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ON THE INCIDENCE CYCLES OF A CURVE:
SOME GEOMETRIC INTERPRETATIONS

LuciANA RAMELLA

In this paper, we note that the incidence cycles of a seminormal
curve X intervene in the calculation of the arithmetic genus p,(X),
of the algebraic fundamental group nf’g(X ) and of the Picard group
Pic(X) of X . Really we do not consider only seminormal curves, but
more generally varieties obtained from a smooth variety by glueing a
finite set of points.

0. Introduction. By a curve we mean a dimension 1 quasi-projective
scheme over an algebraically closed field k.

Let X be a connected reduced seminormal curve (see [T], [P] and
[D] for the definition and the geometric meaning of seminormality).

Let X;, ..., X, be the irreducible components of X ; the normal-
ization X of X is isomorphic to the disjoint union ||’ X; of the
normalizations X; of the curves X;. Let n: X — X denote the
normalization morphism.

Let Py, ..., Py, be the singular points of X and let x;,..., Xy
be the branches of X (x € X is a branch of X over a singular point
P of X if x e n~1(P)).

We define v(X) =M —m—n+ 1. In [R] one can find a geometric
characterization of the number v(X) in terms of the incidence cycles
of X . One associates to the curve X the graph I" whose vertices are
Py,..., Py, X1, ..., X, and whose edges represent the M branches
of X in this way: if x, is a branch over P, and x, € X j» an edge
joining P; and X; is constructed. Any cycle of the graph I'" associated
to X is said to be an incidence cycle of X .

In [R] it is proved that the graph I' associated to X is connected,
the number of the independent cycles of I' is ¥(X) and I" contains
cycles if and only if X satisfies one of the following conditions:

(a) an irreducible component of X is not locally unibranch,

(b) two irreducible components of X meet in more than one point,

(c) X contains polygons.

In the present paper we’ll consider more generally a class of va-
rieties X of dimension r > 1 and we’ll see that the number v(X)
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intervenes in the calculus of the arithmetic genus p,(X), of the alge-
braic fundamental group n‘l‘lg(X ) and of the Picard group Pic(X) of
X.

By a variety we mean a reduced quasi-projective scheme over an
algebraically closed field k.

Now we recall the definition of glueing of varieties and of k-
algebras.

DEeFINITION 0.1. Let X and X’ be two varieties, let x;, ..., Xy
be closed points of X’ and let P be a closed point of X. We say
that X is obtained from X' by glueing x,, ..., Xy over P if there
exists a morphism f: X’ — X, called a glueing morphism, making
cocartesian the following square:

X’ 7, X

i |

Spec(k; @ - - ® kay) —>— Spec(k)

where k; is the residue field of x;, the residue fields of x; and P are
isomorphic to k, J is induced by the diagonal morphism, i and j
are the canonical injections.

Algebraically Definition 0.1 is equivalent to the following

DEerFINITION 0.2 (see [T] §1 and [P] §1). Let 4 and B be two
finitely generated k-algebras, with k an algebraically closed field, let

my, ..., my be maximal ideals of B and let m be a maximal ideal
of 4. We say that A is obtained from B by glueing the maximal
ideals my, ..., my over m if A is the fibered product of B and k

over k; @ --- @ kys, i.e. if we have the following cartesian square:

A 2, B

| s

kL ko -aky
where « is the canonical projection 4 — A/m = k, B is the canonical
projection B — B/m;®---®@B/my; =k ®---®kpr, kj =k and J is
the diagonal morphism.
We recall that a seminormal curve X is obtained from the normal-

ization X by a finite number of glueing morphisms (see [T], Theorem
2.1).



SOME GEOMETRIC INTERPRETATIONS 327

Note that Mestrano in [Me] used Severi curves, which are curves
obtained from a finite (disjoint) union of projective lines by a finite
number of glueing morphisms, to study the Picard group of the ra-
tional points of the Picard scheme of C,, where C; is the universal
curve over the function field of the coarse moduli space M, of the
curves of genus g.

In what follows X denotes a connected variety of pure dimen-
sion r whose singular locus Sing(X) consists of a finite set of points

P,, ..., Py, such that the normalisation X of X is a smooth vari-
ety havmg n connected components, every one of them of dimension
r, Xy,..., X, and the normalisation morphism 7n: X — X is the

composmon of a finite number of glueing morphisms satisfying the
conditions of Definition 0.1. Let M be the number of points of
n~1(Sing(X)); we define v(X) =M -m—-n+1.

We'll prove the following results:

THEOREM 0.3. If X is projective, we have
Pa(X) = pa(X1) + -+ + pa(Xn) + (1) 'w(X).
THEOREM 0.4. We have
AYE(X) = (R0 # - 7 (Kn) * Lux)

where L, denotes the free group with v generators, x denotes the free
product of groups and ~ denotes the completion of the group.

