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DIFFERENTIAL-DIFFERENCE OPERATORS
AND MONODROMY REPRESENTATIONS

OF HECKE ALGEBRAS

CHARLES F. DUNKL

Associated to any finite reflection group G on an Euclidean space
there is a parametrized commutative algebra of differential-difference
operators with as many parameters as there are conjugacy classes
of reflections. The Hecke algebra of the group can be represented
by monodromy action on the space of functions annihilated by each
differential-difference operator in the algebra. For each irreducible
representation of G the differential-difference equations lead to a
linear system of first-order meromorphic differential equations cor-
responding to an integrable connection over the G-orbits of regular
points in the complexification of the Euclidean space. The funda-
mental group is the generalized Artin braid group belonging to G,
and its monodromy representation factors over the Hecke algebra of
G. Monodromy has long been of importance in the study of spe-
cial functions of several variables, for example, the hyperlogarithms
of Lappo-Danilevsky are used to express the flat sections and the
work of Riemann on the monodromy of the hypergeometric equation
is applied to the case of dihedral groups.

Orthogonal polynomials and special functions of classical type in
several variables arise from analysis on root systems. Generally there
is an underlying definite integral with a number of parameters. To
evaluate such an integral in closed form means to obtain a formula
in terms of known special functions, especially the gamma function.
These formulas are generally meromorphic and allow analytic con-
tinuation of the parameter values into regions where the integral is
no longer defined. In order to understand the singularities one is led
to deep problems in Coxeter and Artin groups, Hecke algebras, their
representations, and differential equations. Certain polynomials in a
parameter such as Poincare series and generic degrees of representa-
tions are associated to such groups. The logarithms of their zero-sets
are closely related to the aforementioned integrals.

In previous work [Dul, 3] mainly concerned with orthogonal poly-
nomials associated to finite reflection groups the author constructed
a commutative algebra of differential-difference operators for such
groups, with as many parameters as there are conjugacy classes of
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reflections. These operators are a natural generalization of partial dif-
ferentiation and can be used to construct group-invariant differential
operators (Heckman [He3]). The main topic of this paper is the the-
ory of functions annihilated by each differential-difference operator in
the algebra. Nonconstant functions of this type have singularities on
the reflecting hyperplanes of the group.

For each irreducible representation of the group the differential-
difference equation leads to a linear system of first-order differential
equations corresponding to an integrable connection on a certain holo-
morphic vector bundle over the space of G-orbits of regular points
in the complexification of RN (here G denotes a finite orthogonal
reflection group acting on RN). Brieskorn [Br] showed that the fun-
damental group of this space is the Artin generalized braid group G
belonging to G. A monodromy representation of G is realized on the
space (the "horizontal sections") of solutions of the system by means
of analytic continuation. The monodromy representation of the group
algebra CG factors over the Hecke algebra of G and corresponds to
the original representation of G when the parameter values give a
semisimple specialization of the generic algebra of G.

Monodromy representations and Hecke algebras provide important
tools and motivation for the study of special functions of several vari-
ables. Riemann studied the hypergeometric differential equation and
its monodromy (this is applied to dihedral groups in the present work).
Heckman and Opdam [Hel, 2; HO; Ol,2,3] introduced hypergeo-
metric functions associated to root systems of Weyl groups and the
related monodromy actions of affine Weyl groups. Heckman [He2]
then showed how the Hecke algebra appears in the monodromy of the
Heckman-Opdam differential operator.

Opdam [O4] constructed differential equations of Bessel type for ev-
ery finite reflection group (not necessarily crystallographic) and pro-
duced representations of the Hecke algebra isomorphic to the regu-
lar representation. His paper stimulated the research leading to this
work. The approach here is more classical and aims to construct the
systems of equations and representations quite explicitly. There is
also a greater emphasis on irreducible representations and characters
here. It is notable that Opdam has found a unified approach to the
Macdonald-Mehta integrals using analysis on the Hecke algebra. His
proof exhibits the remarkable correspondence between the singulari-
ties of the integral formulas and zeros of the Poincare polynomials.

Cherednik [Chi, 2] also has investigated Hecke algebras and differ-
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ential equations for special functions, especially those motivated by
applications in physics.

Matsuo [Mat] constructed trigonometric Knizhnik-Zamolodchikov
equations associated with root systems of Weyl type. In this work he
used differential-difference operators and an integrable connection for
group-algebra-valued functions periodic for the group lattice. He also
found the relationship to the (generalized) zonal spherical functions
of Heckman and Opdam.

The differential-difference operators provide an elegant approach to
constructing integrable systems of first-order equations associated to
root systems. For example, the Knizhnik-Zamolodchikov equations
are a special case for the Coxeter group of type AN, the symmetric
group.

