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A STATE MODEL FOR THE MULTI-VARIABLE
ALEXANDER POLYNOMIAL

J U N M U R A K A M I

We construct a vertex type state model in Turaev's sense for the
multi-variable (non-reduced) Alexander polynomial. Our model is a
colored version of the 6-vertex free fermion model. To show the cor-
respondence of our model and the multi-variable Alexander polyno-
mial, we introduce colored braid groups and their Magnus representa-
tions. By using this model, a new set of axioms for the multi-variable
Alexander polynomial is obtained.

1. Introduction. In [1], the Jones polynomial V in [9] and its higher
spin versions are directly constructed from some solutions of Yang-
Baxter equations. Let P be the HOMFLY polynomial in [5], [16]
and F be the Kauffman polynomial in [12], Then these invariants
are both two-variable extensions of the Jones polynomial V. In [19],
Turaev constructs P and F from vertex type state models. Turaev
introduced an enhanced Yang-Baxter operator, from which we get an
invariant of links. He constructed enhanced Yang-Baxter operators
from the i?-matrices in [7] and showed that the related invariants
are specializations of P and F. But this family does not contain
the Alexander polynomial, which is the most famous link invariant.
Deguchi and Akutsu [4] propose enhanced Yang-Baxter operators asso-
ciated with a family of link invariants, which includes Turaev's family
corresponding to P and also includes the reduced Alexander polyno-
mial. We construct an enhanced Yang-Baxter operator for the Conway
potential function V. The potential function V is a version of the
non-reduced Alexander polynomial. As is shown in [6], V of a link
is defined uniquely as a Laurent polynomial in variables associated
with the connected components of the link. Kauffman gives an inter-
pretation of the multi-variable Alexander polynomial by using a state
model in §6 of [11]. In his model, there is no corresponding model in
statistical mechanics. On the other hand, as is shown in Remark 2.4,
our model comes from a solution of the Yang-Baxter equation, which
assures the solvability of a lattice model in statistical mechanics.

In §2, we introduce an enhanced colored Yang-Baxter operator. This
operator was introduced by Turaev [19] for non-colored links. From
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an enhanced colored Yang-Baxter operator, we get an invariant of links
with colored component. In Example 2.3, we give a colored Yang-
Baxter operator. The main interest of this paper is to investigate this
operator and related link invariants. This operator is a colored version
of the solution in [4].

In §§3-5, we construct a link invariant from a colored enhanced
Yang-Baxter operator by using Turaev's idea. We can apply Turaev's
method in [19] for our operator to get a link invariant. But the re-
sulting invariant is constantly equal to zero. To construct a non-trivial
invariant, we introduce a notion of redundant enhanced colored Yang-:
Baxter operator. In §6, we prove that our invariant is equal to the
Conway potential function. To show this fact, we need Magnus rep-
resentation of a colored braid group. Our invariant and the Conway
potential function are both related to the Magnus representation. They
are linear combinations of traces of exterior product representations
of the Magnus representation.

In §7, we give an "axiomatic determination" for the Conway poten-
tial function V. The Jones polynomial has a very simple, well-known
axiomatic determination. It is determined by the skein relation. Tu-
raev gave a set of axioms for V in §4.2 of [18]. But the Doubling
Axiom 4.2.6 in [18] is not a local relation. Local axioms for V are
discussed in [6] and [15]. But they did not succeed in getting a com-
plete set of relations for links with more than 3 colors. Instead of
Turaev's Doubling Axiom, a new local relation is added to the known
relations. This relation is much more complicated in comparison with
the other relations and a simpler local relation is still needed.

2. Enhanced color Yang-Baxter operator SO. Let K be a field. We

extend the contents of [19], §2 for enhanced colored Yang-Baxter op-
erators. Let d{\), d(2),..., d(c), . . . be non-negative integers and
VW, γm,..., κ ( 0 , . . . be d(l), d(2),..., d(c),...-dimensional
^-vector spaces. Let R(ci>ci): VW <8> VW -+ F ^ ) ® γtei) (cx, c2 =
1, 2, . . .) be a (ΛMinear) isomorphism. The set of operators {i?(ci 'C2>}
is called a colored Yang-Baxter operator (or, briefly, a CYB-operator)
if it satisfies the equality

(2.1) (i?(ci'c2> ® id)(id ® R^ 'C3))(i?(c2,c3) 0 i d )

= ( i d ® R(c2>c*))(R(ci >C

3) ® id ) ( id® i?(c>

This corresponds to the braid relation with colored strings.
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For / G End(F(ci) ® ® V^0*-^ ® F^O), we define an operator

trace S p ί 1 ' " " ' 1 - 1 ' ^ / ) e End(F^i) ® ® V{c^) by the following.

Let {v[c), . . . , i ; ^ } be a basis for F ^ for c e {cx, . . . , crt} and

let flι'""?n~ι)Jn denote the matrix element of / with respect to the

above basis, i.e.

i<jt<d(ct)

For 1 < I'I < d{c\), ... , 1 < in < d{cn), we put

(2.2) S p { n ι " " ' C - t ' C \ l c ) £ }

= Σ

EXAMPLE 2.1. If n = 1, then the operator trace Sp(jC): End(F^) ->
K is the ordinary trace. Let n = 2, d(c) = 2 and /€End(F(c)<8)F(c));
then we have

, /-12 /-21 _. f22
+̂ 22 hi + hi

DEFINITION 2.2. Let S be a collection of a set of CYB-operators
2)} (cΪ9 c2 = 1, 2, . . . ) , ^-homomorphisms //^: F ^ -> F ^

and non-zero elements α(c) and β^ in K (c = 1, 2, . . . ) . Then
*S is called an enhanced colored Yang-Baxter operator (briefly, ECYB-
operator) if the elements of S satisfying the following:

(1)

(2) Spf 'c )(i?(c 'c) o (id ® μW)) = aWβWid; Spf5<

The collection S is denoted by S = (i?^i >̂ ) μ(c) 9 a^ ,

EXAMPLE 2.3. Let t\ 9 ti, . . . be indeterminants and K =
C(ίi, ί2 > ) be the field of rational functions in ί i , tι, . . . . Let

; ( c ) ϋ ( c

;1 ' ^2
= 2 for all positive integers c. Fix a basis {v[c>}, vί^} for
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Let

t2 - 1 ,
/ r\ /> \ n i C C ) 4- IT* v i ' ? / /ĉ v IT*V ? ' 1 / 1 IT'V 1 ' 2 / /Ĉ v Γ Ί 4 '

, f f i . F ( ^ , ^ 2 ) <> F ( C 2 ' c i ) , F ( C I ' ^ <a E{Cl ' C l )

Γ C 2

which transforms vj[Cl to ^ 2 and transforms vy', with j' Φ i, into

where the symbol E^cVCl) denotes the homomorphism
ί , AC

(c ) (c )

which transforms υt

 ι to υk

2 andtrj
0. The inverse of R^i^i) is given by

(2.4)

2 I ) ^ F ( I 2 ) - / F 2

2,2 ^ ^ 1 , 1 ^ 2 ^ 2 , 2

Let μW = ^ ^ - E{lf, α « = 1, jίW = ί"1 and So =
μ(c), α^c), j8(c)). A simple computation shows that

(1) the set of operators {U^i'^)} is a CYB-operator,
(2) SQ is an ECYB-operator.

