ON THE INCIDENCE CYCLES OF A CURVE: SOME GEOMETRIC INTERPRETATIONS

Luciana Ramella

Abstract

In this paper, we note that the incidence cycles of a seminormal curve X intervene in the calculation of the arithmetic genus $p_{a}(X)$, of the algebraic fundamental group $\pi_{1}^{\text {alg }}(X)$ and of the Picard group $\operatorname{Pic}(X)$ of X. Really we do not consider only seminormal curves, but more generally varieties obtained from a smooth variety by glueing a finite set of points.

0. Introduction. By a curve we mean a dimension 1 quasi-projective scheme over an algebraically closed field k.

Let X be a connected reduced seminormal curve (see $[\mathbf{T}],[\mathbf{P}]$ and [D] for the definition and the geometric meaning of seminormality).

Let X_{1}, \ldots, X_{n} be the irreducible components of X; the normalization \bar{X} of X is isomorphic to the disjoint union $\bigsqcup_{i=1}^{n} \bar{X}_{i}$ of the normalizations \bar{X}_{i} of the curves X_{i}. Let $\pi: \bar{X} \rightarrow X$ denote the normalization morphism.

Let P_{1}, \ldots, P_{m} be the singular points of X and let x_{1}, \ldots, x_{M} be the branches of $X \quad(x \in \bar{X}$ is a branch of X over a singular point P of X if $x \in \pi^{-1}(P)$).

We define $\nu(X)=M-m-n+1$. In $[\mathbf{R}]$ one can find a geometric characterization of the number $\nu(X)$ in terms of the incidence cycles of X. One associates to the curve X the graph Γ whose vertices are $P_{1}, \ldots, P_{m}, X_{1}, \ldots, X_{n}$ and whose edges represent the M branches of X in this way: if x_{r} is a branch over P_{i} and $x_{r} \in \bar{X}_{j}$, an edge joining P_{i} and X_{j} is constructed. Any cycle of the graph Γ associated to X is said to be an incidence cycle of X.

In $[\mathbf{R}]$ it is proved that the graph Γ associated to X is connected, the number of the independent cycles of Γ is $\nu(X)$ and Γ contains cycles if and only if X satisfies one of the following conditions:
(a) an irreducible component of X is not locally unibranch,
(b) two irreducible components of X meet in more than one point,
(c) X contains polygons.

In the present paper we'll consider more generally a class of varieties X of dimension $r \geq 1$ and we'll see that the number $\nu(X)$
intervenes in the calculus of the arithmetic genus $p_{a}(X)$, of the algebraic fundamental group $\pi_{1}^{\text {alg }}(X)$ and of the Picard group $\operatorname{Pic}(X)$ of X.

By a variety we mean a reduced quasi-projective scheme over an algebraically closed field k.

Now we recall the definition of glueing of varieties and of k algebras.

Definition 0.1. Let X and X^{\prime} be two varieties, let x_{1}, \ldots, x_{M} be closed points of X^{\prime} and let P be a closed point of X. We say that X is obtained from X^{\prime} by glueing x_{1}, \ldots, x_{M} over P if there exists a morphism $f: X^{\prime} \rightarrow X$, called a glueing morphism, making cocartesian the following square:

where k_{i} is the residue field of x_{i}, the residue fields of x_{i} and P are isomorphic to k, δ is induced by the diagonal morphism, i and j are the canonical injections.

Algebraically Definition 0.1 is equivalent to the following
Definition 0.2 (see [T] §1 and [P] §1). Let A and B be two finitely generated k-algebras, with k an algebraically closed field, let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{M}$ be maximal ideals of B and let \mathfrak{m} be a maximal ideal of A. We say that A is obtained from B by glueing the maximal ideals $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{M}$ over \mathfrak{m} if A is the fibered product of B and k over $k_{1} \oplus \cdots \oplus k_{M}$, i.e. if we have the following cartesian square:

where α is the canonical projection $A \rightarrow A / \mathfrak{m} \cong k, \beta$ is the canonical projection $B \rightarrow B / \mathfrak{m}_{1} \oplus \cdots \oplus B / \mathfrak{m}_{M}=k_{1} \oplus \cdots \oplus k_{M}, k_{i} \cong k$ and δ is the diagonal morphism.