This paper is organized as follows:
(1) The differential-difference operators, analytic vector bundles and

integrable connections associated to irreducible representations;
(2) construction of fundamental solutions of the differential equa-

tion in terms of Lappo-Danilevsky's hyperlogarithms, entire depen-
dence on the parameters, the monodromy representation, the Hecke
algebra;

(3) exceptional parameter values, generic degrees of representations,
relations to semisimplicity of Hecke algebra;

(4) representations of the Hecke algebra of a dihedral group, explicit
solutions in terms of hypergeometric functions;

(5) further questions.

1. Differential-difference operators and integrable connections. Sup-

pose G is a finite reflection group acting effectively on R^ with the
(reduced) set {vt: / = 1, . . . , m} of positive roots, numbered so that
{Vi: i = 1, . . . , N} is the set of simple roots. Thus {v\, vι, . . . , vN]
is a basis and for each j , Vj = Σ?=i aUvi w ^ aU ^ 0 Let σz

denote the reflection along vt (thus xσj := x - 2((x, Vi)/\Vi\2)Vi,
where the inner product is (x, y) := ΣyLi χjyj a n ( ^ ^ e n o r m *s \x\ :=

(ΣjLi I*/I 2) 1 / 2 (x,ye CN)) Then G is generated by {σi, σ2, . . . ,
ojv}, the simple reflections. Assume further that |v/| = \VJ\ whenever
Gi is conjugate to σ7, and thus V(W = Vj for some w e G. Denote
the set of G-regular points by R^g = {x e RN : (JC , vt) φ 0 for
i = I, ... > m} (that is, xoi Φ x for all /), and the complexification
by c re g = {x e C^ : (x, Vi) Φ 0, / = 1, . . . , m). The connected
components of R^g are the chambers and their intersection with the
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sphere S = {x e RN : |x| = 1} form the Coxeter complex. One
chamber is distinguished (depending on the choice of simple roots),
namely £f := {x e RN : (x, vfi > 0, i = 1, ... , m). The chambers
correspond uniquely to elements of G by w «-• &w (references for
these basic facts are Benson and Grove [BG, Ch. 6], Bourbaki [Bo],
Humphreys [Hu]). There is a well-determined labeling of the walls (a
wall is a set (^w)~ n vj- of codimension one, where vf- = {x £ RN :
(x 9 Vi) = 0}) of each chamber by {1, 2, . . . , N} so that w~ισιw is
the reflection in wall #i of the chamber &w .

There is a geometric interpretation of any expression w — βi" σ/ σz

(1 < ij < N, all y) in terms of simple reflections: a point x0 e &
can be joined to XQW e &w by a sequence of paths, each from one
chamber to an adjacent one, namely XQWJ-\ —» x$Wj through wall #/7

(with j=\, 2, ... ,n) where ^ 7 := σij σ^σ^ =wj-ι(wj*ισij, ^ _ i ) ,
^o = 1. An example of such a path is y7 (ί) := ((l-t)xo + txoσi )WJ-\ .
The length of w , denoted /(w), is the number of factors in the short-
est expression for w as a product of simple reflections, and is thus the
least number of walls that must be traversed to get to Ww from ^ .
Later we will replace paths like y/ by paths in C^g joining adjacent
chambers.

Choose complex parameters α z , / = 1, ... , m, such that α/ = α7

whenever 07 is conjugate to σ7. Following Heckman and Opdam
[HO] we call {a\9 ... , am} a multiplicity function. More precisely,
suppose there are m 0 classes of reflections and let βi denote the value
of aj when Cj is in class #/ (/ = 1, . . . , mo) then (βι, β2, . . .) is
the multiplicity function.

The differential-difference operators are defined [Dul] as follows:
let h(x) := ΠΊLiix, Vi)aι, a multi-valued analytic function on C^g

with the principal branch used on ^ , where (x, vι) > 0 for all /
this function is positively homogeneous of degree Σί=i ai ^he h-
gradient V^ is defined by

(for any smooth function / on M^g). Let e\, e2, . . . , e^ be the
standard unit basis vectors (e\ = ( 1 , 0 , . . . ) , etc.) for RN, and let
Ti := (ei,Vh), i = 1,... ,N. It w a s s h o w n i n [ D u l ] t h a t TtTj =
Γ7 7} (1 < /, j' < N) and 7} is an endomorphism on polynomial
functions.

Our goal is to describe the linear space (and G-module) 3fa of
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smooth functions / on R^g such that Vhf = 0. The decomposi-
tion of 2ΰa into irreducible components leads to integrable differen-
tial equations with rational function coefficients thus allowing ana-
lytic continuation. Let Ω denote the identification space C^Qg/G and
fix a base-point Xo e W. We will show that the fundamental group
τri(Ω, XQ) is represented on each component of 31 a .

The group G acts on functions on C^g by translation R(w)f(x) :=
f(xw), weG, and Vh(R(w)J)(x) = (Vhf)(xw)w~ι (see [Dul]).
Thus &a is a G-module. Let G denote the set of equivalence classes
of unitary irreducible representations of G for τ e G, we will de-
note the character by χτ, the degree by n(τ) and the representation
matrix by τ(w)ij (G can be identified with the set of " G-graphs," see
Kazhdan and Lusztig [KL]). It is known that χτ is always real.