REMARK 2.4. Let i ? ^ ) be as above and R(cι>c2\x) = R^^x -
(R{c2,cx)y\χ-\ f o r X G c \ { 0 } . Then R^>c2)(χ) satisfies the Yang-
Baxter equation with spectral parameters

(2.5) (R^ ^\x) ® id)(id <8> R{c> >ci\xy))(R{c2>ci\y) ® id)

= (id(8)Λ^

This solution is a colored version of the free-fermion 6-vertex model
(see, for example, [17]).

The main purpose of this paper is to investigate some properties of
the ECYB-operator SQ given in the above example.

3. Markov trace of colored links and colored braids.

DEFINITION 3.1 (colored links). A colored link is a pair of an ori-
ented link and a mapping from the connected components of the link
to N.
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Let Bn be the braid group on n-strings and let ϋ\, σ2, . . . , an_\
be the standard generators of Bn . Let &n be the symmetric group of
degree n. Let θ: Bn -» &n be the group homomorphism sending σy
to the transposition (/ / + 1) e &n for 1 < / < n - 1. Then Bn acts
on {1, 2, ... , n} by θ.

DEFINITION 3.2 (colored braids). A colored braid is (ft C\, c2 > >
cn) where b eBn and c i , . . M c n G N with c ^ ) = c/ for \ <i <n.

We denote by ft the link represented by the closure of b. Then the
above condition for the colors C\, . . . , cn implies that the closure of
b has a coloring coming from C\, . . . , cn . The connected component
of b containing the z'th point at the top of b is colored by c\. We
denote by (b C\, cι, . . . , cn)~ the colored link represented by b with
colors defined as above. We need Alexander's theorem and Markov's
theorem (Theorem 2.1 and Theorem 2.3 in [2]) for colored links and
colored braids.

THEOREM 3.3 {Alexander's theorem for colored links). A colored link
can be represented by the closure of a colored braid.

Proof. For a colored link L, let b be a braid whose closure rep-
resents L as a non-colored link. For / = 1, 2, . . . , let Q be the
component of L such that the corresponding component of b con-
tains the rth point at the top of b. Let c\ be the color of C, . Then
the closure (b C\, Ci, . . . , cn)^ represents L. D

DEFINITION 3.4 (Markov equivalence). Let B be the set of colored
braids and let ~ be the equivalence relation generated by the follow-
ing.

(1) Let b\, b2 e Bn and {bχb2 cx, c2, . . . , cn) be a colored braid.
Then

φλb2 c\, c2,..., cn) - (&2&i ^ i ( 1 ) , <^ i ( 2 ) , . . . , cbχ{n)).

(2) For Z? G 2?π , let (ft C\, C2, . . . , cn) be a colored braid. Then

(ft a , c 2 , . . . , cΛ) - (ftσ^1 c 2 , c 2 , . . . , cn, cΛ).

An element of the set of the equivalence classes B/ ~ is called a
Markov class.

THEOREM 3.5 (Markov's theorem for colored links). The closures of
two colored braids are equivalent as colored links if and only if the
colored braids belong to the same Markov class.
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Proof. Every step of the proof of Theorem 2.3 in [2] is compatible
with the coloring. D

Now, we define an invariant of colored links by using an ECYB-
operator S = {R^ ^ , μ^ , a^ , β^).

DEFINITION 3.6 (colored braid group). Let

B(cx ,...,cπ) = {beBn\{b\cχ9...9 cn) is a colored braid}.

In other words, b € £(ci' Ό jf ^ = c. for 1 < / < Λ. Then

the set Bnι'""Cn^ is a subgroup of Bn and is called the colored braid
group with the colors C\, Cι, . . . , cn .

For bxeB{nι""iCn) and £ 2 e5 π , we have b^b^eBn^'""^1^.

For 6 G JSJf1""^, we define an element pf'""Cn\b) in

( ) (8) K(C2) ® . . ® V^) as follows. Let b = σ^σ^ σiχ. Put

σ/ (j/ and

(3.1) Rk = id®{i*~ι) ® Λ^'ct)>c»(*)«t+i>) ® id^t"-'*- 1).

Let pf'"'c"}(έ) = RiR2 • • • Rr. Then

pf '"-c'\b) € EadiVW ® F(C2) <g> <g> F(c»}).

Since R(cfc-J satisfies the colored braid relation (2.2), the above defi-

nition of ps1'""^' implies the following

PROPOSITION 3.7.

is a representation of the group Bn1'""0"'.

DEFINITION 3.8 (Markov trace). Let Sp C|> 'C| denote the compo-

sition of operator traces of Spf"->c'\ S p ^ ' " " ' 0 , . . . , Sp£ί""'c '+ l ),

i.e.

(3.2) Spίy ' * = Sp^ c '+ l ) Sp^ - ' ^ S p f " - ^

for i > j > 0 and put

(3.3) Tp'-'e'\b)
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where w^c\b) denotes the number of crossings of b such that the

strings of the over path and the under path are both colored by c.

Then Γ^1'""'Cn) is a function from the colored braid group B{

n°
l''"'°n)

to K. The function Γ^1
 " * " C Λ ) is called the Markov trace of S.

PROPOSITION 3.9. The Markov trace τ^ι""'Cn) of an ECYB-operator
S satίsifes the following.

(1) For bx e B{

n

Cι'""Cn) and b2eBn, we have

(2) For b e B{n^~"Cn\bσ±λ e B{£[""c"'c*+ι) with cn = cn+1, we
have

Proof. The proof of this theorem is similar to that of Theorem 3.1.2
in [19] and so we omit it. D

With Alexander's theorem and Markov's theorem for colored links
and colored braids (Theorem 3.3 and Theorem 3.5), the above propo-
sition implies the following theorem.

