A_{∞} AND THE GREEN FUNCTION

JANG-MEI WU

Let G(x) be the Green function in a domain $\Omega \subseteq \mathbb{R}^m$ with a fixed pole, and Γ be an (m-1)-dimensional hyperplane. We give conditions on Ω and $\Omega \cap \Gamma$ so that $|\nabla G|$ is A_{∞} with respect to the (m-1)-dimensional measure on $\Omega \cap \Gamma$. Certain properties of the Riemann mapping of a simply-connected domain in \mathbb{R}^2 are extended to the Green function of domains in \mathbb{R}^m .

In [3], Fernández, Heinonen and Martio have proved the following:

THEOREM A. Let f be a conformal mapping from a simplyconnected planar domain Ω onto the unit disk Δ and L be a line segment in Ω . Then f(L) is a quasiconformal arc. Moreover, if L is a line segment on the boundary of a half plane contained in Ω , then $|f'| \in A_{\infty}(ds)$ on L with respect to the linear measure ds.

If L is any line segment in Ω , |f'| need not be in $A_{\infty}(ds)$ on L. In fact, Heinonen and Näkki [9] have proved the following:

THEOREM B. Let f be a conformal mapping from a simplyconnected domain Ω onto the unit disk Δ and L be a line segment in Ω . Then the following are equivalent:

- (1) $|f'| \in A_{\infty}(ds)$ on L,
- (2) f|L is quasisymmetric,
- (3) there exists a chord arc domain $D \subseteq \Omega$ so that $L \subseteq \overline{D}$,
- (4) there exists a quasidisk $D \subseteq \Omega$ so that $L \subseteq \overline{D}$.

Let μ and ν be two measures on \mathbb{R}^m $(m \ge 2)$. Recall that μ belongs to the Muckenhoupt class $A_{\infty}(d\nu)$ if there exist $\alpha, \beta \in (0, 1)$ such that whenever E is a measurable subset of a cube Q,

(0.1) $\nu(E)/\nu(Q) < \alpha \text{ implies } \mu(E)/\mu(Q) < \beta.$

If μ and ν have the doubling property, then $\mu \in A_{\infty}(d\nu)$ if and only if $\nu \in A_{\infty}(d\mu)$ ([2]). We say a function is in $A_{\infty}(d\nu)$ on L, provided that (0.1) holds with $d\mu = g d\nu$ for all cubes $Q \subseteq L$.

f|L is quasisymmetric provided that for all $a, b, x \in L$, $|a-x| \le |b-x|$ implies $|f(a)-f(x)| \le c|f(b)-f(x)|$ for some constant c > 0.

Let G be the Green function for Ω with pole $f^{-1}(0)$ and $\delta(z)$ be dist $(z, \partial \Omega)$. From the distortion theorem, it follows that

(0.2)
$$|\nabla G(z)| \cong |f'(z)| \cong \frac{1 - |f(z)|}{\delta(z)} \cong \frac{G(z)}{\delta(z)}$$

when f(z) is away from 0. Thus it is natural to study the analogue of Theorem B for general domains Ω in \mathbb{R}^m $(m \ge 2)$, that is, to find conditions on Ω and the planar section $L \subseteq \Omega$, so that $|\nabla G| \in$ $A_{\infty}(d\sigma)$ on L with respect to the (m-1)-dimensional measure $d\sigma$. Because $|\nabla G|$ may vanish, we study $G(z)/\delta(z)$ instead.

From now on, Ω denotes a domain in \mathbb{R}^m $(m \ge 2)$, G the Green function on Ω , P a fixed point in Ω and G(x) = G(P, x). Let Γ be an (m-1)-dimensional hyperplane in \mathbb{R}^m which does not contain P, and σ be the (m-1)-dimensional measure on Γ . If L is a domain in Γ , denote by $\partial' L$ its boundary relative to Γ . We shall prove the following:

THEOREM 1. Suppose that Ω is a nontangentially accessible (NTA) domain and that $L \subseteq \Omega$ is a uniform domain on the hyperplane Γ . Furthermore, there exists 0 < c < 1 so that for each $x \in L$, at least one component of $B(x, c \operatorname{dist}(x, \partial' L)) \setminus L$ is contained in Ω . Then $\frac{G(x)}{\delta(x)}|_L$ can be extended to become an $A_{\infty}(d\sigma)$ function on the entire hyperplane Γ .

THEOREM 2. Suppose that Ω is a quasiball and is a BMO₁ domain. Then $\frac{G(x)}{\delta(x)}|_{\Gamma \cap \Omega}$ can be extended to become an $A_{\infty}(d\sigma)$ function on the entire hyperplane Γ .

The assumption that L is a uniform domain arises naturally in defining A_{∞} and in extending $G(x)/\delta(x)$ by the method of reflection. The additional condition on L is needed in view of the following:

EXAMPLE. For each $m \ge 2$, there exists an NTA domain so that $\Omega \cap \{x_m = 0\}$ is an (m-1)-dimensional cube, but $\frac{G(x)}{\delta(x)} \notin A_{\infty}(d\sigma)$ on $\Omega \cap \{x_m = 0\}$.

The additional condition on L is satisfied when $L \subseteq \overline{D}$ for some domain $D \subseteq \Omega$ whose complement $\mathbb{R}^m \setminus D$ has the linearly locally connected property (LLC). Examples of such D are quasidisks in \mathbb{R}^2 or domains quasiconformally equivalent to a ball in \mathbb{R}^m $(m \ge 3)$, see [7] and [8].

In Theorem 2, no condition is imposed on $\Omega \cap \Gamma$, and it may be any open set. Lipschitz domains which are homeomorphic to a ball satisfy the conditions in Theorem 2. The theorem remains true for all quasidisks in \mathbb{R}^2 (Theorem B).

In the core of our proof is the following theorem, which in its most general form is proved by B. Davis [4] by probabilistic methods. Special cases and related results can be found in [5], [13] and [15].

THEOREM C. Let Ω be a domain in \mathbb{R}^m , $m \ge 2$, and $\{D_j\}$ be a sequence of closed sets contained in Ω with dist $(D_i, D_j) > 0$ whenever $i \ne j$. Set $\Omega_j = \Omega \setminus \bigcup_{k \ne j} D_k$. If $\{D_j\}$ are uniformly separated in the sense:

(0.3)
$$\inf_{j} \inf_{z \in D_{j}} \omega(z, \partial \Omega, \Omega_{j}) = a > 0,$$

then for any $x \in \Omega \setminus \bigcup D_j$,

$$\sum_{j} \omega(x, D_{j}, \Omega \setminus D_{j}) < \frac{1}{a} \omega \left(x, \bigcup D_{j}, \Omega \setminus \bigcup D_{j} \right).$$

1. Preliminary Theorems. For a domain Ω and a set S in \mathbb{R}^m , denote by $\delta(S)$ the distance from S to $\partial\Omega$, d(S) the diameter of S and l(S) the side length of S if S is a cube. If S is a ball, a cube or a square, denote by cS the ball, the cube, or the square on the same hyperplane, concentric to S, of diameter cd(S). Denote by B(x, r) the ball centered at x of radius r.

 Ω is called a nontangentially accessible (NTA) domain [10], if it is bounded and there exist constants $r_0 > 0$, M > 10 and N > 10 depending on Ω so that the following conditions are satisfied:

(1.1) Corkscrew condition: for any $Z \in \partial \Omega$, $0 < r < r_0$, there exist $A = A_r(Z) \in \Omega$ such that $M^{-1}r < |A - Z| < r$ and $dist(A, \partial \Omega) > M^{-1}r$.