Any complex function f on G has the Fourier series

n(τ)

where

weG

If instead, / is a function on R^g and a member of some G-module
then each

weG

is in the same module. Further

n(τ)

( i G l J , weG).

Thus any function in a G-module can be expressed as a sum
Σ τ 6£Σ2?/τ,«(*) where fτιi(xw) - Σ"S fτJ(x)τ(w)jΊ and each
fτ>i is in the original G-module. Note that it suffices to define

(fτ,i(x))ΐΰ for x € ^ .
Applying this decomposition to 31 a we formulate the differential

equation, for each τ e G:
(1.1) Find all C^-valued functions / = (/i, /2 , . . . , fn(τ)) on Ψ
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satisfying

m / n(τ)

+ Σ 7ΓΊΓ) Mχ) -

The linear space of solutions of (1.1) will be denoted 3ta,τ> We
will show dimc^α,τ = n(τ) \ thus the components of a basis will be
a set of ft(τ)2 linearly independent functions in £ia (when extended
to all of R£ g ) .

A reference for the use of sheaf theory here is Deligne [De, Ch. 1].
Let (9 be the sheaf of germs of analytic functions on Ω (= C^ g/G).
Let Vτ be the analytic vector bundle over Ω consisting locally of
Cw(τ)-valued holomorphic functions satisfying f(xw) = f(x)τ(w),
x G \JweG(Yw) where Y is open in C^g and Y n (Yw) = 0 for all
w G G. Thus Vτ is a locally constant sheaf and an έf-module, since
if g is a section of & and domain g D Y, then g(xw) = g(x) for
all x G r , w G G.

Let Vτ,α be the restriction of V^ to Vτ. Then Vτ,α is a connec-
tion for Vτ as an analytic vector bundle over $ indeed,

5=1

(where V/ means Σf=\(df/dXi)®ei; this is a CΛ(T> ® C^-valued
function). If / , g are local sections of Vτ, & respectively with a
common domain, then Vτ,a{gf) = g^τ,a{f) + / ® Vg.

1.1. THEOREM. The connection V τ ? α is ίntegrable.

Proof. In the standard coordinates of C^, let

+ Y,AJik{x)fk{x).

Integrability in the sense of Frobenius means that
o n(τ)

~ O Λ

k=\

is symmetric in (j, /) for each i, s = 1, . . . , n{τ) (see Varadarajan
[V, pp. 105-106]). Here

ί = l
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and
m m

β - B = V Ŷ

• [δis - (τ(σp)si + τ(σt)sι) + r(σpσt)Si]

(after a step of differentiation and grouping of terms). In the square
bracket, the first two terms are symmetric in p and /, and so that
part of the double sum vanishes. It remains to consider

m m

where B is the bilinear form B(u, v) := u^v\ - u\Vj for u,υ e
(fixed j , /) . The diagonal part {p = ί) of the sum vanishes because
B(vp, υp) = 0. The other part is a sum over plane rotations in G and
Σ{B(vp, vt)apat/({x, vP){x, vt)) : crpσ? = w} — 0 for each rotation
w by Proposition 1.7 in [Dul] (multiply the sum by τ(w)is to get the
desired sum). D

Since the coefficients of the connection are rational with no singu-
larities in C^ g , analytic continuation holds for the horizontal sections
(solutions of V τ ? a / = 0).

2. Fundamental solutions and the monodromy representation. We can

now assert the existence of horizontal sections of Vτ ? Q as a conse-
quence of the Frobenius integrability.

2.1. THEOREM. Each local solution f of (1.1) at x0 e & can be
extended uniquely to all of Ψ. The space ζ3a,τ is of dimension n{τ).
Any fundamental solution (f , f2, . . . , fn{τ)) a t χo ^ fundamental
throughout Ψ {that is, {f\(x), fi{x), . . . , fn{τ)(x)} is a basis for Cn^
for any fixed x e W).

Proof. The equation VT j Q/ = 0 is equivalent to the first-order lin-
ear system

j k=ι

(i — 1, . . . , n(τ) j = \, ... , N) (for smooth complex functions
(/(•*)l J > f(x)n(τ)) > using a trailing subscript to label components
of the vector f(x)). The coefficients are analytic on C^g and sat-
isfy the Frobenius integrability condition (see, e.g., [De, 1.6], [V, p.
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106]). Thus for any initial condition f(xo)ι = cι (1 < i < w(τ)),
c G C ^ τ ) , there is a unique solution / defined on ^ satisfying (2.1)
and f(xo) = c. A fundamental solution (/i, f2, . . . , fn(τ)) *s given
b y fi(xo)j = δij (l<ij<n(τ)).