THEOREM 0.5. We have Pic(X) = Pic(X;) ® --- ® Pic(X,) @
v(X)k*, where k* is the multiplicative group k—{0} and vk* denotes
the direct sum of v copies of k*.

Theorem 0.3 is an easy calculation.

Theorem 0.4 was obtained by Vistoli in [V] for X irreducible or
having a unique singular point. He proved his result by obtaining any
étale covering of X from an étale covering of the normalization X
by glueing the fibres of the branches of X .

By generalizing Vistoli’s constructions described in [V], one can
prove that any étale covering of X is obtained from the étale cov-
erings of X, ..., X, by a finite number of glueing morphisms.

But in a shorter way we’ll prove Theorem 0.4 by induction on 7
and by using Vistoli’s results on varieties having only one singular
point.
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Theorem 0.5 generalizes a result of Roberts contained in [Rol] and
in [Ro2]; by using the Mayer-Vietoris sequences, Roberts calculated
the Picard group of an affine curve X = Spec(A4) having the irre-
ducible components X; rational, i.e. X; = Spec(k[?]).

In order to calculate the Picard group Pic(X) of X, we construct
the line bundles of X by glueing line bundles of X, by using a sim-
ilar method as the one employed in [Mi] to construct the projective
modules over a ring A satisfying the conditions of Definition 0.2.

1. The arithmetic genus. The arithmetic genus of a projective va-
riety X of dimension r is the number p,(X) = (-1)"(x(Ox) - 1),
where x(Oy) is the Euler-Poincaré characteristic of Oy .

1.1. Proof of Theorem 0.3. There is the following exact sequence
of sheaves on X: 0 — Oy — 7O — Y pcx Ox,p/Ox,p — 0,
where 5X,p is the integral closure of Ox p. Since Oy p is obtained
from Ox p by glueing a finite number of maximal ideals, we have
length (Oy, p/Ox . p) = Mp — 1, where Mp is the number of points
x of X lying over P (x € z~!(P)). Since the morphism 7 is affine,
then x(7.0x%) = x(Ox) and therefore x(Ox) = X(Oy)—}:pex(MEl)-

Let us suppose r odd.

We prove first that p,(X) = pa(X1) + - + pa(Xn) —n+ 1. We
proceed by induction on n. For n =1 it is true. Now we suppose
that the statement is true for n — 1 and we consider Y = Lj;’;ll Xi;
then we have

Pa(X)=1-x(0g)=1- x(0g ) = x(Oyr) = Pa(Xn) +pa(Y) -1
=Pa(71) + - +Pa(4_x_n) —(n-1).
Then
Pa(X) =1-x(0x) = 1-x(0g) + Y (Mp — 1) = pa(X) + M — m
PeX
=pa(X1) + -+ pa(Xn) + v(X).
If r is even, the calculation is similar.

2. The algebraic fundamental group. If X is connected, there ex-
ists a profinite topological group G such that the category Et(X) of
the étale coverings of X is equivalent to the category Ac(G) of the
finite sets on which G acts continuously. G is unique up to unique
isomorphism; it is denoted n‘l‘lg(X ) and it is defined the algebraic
fundamental group of X.

Vistoli proved in [V] the following propositions:
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PrROPOSITION 2.1 (see [V], Teorema 11.12). Let X and X' be con-
nected varieties and let f: X' — X be a composition of a finite number
of glueing morphisms; if x € X, let p(x) denote the cardinality of the
fibre f~1(x).

We have nflg(X) = (n‘l’lg(X’) * Lp)~, where p =3 x(p(x)—1).

ProPOSITION 2.2 (see [V] Corollario 11.11). Let Xy, ..., X, be dis-
Jjoint connected varieties, let x, € Xy, ..., X, € X, be n closed points.
Let X denote the variety obtained by glueing the points xi, ..., X, .

Then we have n™8(X) = (n8(X,) * --- % 78(Xn))".

2.3.  Proof of Theorem 0.4. We proceed by induction on the number
n of the irreducible components of X . If n = 1, the claim follows
from Proposition 2.1.

Now we suppose that the theorem is true for n — 1.

Let X' be the variety n({J"";' X;); we can suppose that X’ is con-
nected.

Furthermore we can suppose P; € X' N X, so there exist a point
a € X' and a point b € X, such that n(a) = n(b) = P,. Let X"
denote the variety obtained from X’ U X, by glueing a and b over
P.

The variety X can be obtained from X” by a finite number of
glueing morphismes.