We recall that a seminormal curve X is obtained from the normalization \bar{X} by a finite number of glueing morphisms (see [T], Theorem 2.1).

Note that Mestrano in [Me] used Severi curves, which are curves obtained from a finite (disjoint) union of projective lines by a finite number of glueing morphisms, to study the Picard group of the rational points of the Picard scheme of C_{g}, where C_{g} is the universal curve over the function field of the coarse moduli space M_{g} of the curves of genus g.

In what follows X denotes a connected variety of pure dimension r whose singular locus $\operatorname{Sing}(X)$ consists of a finite set of points P_{1}, \ldots, P_{m}, such that the normalisation \bar{X} of X is a smooth variety having n connected components, every one of them of dimension $r, \bar{X}_{1}, \ldots, \bar{X}_{n}$ and the normalisation morphism $\pi: \bar{X} \rightarrow X$ is the composition of a finite number of glueing morphisms satisfying the conditions of Definition 0.1. Let M be the number of points of $\pi^{-1}(\operatorname{Sing}(X))$; we define $\nu(X)=M-m-n+1$.

We'll prove the following results:

Theorem 0.3. If X is projective, we have

$$
p_{a}(X)=p_{a}\left(\bar{X}_{1}\right)+\cdots+p_{a}\left(\bar{X}_{n}\right)+(-1)^{r-1} \nu(X) .
$$

Theorem 0.4. We have

$$
\pi_{1}^{\mathrm{alg}}(X) \cong\left(\pi_{1}^{\mathrm{alg}}\left(\bar{X}_{1}\right) * \cdots * \pi_{1}^{\mathrm{alg}}\left(\bar{X}_{n}\right) * L_{\nu(X)}\right)^{\wedge}
$$

where L_{ν} denotes the free group with ν generators, $*$ denotes the free product of groups and \wedge denotes the completion of the group.

Theorem 0.5. We have $\operatorname{Pic}(X) \cong \operatorname{Pic}\left(\bar{X}_{1}\right) \oplus \cdots \oplus \operatorname{Pic}\left(\bar{X}_{n}\right) \oplus$ $\nu(X) k^{*}$, where k^{*} is the multiplicative group $k-\{0\}$ and νk^{*} denotes the direct sum of ν copies of k^{*}.

Theorem 0.3 is an easy calculation.
Theorem 0.4 was obtained by Vistoli in [V] for X irreducible or having a unique singular point. He proved his result by obtaining any étale covering of X from an étale covering of the normalization \bar{X} by glueing the fibres of the branches of X.

By generalizing Vistoli's constructions described in [V], one can prove that any étale covering of X is obtained from the étale coverings of $\bar{X}_{1}, \ldots, \bar{X}_{n}$ by a finite number of glueing morphisms.

But in a shorter way we'll prove Theorem 0.4 by induction on n and by using Vistoli's results on varieties having only one singular point.

Theorem 0.5 generalizes a result of Roberts contained in [Ro1] and in [Ro2]; by using the Mayer-Vietoris sequences, Roberts calculated the Picard group of an affine curve $X=\operatorname{Spec}(A)$ having the irreducible components X_{i} rational, i.e. $\bar{X}_{i}=\operatorname{Spec}(k[t])$.

In order to calculate the $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(X)$ of X, we construct the line bundles of X by glueing line bundles of \bar{X}, by using a similar method as the one employed in [Mi] to construct the projective modules over a ring A satisfying the conditions of Definition 0.2.