Before we exhibit the homogeneity properties of the horizontal sec-
tions we recall some facts about conjugacy classes of reflections from
[Du3]. Recall from §1 that G has ra0 classes of reflections and βt is
the value of the multiplicity function on class #i. Define λ{τ\ a) =

2.2. LEMMA. For τ e G there are integers w7 (τ), 1 < / < m 0 , such
that λ{τ\ a) = Y^χ βinM and 0 < π/(τ) < 2mf . Further m(τ) = 0
ybr βαc/z / exactly when τ = 1 α/tti /tz (τ) = 2mz ^or α̂c/z / exactly
when τ = sgn (or det).

2.3. PROPOSITION. Suppose f is a local solution of (2.1), //ẐΛZ / ( X )

Π/li( x ? vi)~aιg{x) = S{χ)/h{x) where g satisfies the equations

( 2.3)

(x G g7, 1 < j < N). Further f{cx) = c~λ^τ^^f(x) and g{cx) =

cδg(x) with δ = Σ?=\<*ι-λ(τ',a) and c> 0, X G ^ .

Proof. Logarithmic differentiation establishes the equation for g.
For the homogeneity

7=1 7 7=1

In [Du3] it was shown that ^ ^ ( / - τ(σz)) = λ{τ\a)I (since
Σ/l i oί/(1 — tx/) is in the center of CG and τ is an irreducible represen-
tation). D

2.4. COROLLARY. If n(τ) = 1 (τ w a linear character), then a local
solution for(2.1) is f(x) = UT=ι(x^ Vi)~a'{ι~τ{σ')] {where l-τ{σt) = 0
or 2; there are 2mo .swc/z characters).

We will use the system (2.3) because of its more concise form. It is
a particular case of Cherednik's r-matrices [Chi].

By the Frobenius condition we can use one-dimensional techniques
and Lappo-Danilevsky's hyperlogarithms to produce infinite series for
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the fundamental solution of (2.3). The series will be defined on the
universal covering space of (Wr^g XQ) .

We adapt the hyperlogarithms from [LD], see also Hille [Hi, pp.
355-360].

2.5. DEFINITION. For a piecewise smooth path γ in C^ (with do-
main [0, 1]) and a sequence of (nonzero) vectors U\, Uι, W3, . . .
such that

δ := mf{\(γ(t),Uj)\/\Uj\ 17 = 1 , 2 , 3 , . . . 0 < t < 1} > 0

define L(γ U\, W2, . . . , un t) inductively by

and

L(γ;uuu2, ... , un+ι t) := / L(γ ux,...,un ^) L ^

(and L ( y ; ί ) : = 1), n = 1 , 2 , 3 , . . . .

2.6. PROPOSITION. \L(γ MI , . . . , « „ t)\ <l{y t)n/(Snn\) for 0 <
ί < 1, n = 0 , l , 2 , . . . , wAere ί/ze fen^/Λ function of γ is l(γ /) :=

Iί\y'(s)\ds.

Proof. By induction

; uι,...,un;t)\

{γ ' δ\un\ S"n\ •

Denote the fundamental solution to (2.3) at xo by Sζ so that
&ά(xo) = I and

(i = 1, . . . , N). The rc(τ) rows of 3^ are a basis for the local so-
lutions at XQ . The following is essentially a restatement of Theorem
9.6.1 in Hille [Hi, p. 356], adapted to paths in

2.7. THEOREM. Let γ be a piecewise smooth path in C^g with

7(0) = xo,

δ := i n f i l l , γ(t))\/\Vi\: 0 < t < 1, i = 1, . . . , m}.
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Then the analytic continuation of ^ along γ is given by

oo m

^(y(0) = / + Σ Σ α' ,<V ••"'•„
n=l iι,i2,...,in=\

• τ ( σ / iσ/-2 σ i n ) L ( γ v ^ , ^ 2 , . . . , v i n \ t ) .

The series is absolutely convergent and is dominated in norm by

Proof. Let 3^ be the fundamental solution. By the chain rule,

d ^ (

7 = 1

/ i )

Thus it remains to show that the series converges and satisfies this
equation. Since τ is unitary the /2-operator norms ||τ(σ/ •• σi )|| all
equal 1. The series is dominated by

oo m

Σ K
j , / 2 , . . . , in=\

m

The series can be differentiated term by term (still absolutely conver-
gent) to obtain

oo m

Σ V^ α/ αz α, τ(σ/ σ, )
/ J l\ L2 n-\ V l\ n-\'

n=\ i{J2,...Jn_=\

; V | , ... , ̂ ^ ί) J j ^

D

2.8. COROLLARY. For any piecewise smooth path γ in C^g with
γ(0) = x0, &a(γ{t)) and h(γ(ή)-ι&ά(γ(ή) are entire functions of the
multiplicity parameters a\, ... , am.
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Restricting the system (2.3) (or (2.1)) to a complex line passing
through XQ leads to a Fuchsian system. Indeed, fix u G C^ with
uφQ and consider the differential equation for S?(z) := ̂ (xo + zu),
namely

This equation has regular singular points at z = —(υi9 xo)/(Vi9 u)
(when (^ , u) φ 0), see Hille ([Hi, p. 354, 9.6.1]).