(1.2) $\mathbb{R}^m \setminus \overline{\Omega}$ satisfies the corkscrew condition.

(1.3) Harnack chain condition: if X_1 and X_2 are in Ω , dist $(X_i, \partial \Omega) > \varepsilon > 0$, i = 1, 2, and $|X_1 - X_2| \le 10M\varepsilon$, then there exist balls $B_j = B(Y_j, r_j)$, $1 \le j \le n$ with $n \le N$, so that $Y_1 = X_1$ and $Y_n = X_2$ and that the balls satisfy

$$M^{-1}r_j < \operatorname{dist}(B_j, \partial \Omega) < Mr_j, \qquad 1 < j < n,$$

and

$$B\left(Y_j, \frac{r_j}{2}\right) \cap B\left(Y_{j+1}, \frac{r_{j+1}}{2}\right) \neq \emptyset, \qquad 1 \leq j \leq n-1.$$

Suppose Ω is an NTA domain. For $Z \in \partial \Omega$, denote by $\Delta(Z, r)$ the surface ball $B(Z, r) \cap \partial \Omega$. Let P be a fixed point in Ω . Then the Green function in Ω and the harmonic measure ω on $\partial \Omega$ have the following properties, [10]:

(1.4) Doubling property of ω : there exists C > 0 depending only on Ω and P so that

$$\omega(P, \Delta(Z, 2r), \Omega) \leq C\omega(P, \Delta(Z, r), \Omega)$$

for any surface ball $\Delta(Z, r) \equiv B(Z, r) \cap \partial \Omega$.

(1.5) Relation between ω and G: suppose that $A \in \Omega$, $Z \in \partial \Omega$ with $c^{-1}\delta(A) \leq |A - Z| \leq c\delta(A)$; then there exists C > 0 depending on Ω , P and c only so that

$$C^{-1} \leq \frac{G(P, A)\delta(A)^{m-2}}{\omega(P, \Delta(Z, \delta(A)), \Omega)} \leq C.$$

Let Ω be an NTA domain, Q be a cube in Ω satisfying dist $(P, Q) \ge \delta(Q) \ge d(Q) \ge \frac{1}{2}\delta(Q)$, and Γ be an (m-1)-dimensional hyperplane in \mathbb{R}^m passing through the center of Q. Following the arguments in [10], we may find constants c, C > 0 depending on Ω and P, so that

(1.6)
$$C^{-1}\omega(P, Q, \Omega \setminus Q) \le G(P, x)\delta(x)^{m-2} \le C\omega(P, Q, \Omega \setminus Q), \qquad x \in Q,$$

and

(1.7)
$$\omega(x, \partial \Omega \setminus \Gamma, \Omega \setminus (\Gamma \setminus Q)) > c, \qquad x \in \frac{1}{2}Q.$$

 Ω is called a *uniform domain* if it satisfies the interior corkscrew condition (1.1) and the interior Harnack chain condition (1.2) in the definition of NTA domain. It is also called a BMO extension domain because of its characterization in terms of extension properties of BMO(Ω) by Jones [11]. For properties of uniform domains, see [7]. In \mathbb{R}^2 , a simply-connected uniform domain is a quasidisk.

A bounded domain $\Omega \subseteq \mathbb{R}^m$ is called a BMO₁ domain if its boundary is given locally in some C^{∞} coordinate system as the graph of a function ϕ with $\nabla \phi \in BMO$. BMO₁ domains are defined and studied by Jerison and Kenig in [10]. They are NTA domains and can be regarded as the analogue of chord arc domains in \mathbb{R}^m $(m \ge 3)$; note that the graph of $y = \phi(x)$ is a chord arc curve if $\phi' \in BMO(\mathbb{R}^1)$. It is proved in [10] that

THEOREM D. If Ω is a BMO₁ domain, then the harmonic measure ω on $\partial \Omega$ belongs to $A_{\infty}(d\sigma)$.

An extension of Hall's Lemma is proved in [19]; it is stated here with constants given more precisely.

THEOREM E. Let Ω be a BMO₁ domain and $C_0 > 1$ be given. There exist constants λ , c > 0 depending on Ω and C_0 only, so that for any point $A \in \Omega$ and closed set $E \subseteq \Omega \cap B(A, C_0\delta(A))$,

$$\omega(A, E, \Omega \setminus E) \ge c(M_{m-1}(E)\delta(A)^{-m+1})^{\lambda},$$

where M_{m-1} is the (m-1)-dimensional content.

The α -dimensional content $M_{\alpha}(E)$ of a set E is defined to be $\inf \sum_{n} r_{n}^{\alpha}$, with the infimum taken over all coverings of E consisting of countably many balls with radii r_{n} .

We also need the following estimate of harmonic measures [19], which is first proved by Carleson [1] for the half plane. Again, the constants are described more precisely here.

THEOREM F. Let Ω be a BMO₁ domain in \mathbb{R}^m $(m \ge 3)$, $C_0 > 1$, $A \in \Omega$ and E be a closed set in $\Omega \cap B(A, C_0\delta(A))$. Let \mathscr{M} be the family of positive measures ν on E, which satisfy, for each cube Q in Ω with $16d(Q) \le \delta(Q) \le 256d(Q)$,

$$\nu(Q) \le \operatorname{cap}(E \cap Q)l(Q);$$

and for each cube Q in \mathbb{R}^m that meets $\partial \Omega$,

$$\nu(Q) < l(Q)^{m-1}.$$

Then there exist constants γ , c > 0, depending only on Ω and C_0 so that

$$\omega(A, E, \Omega \setminus E) \ge c \sup_{\mathscr{M}} (\nu(E)\delta(A)^{-m+1})^{\gamma}.$$

Here cap is the Newtonian capacity.

Let $\Phi: \mathbb{R}^m \to \mathbb{R}^m$ be a *K*-quasiconformal mapping. Following are some properties of Φ due to Gehring and Väisälä [17]; all constants depend on *m* and *K* only unless otherwise mentioned.

LEMMA 1. There exists $c_0 > 0$ so that if $0 < c < c_0$, B_1 and B_2 are balls with $d(B_1) < cd(B_2)$ and $dist(B_1, B_2) < cd(B_1)$, then $d(\Phi(B_1)) < c_0c^{\alpha}d(\Phi(B_2))$ for some $\alpha > 0$ depending only on K.

LEMMA 2. Let B be a ball with center X; then there exist balls B' and B" with center $\Phi(X)$, so that $B'' \subseteq \Phi(B) \subseteq B'$ and d(B') < Cd(B'').

The next theorem is due to Gehring [6].

THEOREM G. The Jacobian of Φ is in $A_{\infty}(dx)$ on \mathbb{R}^m . Thus there exists $\alpha > 0$ so that

$$\frac{|\Phi(F)|}{|\Phi(B)|} \leq C \left(\frac{|F|}{|B|}\right)^{\alpha},$$

for any ball B and $F \subseteq B$.

LEMMA 3. There exists a > 1 depending on K so that if U is a ring $\{x: r < |x - x_0| < ar\}$ then $\Phi(U)$ contains a ring in the form $\{x: \rho < |x - \Phi(x_0)| < 2\rho\}$ for some $\rho > 0$.