1. The arithmetic genus. The arithmetic genus of a projective variety X of dimension r is the number $p_{a}(X)=(-1)^{r}\left(\chi\left(O_{X}\right)-1\right)$, where $\chi\left(O_{X}\right)$ is the Euler-Poincaré characteristic of O_{X}.
1.1. Proof of Theorem 0.3 . There is the following exact sequence of sheaves on $X: 0 \rightarrow O_{X} \rightarrow \pi_{*} O_{\bar{X}} \rightarrow \sum_{P \in X} \bar{O}_{X, P} / O_{X, P} \rightarrow 0$, where $\bar{O}_{X, P}$ is the integral closure of $O_{X, P}$. Since $O_{X, P}$ is obtained from $\bar{O}_{X, P}$ by glueing a finite number of maximal ideals, we have length $\left(\bar{O}_{X, P} / O_{X, P}\right)=M_{P}-1$, where M_{P} is the number of points x of X lying over $P\left(x \in \pi^{-1}(P)\right)$. Since the morphism π is affine, then $\chi\left(\pi_{*} O_{\bar{X}}\right)=\chi\left(O_{\bar{X}}\right)$ and therefore $\chi\left(O_{X}\right)=\chi\left(O_{\bar{X}}\right)-\sum_{P \in X}\left(M_{P}^{-1}\right)$.

Let us suppose r odd.
We prove first that $p_{a}(\bar{X})=p_{a}\left(\bar{X}_{1}\right)+\cdots+p_{a}\left(\bar{X}_{n}\right)-n+1$. We proceed by induction on n. For $n=1$ it is true. Now we suppose that the statement is true for $n-1$ and we consider $Y=\bigsqcup_{i=1}^{n-1} \bar{X}_{i}$; then we have

$$
\begin{aligned}
p_{a}(\bar{X}) & =1-\chi\left(O_{\bar{X}}\right)=1-\chi\left(O_{\bar{X}_{n}}\right)-\chi\left(O_{Y}\right)=p_{a}\left(\bar{X}_{n}\right)+p_{a}(Y)-1 \\
& =p_{a}\left(\bar{X}_{1}\right)+\cdots+p_{a}\left(\bar{X}_{n}\right)-(n-1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
p_{a}(X) & =1-\chi\left(O_{X}\right)=1-\chi\left(O_{\bar{X}}\right)+\sum_{P \in X}\left(M_{P}-1\right)=p_{a}(\bar{X})+M-m \\
& =p_{a}\left(\bar{X}_{1}\right)+\cdots+p_{a}\left(\bar{X}_{n}\right)+\nu(X) .
\end{aligned}
$$

If r is even, the calculation is similar.
2. The algebraic fundamental group. If X is connected, there exists a profinite topological group G such that the category $\operatorname{Et}(X)$ of the étale coverings of X is equivalent to the category $\operatorname{Ac}(G)$ of the finite sets on which G acts continuously. G is unique up to unique isomorphism; it is denoted $\pi_{1}^{\mathrm{alg}}(X)$ and it is defined the algebraic fundamental group of X.

Vistoli proved in [V] the following propositions:

Proposition 2.1 (see [V], Teorema II.12). Let X and X^{\prime} be connected varieties and let $f: X^{\prime} \rightarrow X$ be a composition of a finite number of glueing morphisms; if $x \in X$, let $p(x)$ denote the cardinality of the fibre $f^{-1}(x)$.

We have $\pi_{1}^{\mathrm{alg}}(X)=\left(\pi_{1}^{\mathrm{alg}}\left(X^{\prime}\right) * L_{p}\right)^{\wedge}$, where $p=\sum_{x \in X}(p(x)-1)$.
Proposition 2.2 (see [V] Corollario II.11). Let X_{1}, \ldots, X_{n} be disjoint connected varieties, let $x_{1} \in X_{1}, \ldots, x_{n} \in X_{n}$ be n closed points. Let X denote the variety obtained by glueing the points x_{1}, \ldots, x_{n}.