We return to the consideration of the vector bundle Vτ and the
relation to analytic continuation.

First we define a translation representation of G induced by τ . For
any Cn^-valued function / whose domain is a (/-invariant subset of
C^g let Rτ(w)f(x) := f(xw)τ(w)~ι {w e G). In addition, if / is
analytic and Rτ{w)f — f for all w G G, then / is a local section of

2.9. LEMMA. Vτ,a(Rτ(w)f)(x) = (Vτ,af(xw))(τ(w)-ι®w-1) (xe

gf weG).

Proof. The differentiation part is obvious (recall that wT = w~ι,
w eG). The difference part is

m

Σ T-^-ri/i^)^)-1 - f(xw)τ(w)-ιτ(σs))

For each reflection σs, let σ5/ = w~ισsw then αy = as and
εsvs> with ε5 = ± 1 . Thus the sum equals

Henceforth "path" means a piecewise smooth path in C^g with
domain [0, 1].

The fundamental group of Ω is generated by certain paths joining
XQ to x§σι y 1 < / < N (Brieskorn [Br]). More generally we consider
paths joining XQ to XQW for some w G G.
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2.10. DEFINITION. Let γ be a path joining x0 to xow for some w G
G. Then the monodromy operator M{y\ a) on 2$a,τ is defined by
M(γ a)f(x) = Rτ(w)p(x) = p(xw)τ(w)-1 (x G ̂  , / G 2^τ),
where fγ denotes the analytic continuation of / along γ.

2.11. PROPOSITION. Under the hypotheses of Definition 2.11,

Proof. First observe that fy is defined uniquely on all of Ψw and
satisfies Vτ^af

y(xw) = 0 for each X E ? , because the coefficients of
V τ ? α are rational functions with no singularities in C^ g . By Lemma
2.9, Vτ>a(Rτp) = 0, and thus Rτf

γ e3fa,τ. D

Of course, if yi, 72 a r ^ paths with 7i(0) = 72(0) = xo a n d 7i(l) =
y2(l) = χotί; (some w G RK), and γ\ is homotopic to 72 (fixed end-
points) in C^ g , then M(yx a) — M(γ2 α) . Cherednik [Chi] uses a
similar definition for the monodromy action.

For any particular fundamental solution of (2.1) at XQ (f\, fi, . . . ,

fn{τ)) ^ ^ α , τ SUCh that {/i (x0) , Λί^o) » , //i(τ)( ̂ θ)} i s a b a s i s f o r

CΛ(τ)) the monodromy matrix of γ is denoted (M(γ; «)/_/) and is
defined by fj(xow)τ(w)-1 = Y^^ M(γ a)ijf(xo) (by analytic con-
tinuation the formula remains valid if XQ is replaced by any X G ? ) .

Suppose 7i, 72 are paths joining x 0 to xo^i ? -̂ 0^2 respectively
(thus both correspond to loops in Ω = C^ g/G). Thus γ\ o y2 denotes
the path joining XQ to x o ^i^2 given by 72(20 for 0 < t < 1/2 and
yi(2ί- 1)^2 for 1/2 < ί < 1.

2.12. PROPOSITION. If yγ and 72 are paths joining x0 to xoW\,
X0W2 respectively (some W\, w2 G G), then

M{γx o 72 α) = M(γx α)M(72 a).

Proof. Let (M(γs α), 7 ) ( 5 = 1 , 2 ) denote the monodromy matri-
ces with respect to a fundamental solution (f, . . . , fn^) of (2.1).
Apply analytic continuation along y\ to the identity

n(τ)

fJ
to get

fJ2(x0W2) =

i=\
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Now substitute
n(τ)

fjι(xow{) = γ^M{γx a)kifk(x0)τ(w{). D
k=\

We consider the dependence of M(γ; a) on the multiplicity func-
tion α 7 .

2.13. PROPOSITION. For a path γ joining x0 to XQW for some
w G W, let M(y\ α) ί 7 denote the monodromy matrix with respect
to the fundamental solution (f\, . . . , fn^) with f{xo)j = £// (1 <
i ? j < n(τ)) \ then M(γ a)tj is an entire function of (a\, a2, . . .)

Proof. Let (/i, . . . , Λ(τ)) ^e the rows of {h(xo)/h)&ά where ^ is
the fundamental solution of (2.3) with j ^ ( x 0 ) = / , as in Theorem 2.7.
Then by definition, M(γ; α ) y = Σ ^ ί / / ( - ^ o ^ k τ ^ - 1 ) ^ - (1 < /, j <
n(τ)) where fUx§w)k is the (j, A:)-entry of i^(y( l)) , which is entiref
in a. When each at: = 0, ^ is constant and so fj(xow)k = J7^ . D

By Brieskorn's theorem we can specify the generators for the fun-
damental group 7Γi(Ω, JCO) and assert the braid relations.