THEOREM 3.10. Let S be an ECYB-operator. Let Xs: {colored
braid} —> K be the mapping defined by XsΦ\ C\, . . . , cn) =
Tp>'"'c«'(by Then X$ induces an ίsotopy invariant of colored ori-
ented links.

EXAMPLE 3.11. Let *SΌ be the ECYB-operator in Example 2.3. Then
Ts is an invariant of colored links. But this invariant is equal to 0
for all the colored oriented links because of Proposition 4.4 given later
and Trace(μ(ci)) = 0 for c\ = 1, 2, . . . . So we need a new technique
to withdraw a non-trivial invariant from the ECYB-operator SQ .

4. Redundant ECYB-operator and modified Markov trace. To with-

draw a non-trivial invariant from the ECYB-operator SO > we focus on
a special property of SO.

Let S = (Λ(ci'c2) μM , a^ , β^) be an ECYB-operator. Fix pos-

itive integers n and c\, . . . , cn . Let ^ln" ^ e ^ e subalgebra of

) spanned by the image pf'"-Cn){B{nx'~"Cn)). We
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regard Ay \ as the one-dimensional subalgebra of End(FW) spanned
by the identity element.

DEFINITION 4.1 (redundant ECYB-operator). The ECYB-operator

S is called redundant if, for x e Ay'^"'Cn ,

for all n > 1, C\, . . . , cn e N. Let (R, μ, a, β) be an enhanced
Yang-Baxter operator in the sense of §2.3 in [19]. We regard this as
an ECYB-operator by putting i?(ci'c2) = i? ? μ(c) = μ, c*(c) = a and
βte) = β. We call (R\ μ,a, β) redundant if the associated ECYB-
operator is redundant.

EXAMPLES 4.2. (1) The enhanced Yang-Baxter operators associated
with the Jones polynomial V and its two-variable extensions P, F
in [19] are redundant.

(2) Let So = (i? ( ci '^) ; μM, α<c', β&) be the ECYB-operator in

Example 2.3. Fix a positive integer CQ and let SQ = (i?(co'co);

μ(c0) 9 a(c0) ? β(c0)^ τ h e n 5^0) i s a redundant enhanced Yang-Baxter

operator and the associated algebra ^%c°""c° is a quotient of Iwa-
hori's Hecke algebra. (See Proposition 5.1 and Lemma 6.11.)

DEFINITION 4.3 (modified Markov trace). Let S =

a(c) 9 β{c)^ b e a n ECYB-operator. With the notation in (3.2), put

(4.2) Tfyc*\b)

Then 7^ ^ n (6) (
The definition of redundant ECYB-operators implies the following.

PROPOSITION 4.4. Let (b c{, . . . , cn) be a colored braid. If the

ECYB-operator S is redundant, then τfi{""c"\b) e End(K(c)) is a

scalar matrix. Moreover,

(4.3) ήc>- >c \b) =
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DEFINITION 4.5 (modified Markov trace). For a redundant ECYB-

operator S, the mapping T^{""CH) sending b e Bnι""'Cn) to the

scalar T^ι[""Cn\b) e K is called the modified Markov trace of S.

THEOREM 4.6 {invariant of non-colored links). Let S =
μ^, a^, β^) be a redundant ECYB-operator. Fix a positive integer
c0 and let S^ = (i?(co>^); μW, α W , /?(co>). i w b e Bn> we put

X{s°\(b) = T(

s

c°{c°'""Co)(b). Then Xι^\ is an invariant ofnoncolored
links and

(4.4) ^ C o ) ( * ) = Trace(//(co))X^°J(έ).

Theorem 3.10 and (4.3) imply (4.4). The claim of the above theo-

rem is that Xg°\ is still an invariant of links even in the case

Trace(μ(ci)) = 0. The proof of this theorem is similar to that of

Theorem 3.1.2 in [19] and we omit it.

EXAMPLE 4.7. Let So be the ECYB-operator in Example 2.3 and
(c )

fix a positive integer cO Then X~°\ coincides with the reduced

Alexander-Conway polynomial in variable tCo. For details, see [4],
[13] and [14]. In [13] and [14], they use an argument about one-tangles

instead of the redundancy of SQ° .
5. The multi-variable Alexander-Conway potential function.

PROPOSITION 5.1. Let So be the ECYB-operator defined by Example
2.3. Then SQ is redundant

The proof of this proposition is long and so is given in Appendix
A. The next two theorems are the main results of this paper.

THEOREM 5.2. Let So be the ECYB-operator in Example 2.3. For
a colored braid (b C\, . . . , cn), let

(5.1) ASo(b; cu . . . , cn) = {tc.-t-^T^'^ψ).

Then Δso is an isotopy invariant of colored links.

Proof. We show that Δ$ is invariant for all the elements of a
Markov class of colored braids introduced in Definition 3.4. The
defining condition (2) of ECYB-operator implies that

(5.2) Δs(bσ±ι ;cι9c29...9cn,cn)= Δs(b cx, c2, . . . , cn).
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The defining condition (1) of ECYB-operator implies that

(5.3) Aso(b;cuc2, ... ,cn)= AS(>{σζιbσk cσkW, ... , cσk(n))

for k > 2. We show that

(5.4) AS()(b ;cι,c2,...,cn) = Δ ̂ σ f 1 ^ c2, cx, c3,..., cn).

Since

we have

S p ^ Cl' c>' - ' c J ( p j 2 ' C l ' c>' -' ° ( σ f 1 δσi) (id

Because 51 is redundant,

Sp« ; 2(^""" C j (δ

and so there are a, β €K such that

But actual computation shows that

and

) ^ ® ^ ) ) Ci

Hence we have (5.4). G

THEOREM 5.3. Let So be the ECYB-operator in Example 2.3 and let
A$o be the invariant of colored links in Theorem 5.2. Then A$o is equal
to Conway's potentialfunction, which is a version of the multi-variable
Alexander polynomial.

The next section is devoted to the proof of the above theorem.
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6. Magnus representation of colored braid groups and the multi-
variable Alexander polynomial. To prove Theorem 5.3, we use the rela-
tion between the multivariable Alexander polynomial and the Magnus

(c c )

representation of the colored braid group Bn

1'"" " . In this section,
we focus on this relation. In Chapter 3 of the book [2], the Magnus
representations of braid groups and pure braid groups are discussed.

(c c )

We reformulate them for the colored braid group ! ? „ ' " " '
Let Fn be a free group of rank n, with generators a\, ... , an.