Then we can factor the morphism 7 as:

n
n: | X2 X uX, 2 x'ux, 2o xn 2o x.
i=1

From the inductive hypothesis we have
n8(X') = (n8(X 1) % -+ A8 (X pm1) * Ly x)

From Proposition 2.2 we have 7n2%(X") = (n8(X") * n¥'%(X,))"~
and from Proposition 2.1 n*l‘lg(X ) = (n‘l‘lg(X ") % Lp)~, where p =
7 p(P;))—m and p(P;) denotes the cardinality of the fibre ¢;!(P).

We must prove v(X) =v(X')+v(Xy) +p.

If Y is a union of connected components of X and Y = n(Y),
we denote by my and My the number of the singular points of Y
and the number of the points of Y lying over the singular points
of Y respectively. We note that v(X') = My —my —n+ 2 and
I/(Xn) = MXn - an .
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Let us consider the last morphism ¢4 ; we find

m
M:MXH + zp(Pl) —_ mXu .
i=1
Moreover the glueing morphism ¢3 gives the equalities My~ =
My +Mx +2 and my» =my +my +1.

So, after easy calculations, we can conclude.

3. Line bundles obtained by glueing. We begin with a lemma.

LEMMA 3.1. Let X be a (connected) quasi-projective variety and
let F be a locally free sheaf on X of rank r. If Xy, ..., Xy are M
closed points of X , then there exists an affine open U of X containing
X1, ..., Xy Such that the Ox(U)-module F(U) is free of rank r.

Proof. For any (standard) affine open ¥ = SpecA4 of X we have
that the sheaf Fj is isomorphic to the sheaf N associated to the
A-module N = F(V) (see [H], Chapter II, §5).

N is a projective A-module of rank r (see [Bo], Chapter II, §5,

Theorem 1).

Let us choose V' containing the points X, ... ,Xpr; let my, ..., my,
be the maximal ideals of 4 corresponding to the points x;, ..., X/
respectively.

If S=N¥,(4-m;) = A-(U¥, m;), the ring Ay is semi-local, then
the Ag-module Ng = N ® 4 Ag is free of rank r (see [Bo], Chapter
I1, §5, Proposition 5) and there exists f € S such that N is a free
As-module (see [Bo], Chapter II, §2, Corollary 2 and the proof of the
Proposition 2 of Chapter II, §5). We take U = Spec 4.

Let X be a connected variety obtained from a variety X’ by glueing
the points Xx;, ..., xpr of X’ over a point P of X. The glueing mor-
phism f: X’ — X induces a group homomorphism f*: Pic(X) —
Pic(X’). We want to see how a line bundle on X originates from a
line bundle on X’.

In what follows we confuse a line bundle L on X with the locally
free sheaf of rank 1 associated to it, but we denote by L, the fibre of
the line bundle L at the point x € X (Ly = k) and by L, the fibre
of the locally free sheaf L at the point x if m denotes the maximal
ideal of the local ring Ox x (Lm = Oy x).
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PROPOSITION 3.2 (We use the notations of Definition 0.1). Let L be
a line bundle on X'. We have j*(L) = Ly ®---®Lx, , Lx = ki=k,
and let h: Ly @ ---® Ly, = ky ®--- ® ky be an isomorphism of
(k1 ® - -+ ® kpr)-modules. Then the couple (L, h) gives canonically a
line bundle L, on X such that f*(L,)=L.

Proof (see [Mi], §2). If U is an affine open of X containing P,
we have U = Spec(4) and f~!(U) = Spec(B), A and B are two
k-algebras satisfying the conditions of Definition 0.2.

Let L,(U) be the group fibred product of k and L(f ~(U)) over
k; @ --- ® kjr , making cartesian the following square of groups:

Ly(U) — L(f~Y(U))

N J»

k ———(s—-)kl@-“GBkM

L,(U) is in a natural way an A-module and it is projective of rank
1.

If U is an (affine) open of X not containing P, we put L,(U) =
L(f~Y(U)). That defines a line bundle L, on X (see [Bo], Chapter
I, §5, Theorem 1) and we have f*(L,)=L.

DEFINITION 3.3. (a) The couple (L, #) of Proposition 3.2 is said
to be the glueing of L by h.

(b) Two glueings of line bundles (L, 4) and (L', #’) are said to
be isomorphic if there exists an isomorphism A: L — L’ such that the
following diagram

Lxl@...@LxM __h__, kl@"‘@kM
- “
L‘le®-.‘®L,xM L kl@"'@kM

1S commutative.
(c) We define (L, h)-(L',)=(L®QL', h®@h'), where

(W) uu')=hu)h'W).

In this way the isomorphism classes of the couples (L, £) form an
abelian group H;.
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THEOREM 3.4. The Picard group Pic(X) of X is isomorphic to the
group Hj defined as above.

