moreover, if $X_{j}^{*} \in Q$, then $\operatorname{cap}\left(Q \cap U_{j}^{*}\right) \cong$ $d\left(U_{j}^{*}\right)^{m-2} \cong d(Q)^{m-2}$. Hence

$$
\nu(Q) \leq c \operatorname{cap}(Q \cap E) l(Q)
$$

Next, let Q be a cube that meets $\partial \Omega$, and note from Lemma 4 that $d\left(\Phi^{*}(Q)\right) \leq c d(Q)$. Note also that if $X_{j}^{*} \in Q$ then $X_{j} \in \Phi^{*}(Q \cap \Omega)$ and $\delta\left(R_{j}\right) \cong \delta\left(X_{j}\right) \leq d\left(\Phi^{*}(Q)\right)$. Thus $\operatorname{dist}\left(R_{j}, \Phi^{*}(Q \cap \Omega)\right) \leq d\left(R_{j}\right)+$ $d\left(\Phi^{*}(Q)\right) \leq c \delta\left(R_{j}\right)+d\left(\Phi^{*}(Q)\right) \leq c d\left(\Phi^{*}(Q)\right)<c d(Q)$. Therefore

$$
\nu(Q)=\sum_{X_{j}^{*} \in Q} l\left(R_{j}\right)^{m-1} \leq c d(Q)^{m-1}
$$

This shows that $c \nu \in \mathscr{M}$ for some $c>0$. We conclude from Theorem F that

$$
\begin{equation*}
\omega(A, E, \Omega \backslash E) \geq c\left(\frac{\nu(E)}{\delta(A)^{m-1}}\right)^{\gamma} \geq c\left(\frac{\sigma(F)}{\sigma(I)}\right)^{\gamma} . \tag{3.10}
\end{equation*}
$$

Recall from (3.6) that $\omega(A, E, \Omega \backslash E) \cong \omega\left(A, F^{*}, \Omega \backslash F^{*}\right)$. Thus in view of (3.8) and (3.10), $\sigma(F) / \sigma(I)<c_{7} / 4$ if $\mu(F) / \mu(I)$ is sufficiently small.

To obtain (3.5) for general F, we follow the corresponding arguments in $\S 2$.

It follows from (3.5) that for dyadic $I \subseteq D$

$$
\begin{equation*}
\omega\left(A, I_{*}, \Omega \backslash I_{*}\right)>c>0 . \tag{3.11}
\end{equation*}
$$

We extend (3.5) to all squares $I \subseteq D$ by the doubling property: let I be a dyadic square in D,

$$
\begin{equation*}
\mu(2 I) \leq c \mu(I) . \tag{3.12}
\end{equation*}
$$

In fact, when $5 I \cap \partial \Omega=\varnothing$, (3.12) follows from the Harnack inequality; when $5 I \cap \partial \Omega \neq \varnothing$, (3.12) follows from (1.4), (3.7) and (3.11).

To obtain (3.5) for all squares $I \subseteq \Gamma$, we use the facts that $\mu(D) \cong 1$ and $d \mu / d \sigma \cong 1$ on $\mathbb{R}^{m} \backslash \frac{1}{4} D$. This completes the proof of Theorem 2.
4. The example. The construction is given in \mathbb{R}^{2} for simplicity; it can easily be extended to $\mathbb{R}^{m}, m \geq 3$. If one is only interested in an example in \mathbb{R}^{2}, some steps can be further reduced.

Let $Y_{k, p}$ be the point $\left(\left(p+\frac{1}{2}\right) / 2^{k}, \frac{3}{4} / 2^{k}\right)$ in \mathbb{R}^{2} and $B_{k, p}$ be the disk $B\left(Y_{k, p}, 2^{-k-10}\right)$ for any integers k and p. Let

$$
\Omega_{0}=\left\{x: 0<x_{1}<1,0<x_{2}<1\right\} \backslash \bigcup_{k, p} \bar{B}_{k, p}
$$

and note that Ω_{0} is an NTA domain. Note also that $\bigcup_{k, p} \bar{B}_{k, p}$ does not meet any line $x_{2}=2^{-k}$ or any line segment $\left\{x: x_{1}=p / 2^{k}\right.$ and $\left.0 \leq x_{2} \leq 2^{-k}\right\}$.