Recall that σ\, σι, . . . , &N ^Γ^ the simple reflections for the Cox-
eter group. The structure theorem ([BG], [Hu]) says that G is gen-
erated by σ\, . . . , ON with the defining relations (σ/σ7)

m^ = 1 for
certain positive integers m ί 7 (1 < /, j < N) satisfying ma = 1 and
niij = mji (the Coxeter graph consists of N nodes with node #/
joined by an edge to node #j when m/y > 3 the edge is labeled by
mij when m i 7 > 4).

For / = 1, 2, . . . , TV, let yz be the path

7/(0 = xo + (r(t) - l)((x 0, Vi)/\Vi\2)Vi,

where r is a piecewise smooth path joining 1 to - 1 in C\{0} such
that Imr(ί) > 0 for 0 < t < 1. Thus γι joins x 0 to

2.14. THEOREM (Brieskorn [Br]). πi (Ω XQ) is generated by (the ho-
motopy classes of) γ\, γ2, . . . , yjv subject only to the relations
(ϊi °7j °7i'") = (7j °7i°7j'-)> with ra, ; factors on each side, for
1 < i < j < N (equality of paths being intt _ reted as homotopy).

The group πi(Ω; XQ) f he Art in group G belonging to G. It is
called a generalized bn oup because when G = SN+\ (the sym-
metric group, type AN) tne orders of otOj are mtj = 2 for ί + 1 < j
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and mij+\ = 3 and ft o ft+1 o γt = γi+1 o ft o y/+1 (1 < i < N) are the
braid relations.

2.15. COROLLARY. 77Z£ monodromy operators M(γ\ α), . . . ,
Af(7;v α) generate the monodromy group of the system (2.1) and sat-
isfy the relations

(M{γi a)M(yj α)Af (ft α) ) = (M(y7 α)Aί(ft a)M(γj α) )

w/Y/z m/7 factors on each side (I < i < j < N).

Proof. This is a consequence of the theory of local systems and
analytic integrable connections on an analytic manifold (Deligne [De,
1.6], Varadarajan [V, §4]). D

We will show that M(jj a)1 = (1 - qj)M{yj a) + <?//, where qj =
e~2πιaj and thus we are led to a representation of the Hecke-Iwahori
algebra of G. The proof relies on restricting the differential equation
(2.3) to a complex line spanned by Vj . The method for constructing
power-series solutions of a first-order system around a regular singular
point is presented in Hille [Hi, pp. 345-352].

The following lemma is adapted to this special situation.

2.16. LEMMA. Suppose σ is a unitary involution on Ck, a e C,
and B(z) is a kx k-matrix valued analytic function on {z e C : \z\ <
r 0}, some r0 > 0 and σB(z)σ = —J5(—z). Then the matrix system
JΪ&(Z) = j&(z)σ+ &(z)B(z) has a fundamental solution &(z) =
A(z)C(z)y where C(z) = Σ™=QZnCn, absolutely convergent for \z\ <
r0, Co = /, σC(z)σ = C(—z) and, in an orthogonal decomposition
ofCk in which <x = [J _°7],

(I) A(z) =

(ii) A(z) =

(iii) A(z) =

OLJ Q 1

0 z-al\ ' whena+ί/2^

zal 0
za{\o%z)D z~aI_

zal z~a(logz)D
0 z~aI

(some matrix D).

when a = 1/2, 3/2, . . . ,

when a = —1/2, —3/2, . . .

Proof Expand B(z) = Σ™=oz
nBn (constant matrices Bn). The

hypothesis σB(z)σ = -B(-z) implies σBnσ = (-l)n+ιBn. In the
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orthonormal basis for C^ in which σ = [Q _°7] write

D _

(and similarly for other k x k matrices). Say a matrix D is even
(respectively, odd) if σDσ = D, respectively -D. Then D is even
when Dn2\ = 0 = Dn 12 and D is odd when Ai,π = 0 = Dn22.
For π = ' l , 2 , 3 , . . . , l e t Λ/π = Σ"=o CjBn-ι-j^, and let Mo = 0,
Co = / . The inductive hypothesis σC7σ = (-1)7C7 implies σMnσ =
(-l)πAfπ.

Assume first that α + 1/2 ^ Z. The substitution

ί o i
o z—/ \Cn

in the rewritten system zj^{z) - a&(z) - z&(z)B(z) = 0 leads to
the equations

0
0 (n-a)I\Cn~aCnC7 = Mn' π = 0 , 1 , 2 , . . .

(equivalently πCw + α(σCw - Cwσ) = Mn).
When n is odd, Cn is odd and Cn>ι2 = j?^Λf«,i25 Q,2i =

^2^Λfw?2i When n is even, Cw is even and Cn = ^ M n . This
defines ^ uniquely (given Q = / ) .

Now assume 2a = / a positive odd integer. Substitute

1/J I 0 z « -
into the rewritten equation. The top row of the resulting equation is

n=0

and the bottom row is

Λ=0
OO

n=0
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The first row now defines the first rows of Cn , Mn uniquely starting
with Cb,ii = / , Co, 12 = 0. This wipes out the log z term in the
bottom row. Since n + a = (n + /) - a the second equation becomes

n=0

DCn,l2+ nCn,22-Mna2] = 0.