Proof. Let $B_1 = B(x_0, r)$ and $B_2 = B(x_0, ar)$. Then there exist balls B'_1, B''_1, B'_2, B''_2 centered at $\Phi(x_0)$ so that $B''_1 \subseteq \Phi(B_1) \subseteq B'_1, B''_2 \subseteq \phi(B_2) \subseteq B'_2$, diam $B'_1 \leq C$ diam B''_1 and diam $B'_2 \leq C$ diam B''_2 . Because of Theorem G, (diam B''_1 /diam B'_2) $\leq Ca^{-\alpha}$. Hence diam $B'_1 \leq ca^{-\alpha}$ diam B''_2 and $\Phi(U)$ contains the ring $B''_2 \setminus \overline{B'_1}$ provided that a is sufficiently large.

Let $\Omega = \Phi(B(0, 1))$ and Φ^* be the quasiconformal reflection about $\partial \Omega$ defined by

(1.8)
$$\Phi^*(x) = \Phi\left(\frac{\Phi^{-1}(x)}{\|\Phi^{-1}(x)\|^2}\right).$$

Then Ω is an NTA domain [10], and Φ^* is quasiconformal on $\{c^{-1} < |x - \Phi(0)| < c\}$. Denote by S^* the reflection $\Phi^*(S)$.

LEMMA 4. Given c_1 , $c_2 > 1$ there exists $c = c(c_1, c_2, K) > 1$ so, that if Q is a cube in $\{c_1^{-1} < |x - \Phi(0)| < c_1\}$ which does not meet $\partial \Omega$ and satisfies $c_2^{-1} < l(Q)/\delta(Q) < c_2$ then

$$c^{-1} < \frac{d(Q^*)}{\delta(Q^*)} < c.$$

Moreover, there exists a ball $B \subseteq Q^*$ so that

$$d(Q^*) \cong l(Q) \cong d(B).$$

And if Q is a cube in $\{c_1^{-1} < |x - \Phi(0)| < c_1\}$ that meets $\partial \Omega$, then $d(Q^*) \le cl(Q)$.

By $a \cong b$, we mean a/b is bounded above and below by positive constants.

This lemma is a simple consequence of Lemmas 1, 2 and 3.

LEMMA 5. Let h > 3 and H be the circular right cylinder $\{x: \sum_{1}^{m-1} x_{j}^{2} < 1 \text{ and } 0 < x_{m} < h\}$. Let E be the base $\{x: \sum_{1}^{m-1} x_{j}^{2} \le 1 \text{ and } x_{m} = 0\}$ of H, and A be the point $(0, 0, \ldots, 0, h-1)$. Then there exists c > 0 depending on m, h and K only so that

(1.9)
$$\omega(\Phi(A), \Phi(E), \Phi(H)) > c.$$

Proof. Note that each $\Phi(\{x: \sum_{j=1}^{m-1} x_j^2 < 1, j < x_m < j+2\})$ is a *C*-quasiball $(0 \le j \le h-2)$. Hence (1.9) follows from successive applications of the Harnack inequality.

2. Proof of Theorem 1. Constants in this section depend on Ω , L, D, P and dist (P, Γ) .

Assume from now on that $\Gamma = \{x_m = 0\}$ and fix a partition $\mathscr{C} = \{S_j\}$ of $\Gamma \cap \Omega$ so that S_j 's are (m-1)-dimensional closed dyadic squares on Γ with mutually disjoint interiors and that

(2.1)
$$0 < c < \frac{l(S_j)}{\delta(S_j)} \le \frac{1}{10}.$$

Let Y_j be the center of S_j , $B_j = B(Y_j, \frac{1}{10}l(S_j))$ and $D_j = B_j \cap \Gamma$.

Let $\{S_j\}_J$ be any subcollection of \mathscr{C} . Because Ω is an NTA domain, it follows from (2.1) and the exterior corkscrew condition (1.2) that the disks $\{D_j\}_J$ are uniformly separated as in (0.3). It follows from Theorem C and the maximum principle that for any $x \in \Omega \setminus \bigcup_J D_j$,

$$\sum_{J} \omega(x, S_{j}, \Omega \backslash S_{j}) \cong \sum_{J} \omega(x, D_{j}, \Omega \backslash D_{j})$$
$$\leq c \omega \left(x, \bigcup_{J} D_{j}, \Omega \backslash \bigcup_{J} D_{j} \right)$$
$$\leq c \omega \left(x, \bigcup_{J} S_{j}, \Omega \backslash \bigcup_{J} S_{j} \right).$$

The last two inequalities can easily be reversed; thus

(2.2)
$$\sum_{J} \omega(x, S_{j}, \Omega \backslash S_{j}) \cong \omega\left(x, \bigcup_{J} S_{j}, \Omega \backslash \bigcup_{J} S_{j}\right)$$

which is a weak substitute for the additivity and is essential in our proof.

Suppose that I is a dyadic square on Γ with center in $\Gamma \cap \Omega$ and that

(2.3)
$$I \cap \Omega = \bigcup_J S_j \text{ for some } \{S_j\}_J \subseteq C.$$

Then $\delta(I) \leq C_3 l(I)$ for some $c_3 > 1$, because $\delta(I) \leq \delta(S_j) \cong l(S_j) \leq l(I)$ for any $j \in J$. Let Z be a point on $\partial \Omega$ that satisfies dist $(Z, I) = \delta(I)$, and let $B \equiv B(Z, 4C_3d(I))$, $\Delta = B \cap \partial \Omega$. Clearly that $I \subseteq \frac{1}{2}B$. Because of (1.1), we may choose and fix a point $A \in \Omega \setminus \Gamma$ with

$$8c_3l(I) \le |A - Z| \le cl(I)$$

and $\delta(A) \cong l(I)$. We claim that

(2.4)
$$\omega(P, S_j, \Omega \setminus S_j) \cong \omega(P, \Delta, \Omega) \omega(A, S_j, \Omega \setminus S_j)$$

for each $j \in J$. If S_j were on $\partial \Omega$, (2.4) would follow from Lemma 4.11 in [10]. Since S_j is interior to Ω , (2.4) can be obtained by modifying the proof of that lemma; or by applying it to the NTA domain $\Omega \setminus \overline{B_j}$ and then using the Harnack inequality.

Suppose that $F = \bigcup_{\widetilde{J}} S_j$ for some $\widetilde{J} \subseteq J$. It follows from (2.2) and (2.4) that

(2.5)
$$\omega(P, F, \Omega \setminus F) \cong \sum_{\widetilde{J}} \omega(P, S_j, \Omega \setminus S_j)$$
$$\cong \sum_{\widetilde{J}} \omega(P, \Delta, \Omega) \omega(A, S_j, \Omega \setminus S_j)$$
$$\cong \omega(P, \Delta, \Omega) \omega(A, F, \Omega \setminus F).$$

So far, only the NTA assumption on Ω is used; this part of the proof also applies to Theorem 2. To localize the problem, we need the estimate $\omega(P, I \cap \Omega, \Omega \setminus I) \cong \omega(P, \Delta, \Omega)$ which may not hold even when $\Omega \cap \Gamma$ is a square (example in §4).