Let sequences $\left\{\delta_{n}\right\}$ and $\left\{A_{n}\right\}$ be given so that $\left\{\delta_{n}\right\} \subseteq\left\{2^{-k}: k\right.$ positive integer $\}, \lim \delta_{n}=0, A_{n}>0$ and $\lim A_{n}=\infty$. Let $\left\{\lambda_{n}\right\} \subseteq$ $\left\{2^{-k}: k\right.$ positive integer $\}$ be another sequence with $\lambda_{n}<\delta_{n} 2^{-10}$. We shall construct a domain $\Omega \subseteq R^{2}$, by adding another part in the lower half-plane and restoring some of the disks $\bar{B}_{k, p}$ which were originally
removed. For each $n \geq 1$, let

$$
\begin{aligned}
& S_{n}=\left\{\left(x_{1}, 0\right): 2^{-n} \leq x_{1} \leq 2^{-n+1}\right\}, \\
& U_{n}=\left\{x:\left(x_{1}, 0\right) \in S_{n},-\lambda_{n} 2^{-n}<x_{2}<\delta_{n} 2^{-n}\right\}, \\
& V_{n}=\left\{x:\left(x_{1}, 0\right) \in\left(1-2 \delta_{n}\right) S_{n}, \lambda_{n} 2^{-n} \leq x_{2} \leq \delta_{n} 2^{-n-3}\right\},
\end{aligned}
$$

where $\left(1-2 \delta_{n}\right) S_{n}$ is the interval on $x_{2}=0$ concentric to S_{n} of length $\left(1-2 \delta_{n}\right) 2^{-n}$, and $W_{n}=U_{n} \backslash V_{n}$; and note that ∂W_{n} does not meet $\bigcup_{k, p} \bar{B}_{k, p}$. Let

$$
\Omega=\text { interior of }\left(\Omega_{0} \cup \bigcup_{1}^{\infty} W_{n}\right),
$$

and P be the point $\left(\frac{1}{2}, \frac{9}{10}\right)$. Then Ω is an NTA domain.
Denoting by $I_{n}=\left(1-2 \delta_{n}\right) S_{n}$ and $J_{n}=\left(1-\delta_{n}\right) S_{n} \backslash I_{n}$, we have the following lemma.

Lemma 9. Given $n \geq 1, \lambda_{n}$ can be chosen sufficiently small depending on A_{n} and δ_{n} only, so that

$$
\omega\left(P, J_{n}, \Omega \backslash J_{n}\right) \geq A_{n} \omega\left(P, I_{n}, \Omega \backslash I_{n}\right) .
$$

Assume Lemma 9 for the moment and let $\Gamma=\left\{x_{2}=0\right\}$. Then $\Gamma \cap \Omega$ is the unit interval on Γ and $\delta(x)=\lambda_{n} 2^{-n}$ for $x \in I_{n} \cup J_{n}$. From the reasoning in $\S 2$, we note that $\omega\left(P, J_{n}, \Omega \backslash J_{n}\right) \cong \mu\left(J_{n}\right)$ and $\omega\left(P, I_{n}, \Omega \backslash I_{n}\right) \cong \mu\left(I_{n}\right)$ where μ is defined in (2.6). Thus

$$
\mu\left(J_{n}\right) \geq\left(1-C A_{n}^{-1}\right) \mu\left(I_{n} \cup J_{n}\right),
$$

while

$$
\sigma\left(J_{n}\right) \leq 2 \delta_{n} \sigma\left(I_{n} \cup J_{n}\right)
$$

for all $n \geq 1$. Thus $\mu \notin A_{\infty}(d \sigma)$ on $\Gamma \cap \Omega$.
It remains to prove Lemma 9. Fix $n \geq 1$ and let $P_{1}=\left(2^{-n}, 0\right)$ and $P_{2}=\left(2^{-n+1}, 0\right)$ be the end points of S_{n}, and $P_{3}=\left(2^{-n}+\delta_{n} 2^{-n}, 0\right)$, $P_{4}=\left(2^{-n+1}-\delta_{n} 2^{-n}, 0\right), P_{5}=\left(2^{-n}+\delta_{n} 2^{-n-1}, 0\right)$ and $P_{6}=\left(2^{-n+1}-\right.$ $\left.\delta_{n} 2^{-n-1}, 0\right)$ be the end points of the two intervals in J_{n}. Note that $J_{n}=\overline{P_{5} P_{3}} \cup \overline{P_{4} P_{6}}$ and $I_{n}=\overline{P_{3} P_{4}}$. Let $P_{7}=P_{5}-\left(0, \lambda_{n} 2^{-n}\right), P_{8}=$ $P_{6}-\left(0, \lambda_{n} 2^{-n}\right), P_{9}=P_{5}+\left(0, \delta_{n} 2^{-n-1}\right)$ and $P_{10}=P_{5}+\left(0, \delta_{n} 2^{-n-1}\right)$.