Set CQ,21 = 0? Co,22 = I\ when n is odd and n < I, then Cn>2i —
ϋZ7Mi,2i > Crt>22 = 0; when n = I, C/ 2i = 0 (arbitrary) and Z) =
if/ 21 the rest of the construction for Cn is obvious. Note that
C/i_/,ii = 0 when n is even, Q_/ > 1 2 = 0 when /t is odd so that Cn

has the same parity as n . A similar argument works for 2a = -I. D

2.17. THEOREM. For 7 = 1,...,JV the monodromy operators
M(γj α) satisfy (M(γj α) - I)(M(γj α) + e-2πiad) = 0.

Proof. Fix j and let ζ(z) := xo + (z - l)((xo > vj)/\vj\2)vj ( z G c )
be a complex line joining XQ to xo<7/ (at z = 1 and - 1 respectively);
thus y7 is the image under ζ of a path joining 1 to - 1 in {z : Imz >
0, z φ 0}. Restrict the matrix system (2.3) to the line ζ to obtain

j - z (ζ(z))- ( C ( z ) ) ^ τ ( σ , ) z(z)

where

Clearly df(z) = 0 when {Vi,Vj) = 0 and <//(z) = -dj>(-z) when
V/O; = v,-' (thus τ(σz ') = τ(σ ; )τ(σ/)τ(σ7 )), note that t;/σ7 is a positive
root when / φ j because σy is simple. Also dj(z) = 1/z. The pole
of dj(z) with / Φ j and (Vf, vj) φθ is at

here z, e R and |z, | > 1 because {xo,Vj) > 0 and (XQ, υ, σ/) =
(xo,v ; ' )>O.

Put F(z) = ^(C(z)), and let

B(z) := ^{αyτCσ^ί/^z): 1 < i < m, iφj,{θi, vj) φ 0}.

The differential equation becomes

-^F(z) = ^lF{z)τ{σj) + F(z)B(z),
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with τ(σj)B(z)τ(σj) = -B(-z) and B being analytic in {z e C :
\z\ < ro} some ΓQ > 1. There is an orthonormal basis for C1^)
in which τ(σ7) = [Q _°7] (the size of the upper left block is
\{n{τ) + χτ(σj))). By the lemma, there is a fundamental solution
F(z) so that the analytic continuation along y7 satisfies F(-z) =
AF(z)τ(σj) for 0 < z <: r 0 , where

\eπiajl 0 1
(i) A = ye

 0

1 _e-nia}1 J when α, + 1/2 £ Z,

(ii) Λ = Λ

(iii) Λ =

when α, = 1/2,3/2,5/2,. . . ,

when α7 = - 1 / 2 , - 3 / 2 , - 5 / 2 , . . . ,

for certain matrices DQ (indeed DQ = /πZ>, the matrix 2) from
2.16(ii) and (iii)). To obtain a fundamental solution of (2.1) restricted
to the complex line ζ multiply F(z) by Π2Li(C(*), ̂ > " α ' - As ζ(z)
traverses the path y7 from x 0

 t 0 ^o^; ? the factors (C(z), f/)~α' with
/ Φ j satisfy Re(C(z), vt) > 0 and (xoσj, v,-) = (x0, ^i^j) = (*o > vi')
(and αJ ' = α ϊ ) . Only the factor (C(z), ^ 7 ) ~ ^ = (z(x0 ?

 vj))~aj changes
by ^~πία^ along γj.

Hence the monodromy matrix (in a certain basis diagonalizing
τ(σy)) for/(z) = (l/A(C(z)))F(z), namely / ( -

/ 0
ίθ -q,

when aj + 1/2 £ Z,

respectively, where #,

1 oi
l\ ' [πiD I\ '
otj = 1/2,

:= e-2πia>.

3/2,..

In each

lo. , aj
case

πiD]
I J '

= -1/2, - 3 / 2 , . . . ,

)2 =
7 a)2 = (1 - ^-JΛ/to α) + ̂ / . •

Note that the fundamental solution / constructed above generally
does not satisfy / (I ) = / .