Then we have $\pi_{1}^{\mathrm{alg}}(X)=\left(\pi_{1}^{\mathrm{alg}}\left(X_{1}\right) * \cdots * \pi_{1}^{\mathrm{alg}}\left(X_{n}\right)\right)^{\wedge}$.
2.3. Proof of Theorem 0.4 . We proceed by induction on the number n of the irreducible components of X. If $n=1$, the claim follows from Proposition 2.1.

Now we suppose that the theorem is true for $n-1$.
Let X^{\prime} be the variety $\pi\left(\bigcup_{i=1}^{n-1} \bar{X}_{i}\right)$; we can suppose that X^{\prime} is connected.

Furthermore we can suppose $P_{1} \in X^{\prime} \cap X_{n}$, so there exist a point $a \in X^{\prime}$ and a point $b \in X_{n}$ such that $\pi(a)=\pi(b)=P_{1}$. Let $X^{\prime \prime}$ denote the variety obtained from $X^{\prime} \sqcup X_{n}$ by glueing a and b over P_{1}.

The variety X can be obtained from $X^{\prime \prime}$ by a finite number of glueing morphisms.

Then we can factor the morphism π as:

$$
\pi: \bigsqcup_{i=1}^{n} \bar{X}_{i} \xrightarrow{\varphi_{1}} X^{\prime} \sqcup \bar{X}_{n} \xrightarrow{\varphi_{2}} X^{\prime} \sqcup X_{n} \xrightarrow{\varphi_{3}} X^{\prime \prime} \xrightarrow{\varphi_{4}} X .
$$

From the inductive hypothesis we have

$$
\pi_{1}^{\mathrm{alg}}\left(X^{\prime}\right)=\left(\pi_{1}^{\mathrm{alg}}\left(\bar{X}_{1}\right) * \cdots * \pi_{1}^{\mathrm{alg}}\left(\bar{X}_{n-1}\right) * L_{\nu\left(X^{\prime}\right)}\right)^{\wedge}
$$

From Proposition 2.2 we have $\pi_{1}^{\text {alg }}\left(X^{\prime \prime}\right)=\left(\pi_{1}^{\text {alg }}\left(X^{\prime}\right) * \pi_{1}^{\text {alg }}\left(X_{n}\right)\right)^{\wedge}$ and from Proposition $2.1 \pi_{1}^{\mathrm{alg}}(X)=\left(\pi_{1}^{\mathrm{alg}}\left(X^{\prime \prime}\right) * L_{p}\right)^{\wedge}$, where $p=$ $\sum_{i=1}^{m} p\left(P_{i}\right)-m$ and $p\left(P_{i}\right)$ denotes the cardinality of the fibre $\varphi_{4}^{-1}\left(P_{i}\right)$.

We must prove $\nu(X)=\nu\left(X^{\prime}\right)+\nu\left(X_{n}\right)+p$.
If \bar{Y} is a union of connected components of \bar{X} and $Y=\pi(\bar{Y})$, we denote by m_{Y} and M_{Y} the number of the singular points of Y and the number of the points of \bar{Y} lying over the singular points of Y respectively. We note that $\nu\left(X^{\prime}\right)=M_{X^{\prime}}-m_{X^{\prime}}-n+2$ and $\nu\left(X_{n}\right)=M_{X_{n}}-m_{X_{n}}$.

Let us consider the last morphism φ_{4}; we find

$$
M=M_{X^{\prime \prime}}+\sum_{i=1}^{m} p\left(P_{i}\right)-m_{X^{\prime \prime}}
$$

Moreover the glueing morphism φ_{3} gives the equalities $M_{X^{\prime \prime}}=$ $M_{X^{\prime}}+M_{X_{n}}+2$ and $m_{X^{\prime \prime}}=m_{X^{\prime}}+m_{X_{n}}+1$.