Let

(2.6)
$$\mu(F) = \int_F \frac{G(x)}{\delta(x)} d\sigma(x) \quad \text{for } F \subseteq \Gamma \cap \Omega.$$

LEMMA 6. There exist α , $\beta \in (0, 1)$ so that if I is a closed square on Γ centered in \overline{L} and $F \subseteq I \cap L$ then

(2.7)
$$\frac{\sigma(F)}{\sigma(I \cap L)} > \alpha \Rightarrow \frac{\mu(F)}{\mu(I \cap L)} > \beta.$$

Proof. Suppose that I is a dyadic square. Then either $I \subseteq S_{j_0}$ for some $S_{j_0} \in \mathscr{C}$ or (2.3) holds.

When $I \subseteq S_{j_0}$, from the Harnack inequality, it follows that

$$\mu(F)/\mu(I\cap L)\cong \sigma(F)/\sigma(I\cap L);$$

and thus (2.7).

Proceed with the assumption (2.3) and assume as we may that $l(I) \leq 4 \operatorname{diam}(L)$. Because L is a uniform domain on Γ and the center of I is in \overline{L} , there exists a square $S \subseteq I \cap L$ satisfying

$$(2.8) l(I) \cong l(S) \cong \operatorname{dist}(S, \partial' L).$$

Notice that dist $(S, \partial \Omega) \leq cl(I)$ and that in general they are not comparable. To get around this difficulty, we deduce from the additional assumption on L that there exists a cube $Q \subseteq \Omega$ so that Q has one face lying on S and $l(Q) \cong l(S)$. Let A_0 be the center of Q; thus $\delta(A_0) \cong l(Q) + \delta(S) \cong l(I)$.

It follows from (1.5), (1.6) and the Harnack inequality that

$$\omega(P, I \cap L, \Omega \setminus (I \cap L)) \ge \omega(P, S, \Omega \setminus S) \ge cG(P, A_0)\delta(A_0)^{m-2}$$

$$\cong \omega(P, \Delta, \Omega);$$

and from Lemma 4.2 in [10] and $I \subseteq \frac{1}{2}B$ that

$$\omega(P, I \cap L, \Omega \setminus (I \cap L)) \leq c \omega(P, \Delta, \Omega).$$

Thus

(2.9)
$$\omega(P, I \cap L, \Omega \setminus (I \cap L)) \cong \omega(P, \Delta, \Omega).$$

Let $F = \bigcup_{\widetilde{J}} S_j$ for some $\widetilde{J} \subseteq J$. We deduce form (1.6), (2.5), and (2.9) and the Harnack inequality that

$$\mu(F) \cong \sum_{\widetilde{J}} G(P, Y_j) d(S_j)^{m-2} \cong \sum_{\widetilde{J}} \omega(P, S_j, \Omega \backslash S_j)$$
$$\cong \omega(P, I \cap L, \Omega \backslash (I \cap L)) \omega(A, F, \Omega \backslash F).$$

Note also from the Harnack inequality that

$$\omega(A, F, \Omega \backslash F) \cong \omega(A_0, F, \Omega \backslash F)$$

and that

$$\omega(A, I \cap L, \Omega \setminus (I \cap L)) \cong \omega(A_0, I \cap L, \Omega \setminus (I \cap L)) \ge 1/2m.$$

Thus,

$$\mu(F)/\mu(I \cap L) \cong \omega(A_0, F, \Omega \setminus F).$$

We note that

$$\omega(A_0, F, \Omega \setminus F) \ge \omega(A_0, F, Q) \ge \omega(A_0, F \cap \frac{1}{2}(\partial Q \cap S), Q)$$
$$\ge c \frac{\sigma(F \cap \frac{1}{2}(\partial Q \cap S))}{\sigma(\partial Q \cap S)}.$$

Because $\sigma(\frac{1}{2}(\partial Q \cap S)) \ge c_4 \sigma(I \cap L)$ for some $c_4 > 0$, we conclude

$$\frac{\sigma(F \cap \frac{1}{2}(\partial Q \cap S))}{\sigma(\frac{1}{2}(\partial Q \cap S))} > c_4$$

provided that $\sigma(F)/\sigma(I \cap L) > 1 - c_4/2$. This implies (2.7) when $F = \bigcup_{i \in J} S_i$.

Let α and β be the constants associated with (2.7) for all previously proved special cases.

In general, for $F \subseteq I \cap L$, we may write $F = \bigcup_{\widetilde{J}} F_j$ where $F_j \subseteq S_j$ and $\widetilde{J} \subseteq J$. Suppose that

$$\frac{\sigma(F)}{\sigma(I\cap L)} > \frac{1+\alpha}{2}.$$

Let $\widetilde{J}_1 = \{j \in \widetilde{J} : \sigma(F_j) / \sigma(S_j) > (1 - \alpha)/2\}$ and $\widetilde{J}_2 = \widetilde{J} \setminus \widetilde{J}_1$. Then $\sum_{i=1}^{n} \sigma(F_i) < \frac{1 - \alpha}{2} \sum_{i=1}^{n} \sigma(F_i) < \frac{1 - \alpha}{2}$

$$\sum_{\widetilde{J}_2} \sigma(F_j) \le \frac{1-\alpha}{2} \sum_{\widetilde{J}_2} \sigma(S_j) \le \frac{1-\alpha}{2} \sigma(I \cap L)$$

Since $\sum_{\widetilde{J}_1} \sigma(F_j) \leq \sum_{\widetilde{J}_1} \sigma(S_j)$, we have $\sum_{\widetilde{J}_1} \sigma(S_j) \geq \alpha \sigma(I \cap L)$. Therefore $\sum_{\widetilde{J}_1} \mu(S_j) \geq \beta \mu(I \cap L)$. It follows from the Harnack inequality and the choice of \widetilde{J}_1 that

$$\mu(F) \geq \sum_{\widetilde{J}_1} \mu(F_j) \geq c \sum_{\widetilde{J}_1} \mu(S_j) \geq c \beta \mu(I \cap L).$$

This proves (2.7) for dyadic squares I.

For general I, (2.7) follows from the fact that L is a uniform domain and the following doubling property (2.10) of μ .

Doubling property: for any square I on Γ centered in \overline{L} ,

(2.10)
$$\mu(2I \cap L) \cong \mu(I \cap L).$$

Again, we assume as we may that $l(I) \leq 4 \operatorname{diam} L$. Let I_1 be the union of the squares in $\{S_j\}$ that meet 2I, and S be a square in $I \cap L$ that satisfies (2.8). Then $l(I_1) \cong l(I) \cong l(S)$. If $\delta(I_1) > l(I_1)$, (2.10) follows from the Harnack principle. Otherwise, let Z_1 be a point on $\partial \Omega$ that satisfies dist $(Z_1, I_1) = \delta(I_1)$, $B_1 \equiv B(Z_1, 4c_3d(I_1))$, $\Delta_1 = B_1 \cap \partial \Omega$ and A_1 be a point in Ω satisfying $8c_3d(I_1) \leq |A_1-Z_1| \leq cd(I_1)$ and $\delta(A_1) \cong d(I_1)$. Following the argument before, we conclude that

$$\begin{split} \mu(I_1 \cap L) &\cong \omega(P, I_1 \cap \Omega, \, \Omega \setminus I_1) \cong \omega(P, \, \Delta_1, \, \Omega) \\ &\cong G(P, \, A_1) l(I)^{m-2} \cong \omega(P, \, S, \, \Omega \setminus S) \le c \mu(I \cap L). \end{split}$$

This proves (2.10) and Lemma 6.