In view of the Markov property, it suffices to show that if λ_{n} is sufficiently small then

$$
\begin{equation*}
\omega\left(x, J_{n}, \Omega \backslash J_{n}\right) \geq A_{n} \omega\left(x, I_{n}, \Omega \backslash I_{n}\right) \tag{4.1}
\end{equation*}
$$

for $x \in \overline{P_{7} P_{9}} \cup \overline{P_{9} P_{10}} \cup \overline{P_{10} P_{8}}$. Let D be the domain $\Omega \cap U_{n}$ and T be the domain $\Omega \cup\left\{x, x_{1} \notin S_{n}\right\}$, and note that their configurations are independent of δ_{j}, A_{j} and λ_{j} for any $j \neq n$. In view of the maximum principle, it is enough to show that for sufficiently small λ_{n},

$$
\begin{equation*}
\omega\left(x, J_{n}, D \backslash J_{n}\right) \geq A_{n} \omega\left(x, I_{n}, T \backslash I_{n}\right) \tag{4.2}
\end{equation*}
$$

for $x \in \overline{P_{7} P_{9}} \cup \overline{P_{9} P_{10}} \cup \overline{P_{10} P_{8}}$.
Consider first $x \in \overline{P_{5} P_{7}} ;$ and let $P_{11}=P_{1}-\left(0, \lambda_{n} 2^{-n}\right), P_{13}=$ $P_{3}-\left(0, \lambda_{n} 2^{-n}\right), H$ be the rectangle $P_{1} P_{3} P_{13} P_{11}$ and M be the semiinfinite strip $\left\{x: 2^{-n}<x_{1}<2^{-n}+\delta_{n} 2^{-n}, x_{2}>-\lambda_{n} 2^{-n}\right\}$. It is easy to see that there exists $\xi_{n}, 0<\xi_{n}<\delta_{n} 2^{-10}$, depending only on δ_{n} and A_{n}, such that if $0<\lambda_{n} \leq \xi_{n}$, then

$$
\omega\left(x, \overline{P_{5} P_{3}}, H\right) \geq A_{n} \omega\left(x, \partial M \backslash \overline{P_{11} P_{13}}, M\right)
$$

for $x \in \overline{P_{5} P_{7}}$. From the maximum principle, we obtain (4.2) for $x \in \overline{P_{5} P_{7}}$ provided that $0<\lambda_{n} \leq \xi_{n}$. Similarly (4.2) holds on $\overline{P_{6} P_{8}}$ under the same assumptions.

Denote by $K=\overline{P_{5} P_{9}} \cup \overline{P_{9} P_{10}} \cup \overline{P_{10} P_{6}} ;$ it remains to prove (4.2) for $x \in K$. We note that

$$
\omega\left(x, J_{n}, D \backslash J_{n}\right)>\tau_{n}>0, \quad x \in K
$$

for some τ_{n} depending only on δ_{n}.
Let γ_{n} be a number in the form 2^{-k} with $0<\gamma_{n}<\delta_{n} 2^{-10}, P_{15}=$ $P_{3}+\left(\gamma_{n} 2^{-n}, 0\right)$ and $P_{16}=P_{4}-\left(\gamma_{n} 2^{-n}, 0\right)$. The number γ_{n} can be chosen sufficiently small, depending on δ_{n}, A_{n} and ξ_{n} only, so that if $0<\lambda_{n} \leq \xi_{n}$,

$$
\begin{equation*}
\omega\left(x, \overline{P_{3} P_{15}} \cup \overline{P_{16} P_{4}}, T \backslash\left(\overline{P_{13} P_{15}} \cup \overline{P_{16} P_{4}}\right)\right)<\tau_{n} /\left(10 A_{n}\right) \tag{4.3}
\end{equation*}
$$

for $x \in K$. (First choose and fix γ_{n} so that (4.3) holds when $\lambda_{n}=\xi_{n}$; then extend (4.3) to $0<\lambda_{n}<\xi_{n}$ by the maximum principle.)