The braid group Bn acts on Fn by

ai. ctj = otj if j Φ i, i + 1.

(c c )

This induces an action of the colored braid group Bn

1''"' n on Fn
(c c )

since Bn * ' " ' " is a subgroup of 2?w .
DEFINITION 6.1 (Fox's free-differential calculus). Let KFn denote

the group rings of Fn over C. For each j = I, ... , n there is a linear
mapping

——: KFn —• KFn

VOLi

given by
d r

{t2) ^ \ O1 k=l

where ek = ±\ and ^ 7 is the Kronecker δ, where (5z; = 1 if i = j
and <ϊy = 0 if / ̂  7 .

Proposition 3.2 of [2] shows that the mapping d/dat is well-defined.
This mapping is called Fox's free-differential calculus.

(c c )

Let Bί ι'"" n be the colored braid group. Let sc , ... 9 sc be inde-
1 n

terminates corresponding to c\, ... , cn and let

K = C(sCi,...,sCm)

be the field of rational functions in sc 9 ... , sc with coefficients in
1 n

C. Let π(ci' " Ό be the C-a^gebra homomorphism from Fn to K
which sends afι to s^1.

DEFINITION 6.2 (Magnus representation). For & e 2?« "" Λ , let
be the n x n matrix defined by
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with entries in K. This mapping is a group homomorphism according
to the following theorem and is called the Magnus representation of

THEOREM 6.3. The mapping £(ci' Ό : b -+ ξ(c\>~>cn)(b) defines a

group homomorphism from Bp''"'c" into the multiplicative group of

nx n matrices over K.

(c c ) i \

Proof. For b G Bp'"" n , we have τrci> >C«J(Z? α/) = sc . =
sCι = π(ci' Ό ( α , ) from the definition of Bnι'""Cn). This implies
that π(cι>~"cn\b α) = π(ci'-'c«)(α) for a e Fn, which is the condi-
tion (3-18) in [2]. Therefore, we can apply Theorem 3.9 in [2] for our
case and then we get Theorem 6.3. D

For later use, we need a set of generators of Bp*'"'Cn) and their
representation matrices.

PROPOSITION 6.4 (generators). The colored braid group Bnι''"'Cn) is
generated by the following elements σ\j of Bn.

(6.3) ϋij = σj-ισj-2 '' σi+ισjtjσ^ι σj}2σj}x (l<i<j<n),

where γη = 1 if C\ = Cj and y^ = 2 if ct Φ Cj.

Proof. Let H be the group generated by σί7 (1 < / < j < ή).

Then H contains the pure braid group Pn . Let &n be the symmetric

group of degree n and θ: Bn -> &n be the group homomorphism

introduced in Definition 3.1. Let θ ί 1 " "iCn) = θ{B{nx'""Cn)). Then

β f i — O = { τ e &n\Cτ{i) = c . (i < i < n)}9

and I9(σo) (1 < / < j < ή) generate β f 1 " " ' ^ . Hence Θ(H) =
(c c )

©„ "" n . On the other hand, the kernel of θ coincides with Pn,

which is a normal subgroup of 4 C p " " Hence Bp""^" is gener-

ated by Oij {\<i<j<ή) since B{n1' 'Cn) = PnH = H. D
To get the representation matrix of the generators, we have to com-

pute d(b ai)/daj . Let apq = otpOLp+\ α^ for 1 <p <q < n. The
definition (6.1) of the action of Bn on Fn implies that

(if iφp,q),

(6.4) σp^ ai={ <*pq%)q-ι (if / = P) , if ^ = cq,

-i«p,«-i (if / = β),
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and

(6.5) σp = { apqa

p+\ ,q-\ap,q-lap,q

(if iφp,q),

(ifi=p),

<*pll,q-ί<*pq<Xplq-l<Xp+l,q-l ( i f * = <?) >

if CpφCq.

Therefore, the representation matrices are given as follows. Let spq =

sCpsCp+ι

(6.6) ί

•sCq a n d ̂  = 1 - s C / . I f cp = cq,

Sp+\,q-l Sp+2,q-l%

0 0 0

0

ό

i

0

ό

0

ό
s j

0

o
 o

0

ό

0

o
o

0

o
 o

1

ό

n

... o

. : . ό

... o

... o

o
 o

... o

..'. i

If cp

(6.7) c

Φ Cq,

t)

Λ
1 •••

•
 

o
 o

 
o

o
 

o
 o

 
•

0

i
0

0

ό
0

0

P
0

ό
s'c +sc sc

CP CP cq

0

ό
- 1 /

0

P+l
0

ό
/

\q

ό

0

0

• :. ό
••• ~SP.<-2SC/CP

0

i
~Sq-l,q-lScp

Scg

0

Q

0

ό

0

ό
sc

•
 
o

 o
 o

ό
0

1

n
• 0

•'• ό
• 0

• 0

o
 

o
 o

As Lemma 3.11.1 of [2], we have

LEMMA 6.5. The Magnus representation £(ci' Ό of Bn1""9 is
reducible to an (n - lydimensional representation.

We denote the image of b e Bnγy'"y in this (n - 1 )-dimensional
representation by ζ(cι>-"cn)(b). The representation ζ^i' Ό is irre-
ducible. But we do not use this fact. As (3-28) of [2], we have
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PROPOSITION 6.6. Let b e B%ι"m"Cn\ and A(b) be the Alexander
polynomial of the closure b. Assume that C[ Φ Cj for some ί φ j \ then

(6.8) (sCιsCi SCM - l)Δ(έ) = det{ζ^>-c*\b) - id).
CιsCi

Let i: Bnι'""Cn —> Bnn'""Cι be the group isomorphism defined by

V 1 1 1

ifaj) = σn-j+\σn-j+2 • • • σn-i-iσn'Li<rή-i-i"'" σn-j+2σή-j+ι

Let φ = ξ^n'-'Cj o i and ψ = ζ o ι. Then (6.8) implies that

(6.9) (sCisC2---sCn

For 6 G Bn1'"" n , let ty, (6) denote the sum of the signatures of
crossing points of b for which the undercrossing arc has color /. Note
that Wi(b) is equal to the sum of the signatures of crossing points of
b for which the overcrossing arc has color /. In fact, Wi(b) is equal
to the sum of the linking number lk(L/, b\Lj) and the writhe of the
sublink L; of b consist of the components colored by /. Then (2.4)
of [6] shows that the Conway potential function V is given by