So, after easy calculations, we can conclude.
3. Line bundles obtained by glueing. We begin with a lemma.

Lemma 3.1. Let X be a (connected) quasi-projective variety and let F be a locally free sheaf on X of rank r. If x_{1}, \ldots, x_{M} are M closed points of X, then there exists an affine open U of X containing x_{1}, \ldots, x_{M} such that the $O_{X}(U)$-module $F(U)$ is free of rank r.

Proof. For any (standard) affine open $V=\operatorname{Spec} A$ of X we have that the sheaf $F_{\mid V}$ is isomorphic to the sheaf \widetilde{N} associated to the A-module $N=F(V)$ (see [H], Chapter II, §5).
N is a projective A-module of rank r (see [Bo], Chapter II, $\S 5$, Theorem 1).

Let us choose V containing the points $x_{1}, \ldots, x_{M} ;$ let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{M}$ be the maximal ideals of A corresponding to the points x_{1}, \ldots, x_{M} respectively.

If $S=\bigcap_{i=1}^{M}\left(A-\mathfrak{m}_{i}\right)=A-\left(\bigcup_{i=1}^{M} \mathfrak{m}_{i}\right)$, the ring A_{S} is semi-local, then the A_{S}-module $N_{S}=N \otimes_{A} A_{S}$ is free of rank r (see [Bo], Chapter II, $\S 5$, Proposition 5) and there exists $f \in S$ such that N_{f} is a free A_{f}-module (see [Bo], Chapter II, $\S 2$, Corollary 2 and the proof of the Proposition 2 of Chapter II, $\S 5$). We take $U=\operatorname{Spec} A_{f}$.

Let X be a connected variety obtained from a variety X^{\prime} by glueing the points x_{1}, \ldots, x_{M} of X^{\prime} over a point P of X. The glueing morphism $f: X^{\prime} \rightarrow X$ induces a group homomorphism $f^{*}: \operatorname{Pic}(X) \rightarrow$ $\operatorname{Pic}\left(X^{\prime}\right)$. We want to see how a line bundle on X originates from a line bundle on X^{\prime}.

In what follows we confuse a line bundle L on X with the locally free sheaf of rank 1 associated to it, but we denote by L_{x} the fibre of the line bundle L at the point $x \in X \quad\left(L_{x} \cong k\right)$ and by L_{m} the fibre of the locally free sheaf L at the point x if \mathfrak{m} denotes the maximal ideal of the local ring $O_{X, x}\left(L_{\mathrm{m}} \cong O_{X, x}\right)$.

Proposition 3.2 (We use the notations of Definition 0.1). Let L be a line bundle on X^{\prime}. We have $j^{*}(L)=L_{x_{1}} \oplus \cdots \oplus L_{x_{M}}, L_{x_{i}} \cong k_{i} \cong k$, and let $h: L_{x_{1}} \oplus \cdots \oplus L_{x_{M}} \xrightarrow{\sim} k_{1} \oplus \cdots \oplus k_{M}$ be an isomorphism of $\left(k_{1} \oplus \cdots \oplus k_{M}\right)$-modules. Then the couple (L, h) gives canonically a line bundle L_{h} on X such that $f^{*}\left(L_{h}\right)=L$.
Proof (see [Mi], §2). If U is an affine open of X containing P, we have $U=\operatorname{Spec}(A)$ and $f^{-1}(U)=\operatorname{Spec}(B), A$ and B are two k-algebras satisfying the conditions of Definition 0.2.

Let $L_{h}(U)$ be the group fibred product of k and $L\left(f^{-1}(U)\right)$ over $k_{1} \oplus \cdots \oplus k_{M}$, making cartesian the following square of groups:

$L_{h}(U)$ is in a natural way an A-module and it is projective of rank 1.

If U is an (affine) open of X not containing P, we put $L_{h}(U)=$ $L\left(f^{-1}(U)\right)$. That defines a line bundle L_{h} on X (see [Bo], Chapter II, $\S 5$, Theorem 1) and we have $f^{*}\left(L_{h}\right)=L$.