The extension of $\frac{G(x)}{\delta(x)}|_L$ to Γ follows from the next lemma.

LEMMA 7. Let L be a uniform domain in \mathbb{R}^n and σ be the Lebesgue measure on \mathbb{R}^n . Let μ be a measure on L which is absolutely continuous with respect to σ , and satisfies the restricted doubling property on \overline{L} :

$$\mu(2I \cap L) \le c\mu(I \cap L)$$

for any cube I centered in \overline{L} , and the restricted A_{∞} property on L: there exist $\alpha, \beta \in (0, 1)$ so that if I is a cube centered in \overline{L} and $F \subseteq I$, then

$$\frac{\sigma(F)}{\sigma(I\cap L)} > \alpha \Rightarrow \frac{\mu(F)}{\mu(I\cap L)} > \beta.$$

Then μ can be extended to \mathbb{R}^n so that $\mu \ll \sigma$, μ has the doubling property and $\mu \in A_{\infty}(d\sigma)$ on \mathbb{R}^n .

Proof. Let $\mathscr{C} = \{Q_k\}$ be a dyadic Whitney decomposition of L, $\mathscr{C}' = \{T_j\}$ be a dyadic Whitney decomposition of $\mathbb{R}^n \setminus \overline{L}$, and Q_1 be one of the largest cubes in \mathscr{C} . Following Jones ([11] and [12]), we define the reflection \widetilde{T}_j of $T_j \in \mathscr{C}'$ as follows: If L is unbounded, \widetilde{T}_j is chosen to be a cube Q_k in \mathscr{C} nearest to T_j and that $l(Q_k) \ge l(T_j)$; if L is bounded, define \widetilde{T}_j as above provided that $l(T_j) \le l(Q_1)$, otherwise define $\widetilde{T}_j = Q_1$. Because L is a uniform domain, dist $(T_j, \widetilde{T}_j) \le cl(T_j)$ and that $l(T_j) \cong l(\widetilde{T}_j)$ unless $l(T_j) > l(Q_1)$. See [11] and [12] for detailed properties of this reflection.

JANG-MEI WU

Because L is a uniform domain, $\sigma(\partial L) = 0$ ([12]). Extend μ to \mathbb{R}^m by defining $\mu(\partial L) = 0$ and

$$d\mu = \frac{\mu(\widetilde{T}_j)}{\sigma(\widetilde{T}_j)} d\sigma$$
 on T_j .

The proof of the doubling property and the A_{∞} property of μ is based on the following observation: let I be a dyadic cube that meets ∂L ; then either $I \cap L$ or $I \setminus \overline{L}$ contains a large Whitney cube. More precisely, if $\frac{1}{3}I \cap \overline{L} \neq \emptyset$, then due to the fact that L is uniform, there exists a Whitney cube $Q_k \subseteq I \cap L$ with $l(Q_k) \ge cl(I)$; otherwise $\frac{1}{3}I \subseteq \mathbb{R}^n \setminus \overline{L}$, and hence there exists $T_j \in \mathscr{C}'$ so that $T_j \subseteq I \setminus \overline{L}$ and $l(T_j) \ge cl(I)$. The rest of the proof is routine verification.

3. Proof of Theorem 2. Let $\Omega = \Phi(B(0, 1))$, where $\Phi: \mathbb{R}^m \to \mathbb{R}^m$ is *K*-quasiconformal and $P = \Phi(0)$. When m = 2, Theorem 2 follows from Theorem B. We assume that $m \ge 3$ and constants depend on *K*, dist (P, Γ) , and dist $(P, \partial \Omega)$ only.

Assume $\Gamma = \{x_m = 0\}$ and $0 \in \Gamma \cap \Omega$. Let $\mathscr{C} = \{S_j\}$ be the partition of $\Gamma \cap \Omega$ in §2, M be the integer satisfying 32 diam $\Omega \leq 2^M < 64 \operatorname{diam} \Omega$, and D be the (m-1)-dimensional square on Γ centered at 0 with sides parallel to the axes and of length 2^{M+1} . Let $\Omega' = \mathbb{R}^m \setminus \overline{\Omega}$ and $\mathscr{C}' = \{R_j\}$ be a partition of $\Gamma \cap \Omega'$ by dyadic squares with mutually disjoint interiors so that

$$0 < c < \frac{l(R_j)}{\delta(R_j)} \le \frac{1}{10}$$

and $D \setminus \overline{\Omega} = \bigcup_{K_0} R_j$ for a subcollection $\{R_j\}_{K_0}$ of \mathscr{C}' .

Let Φ^* be the quasiconformal reflection about $\partial \Omega$ defined in (1.8), X_j be the center of R_j and $X_j^* = \Phi(X_j)$. Define μ on Γ so that

$$\mu(S) = \begin{cases} \int_{S} \frac{G(x)}{\delta(x)} dx, & S \subseteq \Gamma \cap \Omega, \\ \sum_{j} \frac{G(P, X_{j}^{*})}{d(R_{j})} \sigma(S \cap R_{j}), & S \subseteq D \cap \Omega', \\ \omega(P, S, \Omega), & S \subseteq \Gamma \cap \partial \Omega, \\ \sigma(S), & S \subseteq \Gamma \backslash D. \end{cases}$$

Let $U_j = B(X_j, \frac{1}{10}l(R_j))$, $V_j = U_j \cap \Gamma$ and $\{R_j\}_K$ be a subcollection of $\{R_j\}_{K_0}$. We note that $\{V_j^*\}_K$ lie on a quasisphere; and claim that $\{V_j^*\}_K$ are uniformly separated, that is,

(3.1)
$$\inf_{K} \inf_{x \in V_{j}^{*}} \omega(x, \partial \Omega, \Omega_{j}^{\prime\prime}) > c > 0$$

where $\Omega_{j}'' = \Omega \setminus \bigcup_{k \neq j, j \in K} V_{k}^{*}$.

To prove this, we fix $j \in K$ and recall that $\delta(R_j) \cong l(R_j) \leq C \operatorname{diam} \Omega$. Recall also that Ω is a quasiball thus an NTA domain and that $\operatorname{dist}(P, \partial \Omega) > c \operatorname{diam} \Omega$. From these facts and elementary geometry, we may find a circular cylinder $H_j \subseteq \mathbb{R}^m \setminus \Gamma$, whose base has radius $r_j \cong l(R_j)$ and whose height is $h_j r_j$ ($3 < h_j < C$), joining U_j to Ω . Moreover, we may require one base E_j lying in Ω , and the point A_j which is on the axis of H_j and of distance r_j to the other base, lying in $U_j \setminus \Gamma$. Because $H_j \cap \Gamma = \emptyset$, we have $H_j^* \cap \Omega \subseteq \Omega_j''$. Applying Lemma 5 to Φ^* , H_j , h_j , we obtain from the maximum principle that

$$\begin{split} \omega(A_j^*, \,\partial\Omega, \,\Omega_j'') &\geq \omega(A_j^*, \,\partial\Omega \cap H_j^*, \,H_j^* \cap \Omega) \\ &\geq \omega(A_j^*, \,E_j^* \cap H_j^*, \,H_j^*) > c > 0. \end{split}$$

In view of Lemmas 1 and 5, we conclude (3.1) by applying the Harnack inequality to $\omega(x, \partial \Omega, \Omega'_i)$ on U_i^* .