(6.10) V(b) =
( Zr t C ' ' ' *Ό cι c2 cn >

Let U be the representation space of ψ(cι>->cn). Let ψp'""c"' be the
(c c )

representation of By

n

 1 ' " ' "; on the space of /c-fold exterior product
Λ* U defined by

= ψ(cι> -O(b)(vι) Λ Λ ψ^

Similarly let <fy£χ9""Cn' be the representation of 5 « " " c " defined by
the /c-fold exterior product of φ(ci»-Ό . By taking the eigenvalues of
ψ(cι> ~>cn\b) into account, we have

(c c \

PROPOSITION 6.7. For b e By

n

1""' n), we have
n-\

( 6 . 1 1 ) d e t ( ^ ( c i ' " c » ) ( * ) - i d ) = ^ ( - l ) Λ - f c 1 ^ C c )

k=o
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Let V^ be the 2-dimensional vector space introduced in Example
2.3 and v[9 v

c

2 its basis. Let v^ — O = V^ <g> ••• ® F<O and
y(cx,».>ς) | ) e j j ^ s u | 3 S p a c e o f p^(c,,...,cn) s p a n n e ( j by the elements vc x ®

AC ίj

• ® ̂ " with #{71ij = 2} = k. Then J^ 1 ' ' " ' C n ) is invariant under the
n

action of p£' - c \Bfr'""c')), where ^ c " " ' c " ) is the representation

of B^'""'Cn) introduced in Proposition 3.6. Let ppj,""^ denote

the representation of B(nι'""Cn) on F f c

( c ' ' '"'c" ]. Let p's\""Cn) be the

representation of 5 i 1 ' " " " defined by

Π ( ^ - 1 ) ^

Let /\kPsι\ ">Cn) denote the representation of Bnx'""Cn) obtained

from the natural action to /\k V^ induced by Pς\'"Cn .

L E M M A 6 .8. Two representations p'sk"' and /\kPs\"' a r e

equivalent

Proof. The linear isomorphism

implies /\kR(c^: ^(v^-^) -> ^ ( κ 1

( C l ' " ' ^ ' c " - ' c - ) ) . Let /} =

ί ^ - 1 ® ^ ® ! ; ^ 1 ® - - - ® ^ " e K ^ 1 ' " " ^ 1 ' ^ 1 " " ' ^ and g) = ^f2®

J®t;J+1® ®vf- G K / 0 1 ' - ' ^ 1 ' 0 " " - 0 . Then {/i, . . . ,/n}

and {ft,...,gΛ} are bases of K / ' 1 ' " " ^ and F^ 1 ' - ' ^ i ' ^ ' - O re-

spectively. The matrix /\k i?/ with respect to the basis {/} Λ Λ

4|/i < ϊ2 < < ijt} and {giγ Λ ΛftJi'i < ι2 < < /*}

is equal to the matrix ή^iά^-^R^^^ ® id^11"1""1): F ^ 1 ' " " 0 ->
p^Cj , . . . , c ί + 1 , c , , . . . , c B ) ^ w h e r e t h e b a s e s yj. A . . . Λ ^ a n d ^ Λ Λ g(k

correspond to Vjι Θ ® i j " with j p = 1 if ^ ^ {i"i, . -. , ̂ } a n d
jp = 2 if 7P G {/i, . . . , ik). This implies the statement of the above
lemma. D

LEMMA 6.9. Let 0'(ci> Ό fo? the representation of Bnι""'Cn) de-
fined by
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(6 .12) φl{-ci>">cn>(b) = φ(c\>™>
ie{cλ,...,cn}

1 1 > ~ I I

(c c )

Then the representation ps

 ι\"" " (b) is equivalent to the representation

Proof. This lemma is proved by comparing the representation ma-

trices of generators of Bnι'""Cn' . In fact, the matrices Ps\ " (σij)

and φ'(cι' -' c* ) (σij) are intertwined by a diagonal matrix with diagonal

elements d\ = 1, dfe = *c T 1> ^3 = ĉ C 1 ^ , ... , dn = t% t~ι dn-\. D
2 1 3 2 n n— 1

Combining above two lemmas, we know that the two representa-

tions />sV C/l) a n c * /\kΦ'(Cl9""cJ are equivalent. On the other hand,

φ(cι>-->cn) = ψ(ci> ~>cn) © ^o where ^o is the trivial representation of
(c c )

Bn

{'"" n sending every element to 1. Hence we have

LEMMA 6.10. Let ψ1^--^ be the representation of B^1"'^ de-
fined by

(6.13) ψ'^-^'{b) = ψp'-'L"\b) | | ζ'y

(c c )

Then the representation ps

 ι'k"' n (b) is equivalent to the representation

Let q G C\{0} such that qk φ \ for any integer k. Let Hn-\(q)
be Iwahori's Hecke algebra defined by

(6.14) Hn^(q) = (Γi, . . . , Tn_x\TiTj = 7}7/(|i - j | > 2),

7}7ί+17} = 7ί+ 17 7}+ 1, Tf - (q - q~x)Ti - 1 = 0 )

as a C-algebra. Let / be the two-sided ideal of Hn_\(q) generated
by the elements (7} + q'ι)(Tj + q~ι) (1 < j < i - 1 < n - 2).

LEMMA 6.11. The algebra A^19

n"'Cn) is ίsomorphic to (Hn_ {(q)/I) ®
K as an abstract K-algebra.

(c c )

Proof. Lemmas 6.8-6.10 show that the algebra As

ιf^"' n is isomor-

phic to 0 ; o

1 ¥ _ ) ς ( ί : ) where Af _ 1ς(^) is the full-matrix algebra
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over K of size «_iC; and n-\Cι = (n - 1)!/i\(n - 1 - /)!. By using
the representation theory of Hn_\{q), which is isomorphic to C&n ,
(Hn-ι(q)/I) is isomorphic to Θ?~o Λ ^ c / C ) . Hence (Hn-ι(q)/I)®

(c c )

K is isomorphic to As

ι'n"" n . D

Proof of Theorem 5.3. Since ψ£ci''"'c"> is an irreducible represen-
tation, Lemma 6.10 implies that the invariant T's x is a linear com-
bination of traces of representations ψ£Cι'""Cn\b) (0 < k < n - 1).
On the other hand, (6.10) and Proposition 6.7 imply that the Conway
potential function is a linear combination of traces of representations
ψ'(ci>->cn) (o < k < n - 1). Both invariants are equal to 0 for split
links; we have

(6.15) Tf

SΛ{\) = T'SΛ{{σ2

xT) = ... = 7j f l((σ1

2...σΛ

2.2Γ) = 0,

Hence the following proposition shows that 7^ λ(b) = Δ(5). D

Let ηnι'""Cn be a linear combination of traces of ψ£ci9""c«' with

coefficients α^ G K, where ψ£Cι'""Cn' is the representation of

B{cx,..., cn) i n t r o d u c e d m Lemma 6.10;

ηfr>''->c»\b) = ΣakTmccψ£Cι'~-c»\b) for b e B^"-^ .