Definition 3.3. (a) The couple (L, h) of Proposition 3.2 is said to be the glueing of L by h.
(b) Two glueings of line bundles (L, h) and $\left(L^{\prime}, h^{\prime}\right)$ are said to be isomorphic if there exists an isomorphism $\lambda: L \rightarrow L^{\prime}$ such that the following diagram

$$
\begin{aligned}
& L_{x_{1}} \oplus \cdots \oplus L_{x_{M}} \xrightarrow{h} k_{1} \oplus \cdots \oplus k_{M} \\
& \lambda \otimes 1_{k_{1} \oplus \cdots \not k_{M}} \downarrow \\
& L_{x_{1}}^{\prime} \oplus \cdots \oplus L_{x_{M}}^{\prime} \xrightarrow{h^{\prime}} k_{1} \oplus \cdots \oplus k_{M}
\end{aligned}
$$

is commutative.
(c) We define $(L, h) \cdot\left(L^{\prime}, h^{\prime}\right)=\left(L \otimes L^{\prime}, h \otimes h^{\prime}\right)$, where

$$
\left(h \otimes h^{\prime}\right)\left(u \otimes u^{\prime}\right)=h(u) h^{\prime}\left(u^{\prime}\right) .
$$

In this way the isomorphism classes of the couples (L, h) form an abelian group H_{f}.

Theorem 3.4. The Picard group $\operatorname{Pic}(X)$ of X is isomorphic to the group H_{f} defined as above.

Proof. We can define a natural group homomorphism $\Phi: H_{f} \rightarrow$ $\operatorname{Pic}(X)$ that to the class of (L, h) associates the class of the line bundle L_{h} constructed in the proof of Proposition 3.2, Φ is injective; in fact if $\Phi(L, h)=O_{X}$, we have that the couple (L, h) is isomorphic to the couple ($O_{X}, \mathrm{id}_{k_{1} \oplus \cdots \oplus k_{M}}$).

Now let F be a line bundle on X. Then $L=f^{*}(F)$ is a line bundle on X^{\prime} and from the square of Definition 0.1, we see that $L_{x_{1}} \oplus \cdots \oplus L_{x_{M}}=j^{*}\left(f^{*}(F)\right)=\delta^{*}\left(i^{*}(F)\right)=\delta^{*}\left(F_{P}\right), F_{P} \cong k$.
F induces an isomorphism $h: \delta^{*}\left(F_{P}\right) \xrightarrow{\sim} k_{1} \oplus \cdots \oplus k_{M}$. The couple $\left(f^{*}(F), h\right)$ gives with the above construction a line bundle over X isomorphic to F (see [Mi], §2). Hence Φ is surjective.

4. The Picard group.

Proposition 4.1. Let $f: X^{\prime} \rightarrow X$ be a glueing morphism of M points x_{1}, \ldots, x_{M} of a connected quasi-projective variety X^{\prime} over a point P of X. Then $\operatorname{Pic}(X) \cong \operatorname{Pic}\left(X^{\prime}\right) \oplus(M-1) k^{*}$.

Proof. It is sufficient to consider $M=2$. We'll prove the proposition by defining an isomorphism Ψ from H_{f} to $\operatorname{Pic}\left(X^{\prime}\right) \oplus k^{*}$ (cf. Theorem 3.4).