Proof. We can define a natural group homomorphism &: H, —
Pic(X) that to the class of (L, ) associates the class of the line
bundle L, constructed in the proof of Proposition 3.2, ® is injective;
in fact if ®(L, &) = Oy, we have that the couple (L, A) is isomorphic
to the couple (O, idy g..ak,) -

Now let F be a line bundle on X. Then L = f*(F) is a line
bundle on X’ and from the square of Definition 0.1, we see that
Ly ® @ Ly, = j*(f*(F)) = 6"(i*(F)) = 0*(Fp), Fp=k.

F induces an isomorphism 4: 6*(Fp) = k1 ®---®kjs . The couple
(f*(F), h) gives with the above construction a line bundle over X
isomorphic to F (see [Mi], §2). Hence ® is surjective.

4. The Picard group.

ProrosiTION 4.1. Let f: X' — X be a glueing morphism of M
points xy, ..., Xy of a connected quasi-projective variety X' over a
point P of X. Then Pic(X) = Pic(X') ® (M — 1)k*.

Proof. 1t is sufficient to consider M = 2. We’ll prove the propo-
sition by defining an isomorphism ¥ from H; to Pic(X') @ k* (cf.
Theorem 3.4).

Let L be a line bundle on X’ and let /£ be an isomorphism from
Ly ®Ly, to ki @k, . Let us consider an open affine U of X’ contain-
ing x; and x; such that there exists an isomorphism from Oy (U)
to L(U) (see Lemma 3.1); let e be the image of a unit u of Oy (U)
satisfying the following condition:

u is such that f(u) is contained in the image of the
diagonal morphism J (see Definition 0.2).

(*)

ei=e®1 k is a generator of the k-vector space Ly, i=1, 2. If
hiey, e;) = (a b), we define W((L, h)) = (L, %).

We note that if V' and ¢’ are an affine open of X’ and a generator
of L(V) respectively satisfying the same conditions that U and e
satisfy respectively, then we have ¢’ = ce , where ¢ is a unit of Oy (U)
satisfying the condition (x). Then A(e], e)) = h(Ce, , ¢e;) = (ca, ¢b),
ce k* and ¥((L, h)) does not depend on the choice of U and e.

If (L, h) is isomorphic to (L', h’), there exists an isomorphism A
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from L to L' such that h(e;, e;) = h'(e], ;) , where e}, e; are the

images in L;l and L;z respectively of Ay(e), Ay is the isomorphism

from L(U) to L'(U) induced by A. Then Y((L, h)) =¥((L', /).
It is easy to verify that the map ¥ is a group isomorphism.

ProroSITION 4.2. Let X' be a quasi-projective variety having n con-
nected components X, ..., X,, let x; € X; forevery i=1,...,n.
Let f: X' — X be the glueing morphism of the points Xy, ..., Xy.
then Pic(X) = Pic(X;) & - -- & Pic(Xy,) .

Proof. We may assume #n = 2. From Theorem 3.4 it is sufficient to
prove that the group H is isomorphic to Pic(X’) = Pic(X;)®Pic(X>) .

Let L = Ly ® L, be a line bundle on X’'. Let U; be an affine
open of X; containing Xx;, such that there exists an isomorphism
OX'(U,-) — L;(U;), let e; denote the image of 1, we denote the element
e,-®1ki €Ly by e; also, i=1, 2.

Let ip: (Ly)x, ® (L2)x, 5 k; @ ky denote the isomorphism defined
by ir(er, e)=(1,1).

Two couples (L', h) and (L, iy) of H, are isomorphic if and
only if L and L' are isomorphic; in fact, we can suppose L' = L, if
h(e,, e;) = (a1, ap), a; determines an isomorphism of L; into itself,
i=1,2.

LEMMA 4.3. Let f: X' — X be a morphism of connected quasi-
projective varieties which is a composition of a finite number of glueing
morphisms.

Let p =3 pcx(p(P)—1), where p(P) is the cardinality of f~(P).

Then Pic(X) = Pic(X') @ pk*.

Proof. Let Py, ..., P, be the points of X having p(P) > 1. We
proceed by induction on m. If m = 1 the result follows from Propo-
sition 4.1.

Now we suppose the lemma true for m — 1. We can factor the

morphism f by X’ — X” — X, where f' is the composition of the
glueing morphisms over the points P, ..., P,_; onlyand f” is the
glueing over P, .

By the induction hypothesis we have Pic(X”) = Pic(X’) @ p'k*,
p' =Y pex (P (P)—1), where p'(P) is the cardinality of f'~!(P). By
Proposition 4.1 we have Pic(X) = Pic(X") ® (p"(Pm) — k*, p"(Pm)
is the cardinality of f"~1(P,).
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4.4.
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Proof of Theorem 0.5. By using Proposition 4.2 and Lemma

4.3, we can proceed by induction on the number » of the irreducible
components of X as in the proof of Theorem 2.
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