PROPOSITION 6.12. The coefficients ak are determined by the values

Proof. Let Hn-\(q) be Iwahori's Hecke algebra defined by (6.14)
and I the two-sided ideal of Hn_χ{q) generated by the elements
(Tt + q-^Tj + q-1) (i<j<i-l<n-2).Ύhen9foτxeHn-l(q),
there are b0, ... , bn_x e K and g{, ... , gn_ι e Hn_x{q) such that

(6.16) x = bo + bιgϊxTΪgι+b2gϊιTΪTΪg1

+ + V i V l i Γ i - Γ i - i & - i m o d /

Let τ: Hn_χ{q)/I —> K be a linear function such that τ(xy) = τ(yx).
Then τ is a linear combination of the traces of irreducible representa-
tions of Sn corresponding to a hook type partition of n. A hook type
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partition is a partition of the form (m, lk). Moreover, (6.16) implies
that τ is determined by the values τ ( l ) , τ(Γ1

2), . . . , τ(7? T^_x).

Let ηfr'""'^ = 7^1' Ό Lemma 6.11 shows that 4%'""C / ι ) is
isomorphic to {Hn_\(q)/1) ® K as an abstract ^-algebra. Hence we
can apply the above argument to rfc'"''q) and we know that r$''"'q)

is determined by the values at 1, σf, σfσ^, . . . , G\G\ * * * cr̂ _i This

implies that ηn

 Cχ' ' c" is determined by the values at 1, σf9 o\β2, -..,
o\a\--&% if ίc , , ίc are in a neighborhood of q, and so this
statement is also true for generic tc , ... 9 tc . π

I n

7. Axioms for the Conway potential function. Hartley proposes ax-
ioms to determine the potential functions of bi-colored links in [6].
Nakanishi gives a complete set of axioms to determine the potential
functions for colored links with up to 3 colors. In the following, we
give axioms for the potential function of colored links. The potential
function has the following characters.

(1) Let L+, L- and LQ be three links which are identical except
within a ball where they are shown as in Figure 1. Then the potential
function V satisfies

(2) Let L++, L and LQO ^ e three links which are identical except
within a ball where they are shown as in Figure 1. Then the potential
function V satisfies

) - {tctd + t~ιt^)V(LOo) + V(L__) = 0.

(3) Let L2\\2, Lull, A122, £2211, Ln , L22 and LOoo b e s e v e n

links which are identical except within a ball where they are shown
as in Figure 1. Let

g+(x) = x + x~ι, g-(x) = x - x" 1 .

Then V satisfies

+ V(L22ii)) + g-(t-ιtCitCi)g+{t,

- g+itc^g-itc^tc^M^n) ~ S-(^ 2 φV(L O O o) = 0.

(4) For a trivial knot L with color c, V(L) = l/(ίc - ί " 1 ) .
(5) Let L5 and Lg be four links which are identical except within a

ball where they are shown as in Figure 1. Then V satisfies

(6) For a split union L of a link and a trivial knot, V(L) = 0.
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REMARK 7.1. (1) The 5th relation is a generalization of the relations
(V) and (VII) in [15].

(2) The 3rd relation is not known before. But we can show this rela-
tion by a direct computation using the state model. This relation can
be thought of as a generalization of (VIII) in [15]. We do not need the
Doubling Axiom 4.2.6 in [18]. This is obtained by the following way.
Let *SΌ be the ECYB-operator in Example 2.3. Then the argument in
§6 shows that the algebra Ay9^9^ is isomorphic to H2{q). Hence

-4s 32 is 6-dimensional and so there must be a linear relation

among seven elements 1, a\, o\, of σ | > G\ > G\ > θ\θ\β\ , 02tff <?2 I
actually computed this relation with MACSYMA by using the 8-
dimensional representation of A^ι^2iC^ obtained by the ECYB-
operator.

THEOREM 7.2. The above relations (l)-(6) determine the potential
function.

REMARK 7.3. The first three relations are local relations. With these
relations, we can reduce V of a colored link to a linear combination



128 JUN MURAKAMI

of V's of links which are split sums of trivial knots, Hopf links and
connected sums of Hopf links. The last three relations determine V
of such reduced links.

Proof of Theorem 7.2. Let S be the ECYB-operator of Example
2.3. Then, with Theorem 5.3, we know that V satisfies the relations
(l)-(6) because a computation shows that T's x satisfies (l)-(6). So it
remains to show that we can compute V of any closed colored braid
by using the relations (l)-(6).

Let θ be the group homomorphism from Bn to the symmetric
group &n defined by 0(σ, ) = (/ i+l). Then Bn acts on {1, 2, . . . , n}
by θ. Let j ^ - - ^ be the two-sided ideal of CJ5? !""> C | | ) generated
by the elements b~ιxb, where b eBn and x is one of the elements

σ, - g-(tcm) ~ GJX , (if Cb{i) = tyi+i)),

σi ~ sΛtcb{i)tcb{iJ + σf2 (if cb(i) φ cmι))

and

of CBnb{l)""yCb{n)). Let M{nι""iCn) = c 4 C l " ' " O / 4 C l ' " " C n ) and pn the

natural projection from CB^9""^ to Aff1""'^ for / = 1, 2, . . . ,

/ i - l .

LEMMA 7.4. 77ẑ  algebra Mp'°2'C3 is spanned by the images of I,

o\, o\ 9 o
2σl, cr|σj2, a\σ\β\ as a C-vector space.

Proof of this lemma is given in Appendix B.

LEMMA 7.5. The algebra M^ 1 '" ' 'C n ) is generated by pn (σf), pn (cr|),

(c c )

Proof. We claim that (*) the mage of every generator σ/; E i?^ ' ' " ' n

is written in terms of the images of σf, . . . , σ%_{. This fact and
Lemma 7.4 imply Lemma 7.5. To show (*), we use the induction
on n. If n = 3 then Lemma 7.4 implies (*) and Lemma 7.5. For
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the n = k > 3 case, we assume that (*) and Lemma 7.5 are proved

for the case n = k — I. Then the induction hypothesis implies that

pk(σij) is written in terms of pk(σf), PkiPi)> > Pk{σl-i) i f J < k

or / > 1. It remains to show that Pki^ik) * s written in terms of

Pk(σϊ), PkiPi) > > Pk{?l-\) R e c a 1 1 t h a t

σijk = σk_ι σ2σ\a2

x σ ^ j .