Let L be a line bundle on X^{\prime} and let h be an isomorphism from $L_{x_{1}} \oplus L_{x_{2}}$ to $k_{1} \oplus k_{2}$. Let us consider an open affine U of X^{\prime} containing x_{1} and x_{2} such that there exists an isomorphism from $O_{X^{\prime}}(U)$ to $L(U)$ (see Lemma 3.1); let e be the image of a unit u of $O_{X^{\prime}}(U)$ satisfying the following condition: u is such that $\beta(u)$ is contained in the image of the diagonal morphism δ (see Definition 0.2).
$e_{i}=e \otimes 1_{k_{t}}$ is a generator of the k-vector space $L_{x_{t}}, i=1,2$. If $h\left(e_{1}, e_{2}\right)=(a, b)$, we define $\Psi((L, h))=\left(L, \frac{a}{b}\right)$.
We note that if V and e^{\prime} are an affine open of X^{\prime} and a generator of $L(V)$ respectively satisfying the same conditions that U and e satisfy respectively, then we have $e^{\prime}=c e$, where c is a unit of $O_{X^{\prime}}(U)$ satisfying the condition (*). Then $h\left(e_{1}^{\prime}, e_{2}^{\prime}\right)=h\left(\bar{c} e_{1}, \bar{c} e_{2}\right)=(\bar{c} a, \bar{c} b)$, $\bar{c} \in k^{*}$ and $\Psi((L, h))$ does not depend on the choice of U and e.

If (L, h) is isomorphic to (L^{\prime}, h^{\prime}), there exists an isomorphism λ
from L to L^{\prime} such that $h\left(e_{1}, e_{2}\right)=h^{\prime}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$, where $e_{1}^{\prime}, e_{2}^{\prime}$ are the images in $L_{x_{1}}^{\prime}$ and $L_{x_{2}}^{\prime}$ respectively of $\lambda_{U}(e), \lambda_{U}$ is the isomorphism from $L(U)$ to $L^{\prime}(U)$ induced by λ. Then $\Psi((L, h))=\Psi\left(\left(L^{\prime}, h^{\prime}\right)\right)$.

It is easy to verify that the map Ψ is a group isomorphism.
Proposition 4.2. Let X^{\prime} be a quasi-projective variety having n connected components X_{1}, \ldots, X_{n}, let $x_{i} \in X_{i}$ for every $i=1, \ldots, n$. Let $f: X^{\prime} \rightarrow X$ be the glueing morphism of the points x_{1}, \ldots, x_{n}. then $\operatorname{Pic}(X) \cong \operatorname{Pic}\left(X_{1}\right) \oplus \cdots \oplus \operatorname{Pic}\left(X_{n}\right)$.

Proof. We may assume $n=2$. From Theorem 3.4 it is sufficient to prove that the group H_{f} is isomorphic to $\operatorname{Pic}\left(X^{\prime}\right) \cong \operatorname{Pic}\left(X_{1}\right) \oplus \operatorname{Pic}\left(X_{2}\right)$.

Let $L=L_{1} \oplus L_{2}$ be a line bundle on X^{\prime}. Let U_{i} be an affine open of X_{i} containing x_{i}, such that there exists an isomorphism $O_{X_{t}}\left(U_{i}\right) \rightarrow L_{i}\left(U_{i}\right)$, let e_{i} denote the image of 1 , we denote the element $e_{i} \otimes 1_{k_{i}} \in L_{x_{i}}$ by e_{i} also, $i=1,2$.

Let $i_{L}:\left(L_{1}\right)_{x_{1}} \oplus\left(L_{2}\right)_{x_{2}} \xrightarrow{\sim} k_{1} \oplus k_{2}$ denote the isomorphism defined by $i_{L}\left(e_{1}, e_{2}\right)=(1,1)$.

Two couples $\left(L^{\prime}, h\right)$ and $\left(L, i_{L}\right)$ of H_{f} are isomorphic if and only if L and L^{\prime} are isomorphic; in fact, we can suppose $L^{\prime}=L$, if $h\left(e_{1}, e_{2}\right)=\left(a_{1}, a_{2}\right), a_{i}$ determines an isomorphism of L_{i} into itself, $i=1,2$.

Lemma 4.3. Let $f: X^{\prime} \rightarrow X$ be a morphism of connected quasiprojective varieties which is a composition of a finite number of glueing morphisms.