Therefore Theorem C implies that

(3.2)
$$\sum_{K} \omega(x, V_{j}^{*}, \Omega \setminus V_{j}^{*})$$
$$\cong \omega\left(x, \bigcup_{K} V_{j}^{*}, \Omega \setminus \bigcup_{K} V_{j}^{*}\right) \text{ for } x \in \Omega \setminus \bigcup_{K} V_{j}^{*}.$$

Also note from (3.2), Lemmas 1 and 5 and the Harnack inequality that

$$\mu(R_j) \cong G(P, X_j^*)(d(R_j))^{m-2}$$

$$\cong \omega(P, U_j^*, \Omega \setminus U_j^*) \cong \omega(P, V_j^*, \Omega \setminus V_j^*).$$

The last equivalence relation holds because $\omega(x, V_j^*, \Omega \setminus V_j^*) > c > 0$ on U_j^* .

Let *I* be a dyadic square in *D*. Then either $I \subseteq S_{j_0}$ for some $S_{j_0} \in \mathscr{C}$ or $I \subseteq R_{j_1}$ for some $R_{j_1} \in \mathscr{C}'$ or

(3.3)
$$I = (I \cap \partial \Omega) \cup \bigcup_{J} S_{j} \cup \bigcup_{K} R_{j}$$

for some $\{S_j\} \subseteq \mathscr{C}$ and $\{R_j\}_K \subseteq \mathscr{C}'$. In the first two cases, by the Harnack inequality,

$$\frac{\mu(F)}{\mu(I)} \cong \frac{\sigma(F)}{\sigma(I)}$$
 for any $F \subseteq I$.

We proceed with the assumption of (3.3), and denote by

$$I_* = (I \cap \partial \Omega) \cup \bigcup_J S_j \cup \bigcup_K R_j^*.$$

Let Z be a point on $\partial \Omega$ so that dist $(Z, I) = \delta(I)$. Because $\Omega = \Phi(B(0, 1))$, in view of Lemmas 1 and 5 we may find $c_5 > 0$ so that $I_* \cup I \subseteq B(Z, c_5l(I))$; let $B \equiv B(Z, 4c_5d(I)), \Delta = B \cap \partial \Omega$ and A be a point in Ω so that $\delta(A) \cong l(I)$ and $8c_5d(I) \le |A-Z| \le Cl(I)$.

Since Ω is NTA, it follows from the argument for (2.4) that

$$(3.4) \qquad \omega(P, V_j^*, \Omega \setminus V_j^*) \cong \omega(P, \Delta, \Omega) \omega(A, V_j^*, \Omega \setminus V_j^*).$$

We claim that there exist α , $\beta \in (0, 1)$ so that if $F \subseteq I$,

(3.5)
$$\frac{\mu(F)}{\mu(I)} < \alpha \Rightarrow \frac{\sigma(F)}{\sigma(I)} < \beta.$$

Assume first that F is in one of the three forms: (1) $F \subseteq I \cap \partial \Omega$, (2) $F = \bigcup_{\widetilde{J}} S_j$ for some $\widetilde{J} \subseteq J$ or (3) $F = \bigcup_{\widetilde{K}} R_j$ for some $\widetilde{K} \subseteq K$. If F is in the form (1) or (2), we deduce from theorems in [9] or

arguments in §2 respectively, that

$$\mu(F) \cong \omega(P, F, \Omega \backslash F) \cong \omega(P, \Delta, \Omega) \omega(A, F, \Omega \backslash F).$$

If F is in the form (3), then it follows from (3.2), (3.4) and the Harnack inequality that

(3.6)
$$\mu(F) \cong \sum_{\widetilde{K}} \omega(P, V_j^*, \Omega \setminus V_j^*)$$
$$\cong \omega(P, \Delta, \Omega) \omega \left(A, \bigcup_{\widetilde{K}} V_j^*, \Omega \setminus \bigcup_{\widetilde{K}} V_j^* \right)$$
$$\cong \omega(P, \Delta, \Omega) \omega(A, F^*, \Omega \setminus F^*)$$
$$\cong \omega(P, \Delta, \Omega) \omega \left(A, \bigcup_{\widetilde{K}} U_j^*, \Omega \setminus \bigcup_{\widetilde{K}} U_j^* \right).$$

Again the last two equivalence relations follow from

$$\omega\left(x,\bigcup_{\widetilde{K}}V_{j}^{*},\Omega\backslash\bigcup_{\widetilde{K}}V_{j}^{*}\right)>c>0$$

on F^* and on $\bigcup_{\widetilde{K}} U_i^*$. Similarly, $\mu(I) \cong \omega(P, \Delta, \Omega) \omega(A, I_*, \Omega \setminus I_*).$ (3.7)

Thus

(3.8)
$$\frac{\mu(F)}{\mu(I)} \ge c_6 \omega(A, F, \Omega \backslash F) \quad \text{or} \quad c_6 \omega(A, F^*, \Omega \backslash F^*)$$

depending on $F \subseteq \overline{\Omega}$ or $F \subseteq \Omega'$.

If $F \subseteq I \cap \partial \Omega$ and $\mu(F)/\mu(I) < \alpha$, then $\omega(A, F, \Omega) < c_6^{-1}\alpha$. Following the proof that ω is A_{∞} with respect to the surface measure on the boundary of a BMO₁ domain [10, p. 133], we obtain

$$\frac{\sigma(F)}{\sigma(I)} < 1 - c_7 + c_7^{-1} (c_6^{-1} \alpha)^{\lambda},$$

where $0 < c_7 < 1$ and $\lambda > 0$ depend only on the BMO₁ constant of Ω . Thus, if α is sufficiently small, $\sigma(F)/\sigma(I) < 1 - c_7/2$.

In the case $F = \bigcup_{\tilde{J}} S_j$, $\sigma(F) \cong M_{m-1}(F)$ because F is contained in an (m-1)-dimensional hyperplane Γ . In view of Theorem E, $\sigma(F)/\sigma(I) < c_7/4$ if $\mu(F)/\mu(I)$ is sufficiently small.

When $F = \bigcup_{\widetilde{K}} R_j$, (3.5) would follow from Theorem E if we could prove that

$$(3.9) M_{m-1}(F^*) \ge c\sigma(F).$$

In view of the examples in [14], [16] and [18] on contents, it is not clear whether (3.9) is true. We shall apply Theorem F, and define a measure ν on $E \equiv \bigcup_{\widetilde{K}} U_i^*$ with support $\bigcup_{\widetilde{K}} \{X_i^*\}$, so that

$$\nu(\{X_j^*\}) = l(R_j)^{m-1}$$

Clearly $\nu(\bigcup_{\widetilde{K}} U_j^*) \cong \sigma(F)$. We claim that $c\nu$ is in the class \mathscr{M} defined in Theorem F.