The middle part σ^_2 σ20fσ^~1 σ̂ Γ_l2
 c a n be considered as an el-

ement of B^χ"'Ck~2iCk and so we can apply the induction hypothesis
to this part. Then Lemma 7.5 implies that

Pk(<*\k) = <* Ί

for some α, β e C and y, zx, z 2 G C ^ " " ^ " ^ > w h e r e ^

is considered as a subalgebra of GB^ 1 ' " " k . By Lemma 7.4,

Pk(σk-ισk-2σk-ι) ^s a linear combination of the images of 1, σ^_2,

βfc-i* σk-2σk-i> σk-iσk-2 a n ( ^ σk-2σk-ισk-2- Hence we get Lemma
7.5 for the case n. D

Now prove Theorem 7.2 by an inducution on n. If n = 1, then the

closure of a 1-braid is a trivial knot. Assume that n>2. Note that the

mapping V from colored links to C can be considered as a mapping

from CB{nι"-Cn) to C by V(αiZ>i+ + α Λ ) = αiV(£ r)+ * +«rV(5r)

for α i , . . . , ar e C and bx, . . . , Z>r e £ ? ' " " C n ) . Since V(x) = 0 for

x e ifr'""0"), V is factored by Mnι'""Cn), we may consider V as a

linear mapping from Mn19'" to C. Lemma 7.4 and Lemma 7.5

imply the following:

LEMMA 7.6. The algebra MJf1""9*"* is a union of

ί^^^^^Γ''^--^ and M^Γ'̂

This lemma implies that, for every x e CB^1''"'Cn), there are a, β e

C and y, zx, z 2 eΛ/^ί""> c"" ! ) such that Pn(x) = ay+flzipn(a^l)z2.

Hence V(x) = αV(y) + βV(zιpn(σ%_ι)z2). But, by using the rela-

tion (5), we have V(x) = αV(y) + (ίc - ί"1 )j9V(ziz2). Hence the
Λ—1 n—1

computation of V for elements of M\ ι'"" n is reduced to that of
(c c )

Mn^\"9 n"1 . This completes the proof of the theorem. D
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Appendix A. Proof of Proposition 4.8. To prove Proposition 4.8, we
need the following two lemmas.

LEMMA A.I. Let r ^ ) = i?(^i)i?(^ 2) e Έnά{V^c^^). Let rx, r2

be elements of End(F( ci 'C2>c

3)) defined by r\ = r^c^c^ ® id, r2 = id <g>

r(c2,c3)
 rf/ίen {1, r i , Γ2, riΓ2, r2v\, rχr2rι} is a basis of Aς'^2'^ .

Proof. Let A's1^2'0* is the subalgebra of As^(c\ ,c2,c{) gener-
ated by 1, ΐ\ and r2. Let

g+(χ) =χ + χ~ι , g_(χ)=x- x~ι .

From the definition of R(cι ̂ ^ , we have

(A.2) g-{tcχtc2)rir\r2 - g-itφ

g-{t2

ctcJtCι) + g-{tcJtCl))r2

lie c c 1

From these two relations, we know that the algebra ^ ' 3 ' 2 ' 3 is
spanned by {1, τ\, r2, rχv2, r2r{, r 1r 2r 1} as a linear space. Actual
computation shows that {1, r\, r2, Ϊ\Y2 , r2v\, r\r2r\] is linearly inde-
pendent. Hence {1, rx, r2, rxr2, r2rx, rχr2rχ) is a basis of Λp^Cl'c* .
In the following, we show that As^ = Aς1^2'^ by showing that the
generators of As 3 are written in terms of r\ and r2 .

Case 1. First, we treat the case C\ — c2 = C3 = c. In this case,
β(c>c'c) is generated by σ\ and σ2. Hence A^'^^ is generated by
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)id and id®i?(c 'c). But we have i?(c'c) = g-(tc)-ι((R{c>c))2-l)

and so we have Ag£9 = 4̂̂  3 .

Case 2. Assume that C\ = c2 φ c3 . In this case, B^ι'Cι'c*' is gen-

erated by σ\ and σ\. Hence Ay^1'^ is generated by R^c^c0 <g>id

and r2. But we have i?(c>c) = ((i?^'c))2 - l)/(qc - q~ι) and so we
i Ac, ,c. , c j .fie. ,c. ,cS)
l i d V t< / I r» o — -ίl o o

fc c c ̂

C α ^ 3. Assume that Ci ^ C2 = C3. In this case, B3

1' 1 ' 3 is

generated by a\ and σ2 Hence, as in Case 2, we get A^^1^2 —

Case 4. Assume that cx = c3 ^ c2 . In this case, B^ι'Cl'Cι' is gener-

ated by a t

2, σ | and σf 1 σ 2 σi. Hence A^x^Cl'Cι) is generated by rx, r2

and {{R^ >c2^)~l ® id)(id ® i?(ci 'ci))(i?(ci 2̂) ® id). But a computation

shows that

(A.3) ((i? ( ci ' c 2))-i ® id)(id(8) i? ( ci ' ci))(i?( ci 'C2) (g id)

_l !—i r2

g+(tCι)

g-{tCχ)g-{tCi)g-{tCχtCi)

g-(tCι)g-(tCi)g-(tCitCi)

g+(tc2)

So we have A^^^Af^K

Case 5. Assume that c\ φ c2, c2φ c^ and C\ φ c$. In this case,
£(c,,c2,c3) i s g e n e r a t e d b y σ 2 > σ .2 a n ( i σ~iσ2σι. Hence ^ J 1 ^ 2 ' 0 ' ' is

generated by rx,r2 and ((Λ^. ^))- 1 ®id)(id®i?(c3'c.))(id®'i?(c.'c3)).
>C2) (gi id). But a computation shows that
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g-{tcjtr)g-{tctcltr) g-(tJtC)g-(tC)^—v^_^v_v_ys/ ,

g+(c.)
2 g_{tcl)g-{tφ2)

12

g+{tc2)

So w e h a v e A%] f 'c>) = Arjfχ°2'c']. α

LEMMA A.2. Let A^'n"'Cn) be the associated algebra of S. We

regard Aς'nZ'ι as a subalgebra of Ap'n"'Cn) naturally. Then

{Ά.0) Λ S n -Λs,n-1 +ΛS,n-l

Proof. We prove by an induction on n. First, we treat the case

n = 2. The algebra A^\'^ is generated by 1 and R(c2>cθR(cι>ci) if

C\ Φ C2 If C\ = C2 = c, then -4^'^ is generated by 1 and R(c>c">.