Let $\rho=\sum_{P \in X}(\rho(P)-1)$, where $\rho(P)$ is the cardinality of $f^{-1}(P)$. Then $\operatorname{Pic}(X) \cong \operatorname{Pic}\left(X^{\prime}\right) \oplus \rho k^{*}$.

Proof. Let P_{1}, \ldots, P_{m} be the points of X having $\rho(P)>1$. We proceed by induction on m. If $m=1$ the result follows from Proposition 4.1.

Now we suppose the lemma true for $m-1$. We can factor the morphism f by $X^{\prime} \xrightarrow{f^{\prime}} X^{\prime \prime} \xrightarrow{f^{\prime \prime}} X$, where f^{\prime} is the composition of the glueing morphisms over the points P_{1}, \ldots, P_{m-1} only and $f^{\prime \prime}$ is the glueing over P_{m}.

By the induction hypothesis we have $\operatorname{Pic}\left(X^{\prime \prime}\right) \cong \operatorname{Pic}\left(X^{\prime}\right) \oplus \rho^{\prime} k^{*}$, $\rho^{\prime}=\sum_{P \in X^{\prime \prime}}\left(\rho^{\prime}(P)-1\right)$, where $\rho^{\prime}(P)$ is the cardinality of $f^{\prime-1}(P)$. By Proposition 4.1 we have $\operatorname{Pic}(X) \cong \operatorname{Pic}\left(X^{\prime \prime}\right) \oplus\left(\rho^{\prime \prime}\left(P_{m}\right)-1\right) k^{*}, \rho^{\prime \prime}\left(P_{m}\right)$ is the cardinality of $f^{\prime \prime-1}\left(P_{m}\right)$.
4.4. Proof of Theorem 0.5. By using Proposition 4.2 and Lemma 4.3, we can proceed by induction on the number n of the irreducible components of X as in the proof of Theorem 2.

References

[BM] H. Bass and P. Murty, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math., 86 (1967), 16-73.
[Bo] N. Bourbaki, XXVII Algèbre Commutative Ch. II, Hermann, Paris, 1961.
[D] E. Davis, On the geometric interpretation of seminormality, Proc. Amer. Math. Soc., 68 (1978), 1-5.
[GRW] S. Geller, L. Reid and C. Weibel, The cyclic homology and K-theory of curves, J. Reine Angew. Math., 393 (1983), 39-90.
[Gr] A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in Math., vol. 224, Springer, Berlin-New York (1971).
[H] R. Hartshorne, Algebraic Geometry, Graduate texts in mathematics, vol. 52, Springer-Verlag, 1977.
[Me] N. Mestrano, Conjecture de Franchetta forte, Invent. Math., 87 (1987), 365376.
[Mi] J. Milnor, Introduction to Algebraic K-theory, Princeton University Press, 1971.
[P] C. Pedrini, Incollamenti di ideali primi e gruppi di Picard, Rend. Sem. Mat. Univ. Padova, 48 (1973), 39-66.
[R] L. Ramella, A geometric interpretation of one-dimensional quasinormal rings, J. Pure Appl. Algebra, 35 (1985), 77-83.
[Ro1] L. Roberts, The K-theory of some reducible affine varieties, J. Algebra, 35 (1975), 516-527.
[Ro1] __, The K-theory of some reducible affine curves: A combinatorial approach, in Algebraic K-theory, Lecture Notes in Math., vol. 551, SpringerVerlag, Berlin-New York (1976).
[T] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa, 24 (1970), 585-585.
[V] A. Vistoli, Incollamento di punti chiusi e gruppo fondamentale algebrico e topologico, Rend. Sem. Mat. Univ. Padova, 69 (1983), 243-256.

Received May 4, 1991 and in revised form February 12, 1992.
Dipartimento di Matematica-Università
via L. B. Alberti 4
I-16132 Genova, Italy