In fact, let Q be a cube in Ω satisfying $16d(Q) \leq \delta(Q) \leq 256d(Q)$. If $X_j^* \in Q$ for some j, then by Lemma 4, $d(Q) \cong \delta(Q) \cong \delta(X_j^*) \cong d(U_j^*) \cong d(R_j)$. Since each U_j^* contains a ball of diameter comparable to $d(U_j^*)$, there are at most C distinct X_j^* 's in Q; thus $\nu(Q) \leq Cd(Q)^{m-1}$. Moreover, if $X_j^* \in Q$, then $\operatorname{cap}(Q \cap U_j^*) \cong d(U_j^*)^{m-2} \cong d(Q)^{m-2}$. Hence

$$\nu(Q) \le c \operatorname{cap}(Q \cap E) l(Q).$$

Next, let Q be a cube that meets $\partial \Omega$, and note from Lemma 4 that $d(\Phi^*(Q)) \leq cd(Q)$. Note also that if $X_j^* \in Q$ then $X_j \in \Phi^*(Q \cap \Omega)$ and $\delta(R_j) \cong \delta(X_j) \leq d(\Phi^*(Q))$. Thus $\operatorname{dist}(R_j, \Phi^*(Q \cap \Omega)) \leq d(R_j) + d(\Phi^*(Q)) \leq c\delta(R_j) + d(\Phi^*(Q)) \leq cd(\Phi^*(Q)) < cd(Q)$. Therefore

$$\nu(Q) = \sum_{X_j^* \in Q} l(R_j)^{m-1} \le cd(Q)^{m-1}.$$

This shows that $c\nu \in \mathcal{M}$ for some c > 0. We conclude from Theorem F that

(3.10)
$$\omega(A, E, \Omega \setminus E) \ge c \left(\frac{\nu(E)}{\delta(A)^{m-1}}\right)^{\gamma} \ge c \left(\frac{\sigma(F)}{\sigma(I)}\right)^{\gamma}$$

Recall from (3.6) that $\omega(A, E, \Omega \setminus E) \cong \omega(A, F^*, \Omega \setminus F^*)$. Thus in view of (3.8) and (3.10), $\sigma(F)/\sigma(I) < c_7/4$ if $\mu(F)/\mu(I)$ is sufficiently small.

To obtain (3.5) for general F, we follow the corresponding arguments in §2.

It follows from (3.5) that for dyadic $I \subseteq D$

$$(3.11) \qquad \qquad \omega(A, I_*, \Omega \setminus I_*) > c > 0.$$

We extend (3.5) to all squares $I \subseteq D$ by the *doubling property*: let I be a dyadic square in D,

$$(3.12) \qquad \qquad \mu(2I) \le c\mu(I).$$

In fact, when $5I \cap \partial \Omega = \emptyset$, (3.12) follows from the Harnack inequality; when $5I \cap \partial \Omega \neq \emptyset$, (3.12) follows from (1.4), (3.7) and (3.11).

To obtain (3.5) for all squares $I \subseteq \Gamma$, we use the facts that $\mu(D) \cong 1$ and $d\mu/d\sigma \cong 1$ on $\mathbb{R}^m \setminus \frac{1}{4}D$. This completes the proof of Theorem 2.

4. The example. The construction is given in \mathbb{R}^2 for simplicity; it can easily be extended to \mathbb{R}^m , $m \ge 3$. If one is only interested in an example in \mathbb{R}^2 , some steps can be further reduced.

Let $Y_{k,p}$ be the point $((p + \frac{1}{2})/2^k, \frac{3}{4}/2^k)$ in \mathbb{R}^2 and $B_{k,p}$ be the disk $B(Y_{k,p}, 2^{-k-10})$ for any integers k and p. Let

$$\Omega_0 = \{x: 0 < x_1 < 1, 0 < x_2 < 1\} \setminus \bigcup_{k,p} \overline{B}_{k,p}$$

and note that Ω_0 is an NTA domain. Note also that $\bigcup_{k,p} \overline{B}_{k,p}$ does not meet any line $x_2 = 2^{-k}$ or any line segment $\{x: x_1 = p/2^k \text{ and } 0 \le x_2 \le 2^{-k}\}$.

Let sequences $\{\delta_n\}$ and $\{A_n\}$ be given so that $\{\delta_n\} \subseteq \{2^{-k}:k\}$ positive integer}, $\lim \delta_n = 0$, $A_n > 0$ and $\lim A_n = \infty$. Let $\{\lambda_n\} \subseteq \{2^{-k}:k \text{ positive integer}\}$ be another sequence with $\lambda_n < \delta_n 2^{-10}$. We shall construct a domain $\Omega \subseteq R^2$, by adding another part in the lower half-plane and restoring some of the disks $\overline{B}_{k,p}$ which were originally removed. For each $n \ge 1$, let

$$S_n = \{ (x_1, 0) \colon 2^{-n} \le x_1 \le 2^{-n+1} \},\$$

$$U_n = \{ x \colon (x_1, 0) \in S_n, \ -\lambda_n 2^{-n} < x_2 < \delta_n 2^{-n} \},\$$

$$V_n = \{ x \colon (x_1, 0) \in (1 - 2\delta_n) S_n, \ \lambda_n 2^{-n} \le x_2 \le \delta_n 2^{-n-3} \},\$$

where $(1-2\delta_n)S_n$ is the interval on $x_2 = 0$ concentric to S_n of length $(1-2\delta_n)2^{-n}$, and $W_n = U_n \setminus V_n$; and note that ∂W_n does not meet $\bigcup_{k,p} \overline{B}_{k,p}$. Let

$$\Omega = ext{interior of } \left(\Omega_0 \cup \bigcup_1^\infty W_n \right) \,,$$

and P be the point $(\frac{1}{2}, \frac{9}{10})$. Then Ω is an NTA domain.

Denoting by $I_n = (1 - 2\delta_n)S_n$ and $J_n = (1 - \delta_n)S_n \setminus I_n$, we have the following lemma.

LEMMA 9. Given $n \ge 1$, λ_n can be chosen sufficiently small depending on A_n and δ_n only, so that

$$\omega(P, J_n, \Omega \setminus J_n) \geq A_n \omega(P, I_n, \Omega \setminus I_n).$$

Assume Lemma 9 for the moment and let $\Gamma = \{x_2 = 0\}$. Then $\Gamma \cap \Omega$ is the unit interval on Γ and $\delta(x) = \lambda_n 2^{-n}$ for $x \in I_n \cup J_n$. From the reasoning in §2, we note that $\omega(P, J_n, \Omega \setminus J_n) \cong \mu(J_n)$ and $\omega(P, I_n, \Omega \setminus I_n) \cong \mu(I_n)$ where μ is defined in (2.6). Thus

$$\mu(J_n) \geq (1 - CA_n^{-1})\mu(I_n \cup J_n),$$

while

$$\sigma(J_n) \leq 2\delta_n \sigma(I_n \cup J_n)$$

for all $n \ge 1$. Thus $\mu \notin A_{\infty}(d\sigma)$ on $\Gamma \cap \Omega$.

It remains to prove Lemma 9. Fix $n \ge 1$ and let $P_1 = (2^{-n}, 0)$ and $P_2 = (2^{-n+1}, 0)$ be the end points of S_n , and $P_3 = (2^{-n} + \delta_n 2^{-n}, 0)$, $P_4 = (2^{-n+1} - \delta_n 2^{-n}, 0)$, $P_5 = (2^{-n} + \delta_n 2^{-n-1}, 0)$ and $P_6 = (2^{-n+1} - \delta_n 2^{-n-1}, 0)$ be the end points of the two intervals in J_n . Note that $J_n = \overline{P_5 P_3} \cup \overline{P_4 P_6}$ and $I_n = \overline{P_3 P_4}$. Let $P_7 = P_5 - (0, \lambda_n 2^{-n})$, $P_8 = P_6 - (0, \lambda_n 2^{-n})$, $P_9 = P_5 + (0, \delta_n 2^{-n-1})$ and $P_{10} = P_5 + (0, \delta_n 2^{-n-1})$.