But i?(c-c) = ((i?(c'c))2 - l)/(ίc - ί^1) and so ^ c ; 2

c ) is generated by

1 and (i?( c ' c))2. Hence ^ J 1 ^ ^ is generated by 1 and R^^R^x^)
for any c\ and C2. The quadratic relation (3.8) proves the lemma.
Next, treat the case n = 3. In this case, Lemma 3.15 implies (A.5).

(c c )

Now, prove for n > 3. The group Bn1'"" is generated by its

subgroup B^\""c"~ι and the elements σ~\ σ^σ^σ^i cτn_x(1 < k < n - 1) where y^ — \ if cw = c^ and ŷ  = 2 if otherwise.

By the induction hypothesis, it is enough to show that py "*"c" ( σ ^ )

and Psyy(σή-ισnn-2σn-ύ are contained in

We know that /J^1 n~1 " (σπ_i) = ̂ 1 \Pn-\-

if cw_i = cn . Hence, from the formula (3.10) and(3.11), weknowthat

the element Ps' " (σn-iσln-2σn-ι) can be written as a linear combi-

nation of the elements py'"" °n (1), py'""'c" (σ%_2), Pi \σn-1) >
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PS yσn~2σn-V> Ps \σn-\σn-2> a n α Ps yσn-2σn-\σn-2>

Hence the lemma is proved. D

Proof of Proposition 4.8. By Lemma 3.16, every element Λ: G
^(c,^...,c. I,c ( 1) i t t s χ = ^ +

y\, y2, y-i € ^CJn-iC"~' Hence we have

(A.6) Sp!I
c"-'c")(x(id0("-1) x

which is contained in A^''"\c"~ι . D

Appendix B. Proof of Lemma 7.4. Let

g+{x) = x + χ-\ g-(x)=x-x~ι.

The definition of iff1 '^'^ and the relations of £ 3 imply that

LEMMA B.I. Let be B^1'^'^ and x be one of

-g-(t~ι tc )(g+(tc tc
Cb(\) » ( 3 ) / v o + v Sfl) Lb(
Cb(\)

+g-(t~ι tc tc )g+(tc )at - g+(tc )g-(tc tc
d V Cb{\) Cb{2) S ( 3 ) / d + V Cb{l)J 1 d + V Cb(l)'° V Cb{\) Cb(2)

g+(tcm)g-(tcjσfσ2σfσ2

+ σjσt) + g-
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+g-(t~ι tc tc )g+{tc )G\G} ~ g+(tc )g-(tc tc t
d V Cb{\) Cb(2) Cb(3)JC>^K Cb(3)J ^ 1 ό + V Cb(l)'° V Cb(\) Cb(2)

-g-(t~2ή )σf,
Cb(2) Cb(3)/ Z

-g-{t~λ tc )(g+(tc tc '
6(1) 6 ( 3 ) / V O ^ V 6(3) Lb(2)'

t71 tc tc ) g + ( t c )σ}σ\ - g+(tc )g-(tc tc trl ) σ 2
Cί)(l) 6(2) LKϊ)J°^y tb(l)J 1 -i o + κ cb(l)'a V Cb(l) cf>(2) Cj,(3)' -ί

-g-(t-2t2

c )σ2

2.
V S(2) S(3) 7 Z

Then pn(b-χxb) = 0.

Proof of Lemma 7.4. We can solve the above six equations with re-
spect to σ\σ\ϋ\^ σ2σfσ2, σ^xσ\a\^ σ\σ\σ^x, σ

2

σ\σ

2

 a n d G\GIG\G2 if

- 1 ~ 6 t~s t~5 (β + i)2(tc - i)3(*c + i) 3 (^ +1)
Cb{\) Cb(2) Cb(3)y Cb(\) J V Lb{2) > V Lb(2) ' V ^ ( 3 ) ^

X 11 r ir ir Zίlr Ir Ir lr Zr tr \ Zr Ir Ir
Lb{\) Lb(2) Lb(3) Lb{\) Lb{2) S(3) cb(l) Cb(2) Cb(3) b(l) S(2) S(3)

~T~ lr lc Ir *Ό Ir lc lr I lr Ir I Ir Ir
Cb{\) b{2) S(3) Lb(2) S(3) Lb(l) <^(3) ^ ( i ) S ( 2 ) C*(l) C*(2)

t] - ή tl +tc tl + 2tl tc -tc )
Cb{\) Cb{2) Cb{\) Cb{2) Lb{\) C

b{2)
 Cb{\) Lb(2) Lb(l)/

X ( Ir lr lr lr lr 2*1 r lr lr lr lr
Lb(2) Lb(3) Lb(l) Lb(2) Lb(3) Lb{\) Lb(2) Lb(3) Lb{2) Lb(3)

+ 2ή ή ή + ή ή ή +ή ή -ή t2

c ή
Lb(l) Cb(2) Lb(3) Cb(l) Lb2

 Lb(3) Lb(2) Lb(3) Lb(l) Lb(2) Lb(3)

-t2

c t2

c ή +t2

c ή +ή ή t2 -t2 ή t2

Lb{\) cfe(2) Lb{3) Lb{2) Lb{3) Lb{l) Lb(2) Lb(3) Lb{\) Lb(2) cb{3)

-ή. t2 +ή t2 t2 +t2 t2 t2 +2t2 t2

Lb(2) Lbi3) Cb(l) Cb(2) Lb(3) Lb{\) Cb(2) Cb(3) Lb{2) Cb(3)

-n b{\) tc ~2t2
Lb(\) tcLb(3) -n +6(3)

tA

c t2

b{\) Lb(2)

This implies that all the elements in Mjfι "Cl'Cz can be written in terms
of 1, a\, σ | , O\O2, σ2σ\ and σ\σ\a\ if the parameters tCγ, tCl and
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tCi are generic. Note that the above condition is also satisfied in the
case C\ = C2, C\ = c?>, C2 = C3 or c\ = C2 = £3 if the p a r a m e t e r s

t\, t2 9 are generic. This implies Lemma 7.4. α
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