To complete the proof, it remains to show that for sufficiently small λ_{n},

$$
\begin{equation*}
\omega\left(x, \overline{P_{15} P_{16}}, T \backslash \overline{P_{15} P_{16}}\right)<\tau_{n} /\left(10 A_{n}\right) \quad \text { on } K \tag{4.4}
\end{equation*}
$$

Assume that $\lambda_{n}<2^{-10} \min \left\{\xi_{n}, \gamma_{n}\right\}$, and let $R_{0}=\overline{P_{15} P_{16}}=\left\{\left(x_{1}, 0\right)\right.$: $\left.a \leq x_{1} \leq b\right\}$ where $a=2^{-n}+\delta_{n} 2^{-n}+\gamma_{n} 2^{-n}$ and $b=2^{-n+1}-\delta_{n} 2^{-n}-$ $\gamma_{n} 2^{-n}$. For $k \geq 1$, let R_{k} be the rectangle $\left\{x: a-\lambda_{n} 2^{-n+k} \leq x_{1} \leq\right.$ $b+\lambda_{n} 2^{-n+k}$ and $\left.-\lambda_{n} 2^{-n} \leq x_{2} \leq \lambda_{n} 2^{-n+k}\right\}$. We note that T is an

NTA domain. By the exterior corkscrew condition of T, there exists a constant $\varepsilon, 0<\varepsilon<1$, independent of k, so that

$$
\omega\left(x, \partial R_{k} \cap T, T \backslash R_{k}\right)<\varepsilon \quad \text { on } \partial R_{k+1} \cap T
$$

provided that $2^{k+5} \leq \gamma_{n} \lambda_{n}^{-1}$. From the Markov property it follows that

$$
\omega\left(x, \overline{P_{15} P_{16}}, T \backslash \overline{P_{15} P_{16}}\right)<\varepsilon^{\log _{2}\left(y_{n} / \lambda_{n}\right)-6}
$$

for $x \in K$. Therefore (4.4) holds if λ_{n} is sufficiently small, depending only on δ_{n} and A_{n}. This completes the proof of Lemma 9.

References

[1] L. Carleson, Estimates of harmonic measures, Ann. Acad. Sci. Fenn., 7 (1982), 25-32.
[2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250.
[3] J. Fernández, J. Heinonen and O. Martio, Quasilines and conformal mappings, J. Analyse Math., 52 (1989), 117-132.
[4] J. B. Garnett, Applications of Harmonic Measure, Wiley, 1986.
[5] J. B. Garnett, F. W. Gehring and P. W. Jones, Conformally invariant length sums, Indiana Univ. Math. J., 32 (1983), 809-829.
[6] F. W. Gehring, The L^{p}-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 139 (1973), 265-277.
[7] , Uniform domains and the ubiquitous quasidisk, Jber. d. Dt. Math.-Verein, 89 (1987), 88-103.
[8] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math., 114 (1965), 1-70.
[9] J. Heinonen and R. Näkki, Quasiconformal distortion on arcs, J. Analyse Math., (to appear).
[10] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math., 46 (1982), 80-147.
[11] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41-66.
[12] __, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88.
[13] P. W. Jones and D. Marshall, Critical points of Green's function, harmonic measure, and the corona problem, Ark. Mat., 23 (1985), 281-314.
[14] S. Mazurkiewicz and S. Saks, Sur les projections d'un ensemble fermé, Fund. Math., 8 (1926), 109-113.
[15] Ch. Pommerenke, On uniformly perfect sets and Fuchsian groups, Analysis, 4 (1984), 299-321.
[16] S. Saks, Remarque sur la measure linéare des ensembles plans, Fund. Math., 9 (1926), 16-24.
[17] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., Vol. 229, Springer-Verlag, 1971.
[18] A. G. Vituškin, L. D. Ivanov and M. S. Mel'nikov, Incommensurability of the minimal linear measure with the length of a set, Dokl. Akad. Nauk SSSR, 115 (1963), 1256-1259; English transl. in Soviet Math. Dokl., 4 (1963), 1160-1164.
[19] J.-M. Wu, Content and harmonic measure: an extension of Hall's Lemma, Indiana Univ. Math. J., 36 (1987), 403-420.

Received April 15, 1991. Partially supported by the National Science Foundation.
University of Illinois
Urbana, IL 61801