In view of the Markov property, it suffices to show that if λ_n is sufficiently small then

(4.1)
$$\omega(x, J_n, \Omega \setminus J_n) \ge A_n \omega(x, I_n, \Omega \setminus I_n)$$

for $x \in \overline{P_7P_9} \cup \overline{P_9P_{10}} \cup \overline{P_{10}P_8}$. Let *D* be the domain $\Omega \cap U_n$ and *T* be the domain $\Omega \cup \{x, x_1 \notin S_n\}$, and note that their configurations are independent of δ_j , A_j and λ_j for any $j \neq n$. In view of the maximum principle, it is enough to show that for sufficiently small λ_n ,

(4.2)
$$\omega(x, J_n, D \setminus J_n) \ge A_n \omega(x, I_n, T \setminus I_n)$$

for $x \in \overline{P_7 P_9} \cup \overline{P_9 P_{10}} \cup \overline{P_{10} P_8}$.

Consider first $x \in \overline{P_5P_7}$; and let $P_{11} = P_1 - (0, \lambda_n 2^{-n})$, $P_{13} = P_3 - (0, \lambda_n 2^{-n})$, H be the rectangle $P_1 P_3 P_{13} P_{11}$ and M be the semiinfinite strip $\{x: 2^{-n} < x_1 < 2^{-n} + \delta_n 2^{-n}, x_2 > -\lambda_n 2^{-n}\}$. It is easy to see that there exists ξ_n , $0 < \xi_n < \delta_n 2^{-10}$, depending only on δ_n and A_n , such that if $0 < \lambda_n \le \xi_n$, then

$$\omega(x, \overline{P_5P_3}, H) \ge A_n \omega(x, \partial M \setminus \overline{P_{11}P_{13}}, M)$$

for $x \in \overline{P_5P_7}$. From the maximum principle, we obtain (4.2) for $x \in \overline{P_5P_7}$ provided that $0 < \lambda_n \le \xi_n$. Similarly (4.2) holds on $\overline{P_6P_8}$ under the same assumptions.

Denote by $K = \overline{P_5P_9} \cup \overline{P_9P_{10}} \cup \overline{P_{10}P_6}$; it remains to prove (4.2) for $x \in K$. We note that

$$\omega(x, J_n, D \setminus J_n) > \tau_n > 0, \ x \in K$$

for some τ_n depending only on δ_n .

Let γ_n be a number in the form 2^{-k} with $0 < \gamma_n < \delta_n 2^{-10}$, $P_{15} = P_3 + (\gamma_n 2^{-n}, 0)$ and $P_{16} = P_4 - (\gamma_n 2^{-n}, 0)$. The number γ_n can be chosen sufficiently small, depending on δ_n , A_n and ξ_n only, so that if $0 < \lambda_n \le \xi_n$,

(4.3)
$$\omega(x, \overline{P_3P_{15}} \cup \overline{P_{16}P_4}, T \setminus (\overline{P_{13}P_{15}} \cup \overline{P_{16}P_4})) < \tau_n/(10A_n)$$

for $x \in K$. (First choose and fix γ_n so that (4.3) holds when $\lambda_n = \xi_n$; then extend (4.3) to $0 < \lambda_n < \xi_n$ by the maximum principle.)

To complete the proof, it remains to show that for sufficiently small λ_n ,

(4.4)
$$\omega(x, \overline{P_{15}P_{16}}, T \setminus \overline{P_{15}P_{16}}) < \tau_n/(10A_n)$$
 on K.

Assume that $\lambda_n < 2^{-10} \min{\{\xi_n, \gamma_n\}}$, and let $R_0 = \overline{P_{15}P_{16}} = \{(x_1, 0): a \le x_1 \le b\}$ where $a = 2^{-n} + \delta_n 2^{-n} + \gamma_n 2^{-n}$ and $b = 2^{-n+1} - \delta_n 2^{-n} - \gamma_n 2^{-n}$. For $k \ge 1$, let R_k be the rectangle $\{x: a - \lambda_n 2^{-n+k} \le x_1 \le b + \lambda_n 2^{-n+k} \text{ and } -\lambda_n 2^{-n} \le x_2 \le \lambda_n 2^{-n+k}\}$. We note that T is an

NTA domain. By the exterior corkscrew condition of T, there exists a constant ε , $0 < \varepsilon < 1$, independent of k, so that

$$\omega(x, \partial R_k \cap T, T \setminus R_k) < \varepsilon \quad \text{on } \partial R_{k+1} \cap T$$

provided that $2^{k+5} \leq \gamma_n \lambda_n^{-1}$. From the Markov property it follows that

$$\omega(x, \overline{P_{15}P_{16}}, T \setminus \overline{P_{15}P_{16}}) < \varepsilon^{\log_2(\gamma_n/\lambda_n)-6}$$

for $x \in K$. Therefore (4.4) holds if λ_n is sufficiently small, depending only on δ_n and A_n . This completes the proof of Lemma 9.

References

- [1] L. Carleson, *Estimates of harmonic measures*, Ann. Acad. Sci. Fenn., 7 (1982), 25-32.
- [2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250.
- J. Fernández, J. Heinonen and O. Martio, *Quasilines and conformal mappings*, J. Analyse Math., 52 (1989), 117-132.
- [4] J. B. Garnett, Applications of Harmonic Measure, Wiley, 1986.
- [5] J. B. Garnett, F. W. Gehring and P. W. Jones, *Conformally invariant length* sums, Indiana Univ. Math. J., **32** (1983), 809-829.
- [6] F. W. Gehring, The L^p-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 139 (1973), 265–277.
- [7] ____, Uniform domains and the ubiquitous quasidisk, Jber. d. Dt. Math.-Verein, 89 (1987), 88–103.
- [8] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math., 114 (1965), 1–70.
- [9] J. Heinonen and R. Näkki, Quasiconformal distortion on arcs, J. Analyse Math., (to appear).
- [10] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math., 46 (1982), 80-147.
- [11] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41-66.
- [12] _____, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71–88.
- [13] P. W. Jones and D. Marshall, Critical points of Green's function, harmonic measure, and the corona problem, Ark. Mat., 23 (1985), 281–314.
- [14] S. Mazurkiewicz and S. Saks, Sur les projections d'un ensemble fermé, Fund. Math., 8 (1926), 109-113.
- [15] Ch. Pommerenke, On uniformly perfect sets and Fuchsian groups, Analysis, 4 (1984), 299-321.
- [16] S. Saks, Remarque sur la measure linéare des ensembles plans, Fund. Math., 9 (1926), 16-24.
- [17] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., Vol. 229, Springer-Verlag, 1971.

JANG-MEI WU

- [18] A. G. Vituškin, L. D. Ivanov and M. S. Mel'nikov, Incommensurability of the minimal linear measure with the length of a set, Dokl. Akad. Nauk SSSR, 115 (1963), 1256-1259; English transl. in Soviet Math. Dokl., 4 (1963), 1160-1164.
- [19] J.-M. Wu, Content and harmonic measure: an extension of Hall's Lemma, Indiana Univ. Math. J., 36 (1987), 403-420.

Received April 15, 1991. Partially supported by the National Science Foundation.

University of Illinois Urbana, IL 61801