Recall the definition of the generic complex algebra for G (e.g., see
Humphreys [Hu, Ch. 7]) Bourbaki [Bo, p. 55]: for parameters at, b\,
/ = 1, . . . , N such that a^ = Uj, b\ = bj whenever σz is conjugate
to <T/, the algebra is the complex span of {T(w) : w G G} with
the multiplication rules T(σi)T(w) = T(oiW) if Ifaw) = l(w) + 1
and T{σf)T(w) = aiT(w) + biT(σiW), if /(σ, tt;) = /(ti;)- 1 (of course
Γ(l) = / ) . There is a presentation of this algebra: T{oi)2 = aiT{Oi) +
b\I and

) ) = (T(σj)T(σi)T(σj) • )



288 CHARLES F. DUNKL

niij factors on each side, 1 < i < j < N. The specialization αz =
qιr — 1 ? bi = qi is called the Hecke (or Hecke-Iwahori) algebra H(G q)
(Iwahori [I]). Here we use at = 1 -<?;, bi = <?; but this is isomorphic to
the standard Hecke algebra under the correspondence T{pϊ) »-• -Γ((τ, )
(and

2.18. THEOREM. For any multiplicity function α, ^ τ , α is a module
for the Hecke algebra H{G\ q) of G with parameters qj = e~2maj .

representation is ΣweGcwT{w) h-> E ^ G G C ^ ^ ( ^ ί α ) wλere 7™
α/λ yy o ^ o o y7- corresponding to the reduced expression

w = σjχσJ2 "XσJk (1 < j / < N), k = l(w) (cweC).
Geometrically, the path γw can be interpreted as a sequence of paths

starting at XQ passing "around" walls #jk, #7^-1 > > #Jι finishing
at XQW and this is the minimum number of steps.

3. Special values of a and the generic degrees. The Poincare series
of G determines which values of at lead to semisimple specializations
of the generic algebra. We recall some results from Gyoja and Uno
[GU], Macdonald [M], and Yamane [Y]. For each w e G there is
a vector-valued length (l\(w), h{w), . . . , lm^(w)) (where mo is the
number of classes of reflections) so that there is a reduced expression
w = Gjχ0j2 '"

σjk (1 < 7/ < N) with l\[w) of the factors being in
class # 1 , and so on.

Macdonald showed that U(w) = rii(w), the number of positive
roots belonging to class #i made negative by w (see also Curtis, Iwa-
hori, and Kilmoyer [CIK, Cor. 10.5, p. 113]). Let #i, ί2> ••• > QmQ

be indeterminates and let q1^ := Π ™ 0 ^ ' ^ . The Poincare series
(polynomial, since G is finite) is PQ{Q) -'= Ί2weG^1^ - Macdon-
ald [M] determined PG(Q) for all the indecomposable finite Coxeter
groups. Gyoja and Uno [GU] showed that H(G, q) is semisimple
for nonzero complex values of #, exactly when PQ{Q) φ 0 (their
proof is for q\ = q2 = -" but is easily transferred to the general
case). Yamane [Y] showed that for any particular irreducible (prin-
cipal) m-dimensional representation M of (generic) H(G q) there
is a polynomial in q whose zero-set consists of excluded values (for
such values some of the properties are lost). Let

Vi"{q) = ^ Σ Ql{w"w)Tr(M(T(w)))Tr(M(T(w-1))),
weG

where w0 is the longest element in G. The generic degree ^M(<?)

of M is given by ql{-w^PG{Q)/ψM{Q) (see, e.g., Curtis [Cu, p. 53]).
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Both CIM and ΨM are polynomials in q. Yamane showed that M is
an irreducible representation of the specialization of H(G, q) exactly
when ΨM{Q) Φ 0. We can show that the monodromy representation
on 9fa,τ corresponds to the irreducible representation τ of G, in
the sense of Proposition 7.1 of [CIK, Proposition 2.1, p. 53] of Curtis
[Cu]. As before, we use (β\, βι, . . .) to denote the values of α, on
the classes of reflections.

3.1. THEOREM. For values of the multiplicity function (βx, β2, . . .)
such that PQ{e~2πιβ) Φ 0 the representation T(w) »-• M(γw a)
(w e G) corresponds to τ .

Proof. From Macdonald's [M] list of PG for indecomposable Cox-
eter groups we see that (i) (case JΠQ = 2, type B^, F 4 , hi^k))
the zero sets of PG(e~2πiβι , e~2πιβ2) are hyperplanes of the form
n\β\ + niβi = ^0 (integers no, n\, nι)\ the complement in C2 is
pathwise connected to (0, 0) where # = (1,1) . (ii) (case mo = 1,
type A, D, E, H9 I2(2k + 1)) the zero-set of PG{e-2πiβ) is count-
able with no points of accumulation, and again the complement is
pathwise connected to β = 0, q = 1. The matrix entry functions
(for Proposition 2.13) are entire in (β\, βι) (respectively β\) and
H(G; e~2πiβ) is semisimple at each point of the path. At β = 0,
M(γw 0) = τ(w~ι)τ (transpose) (unitarily equivalent to τ(w) since
each character of G is real). The argument in [CIK, Prop. 7.1, p. 102],
which relies on the factorization of the characteristic polynomial of a
generic element ΣweWcwT(w) e H(G\ q), proves the desired corre-
spondence, since analytic continuation involving the coefficients of the
polynomial works here. D

3.2. COROLLARY. The representation T{w) \-+ M(γw a) corre-
sponds to τ and is irreducible and principal when ψM{e~2πιβ) Φ 0.

Proof. Suppose ψM(e~2πiβ°) φ 0 and possibly PG(e-2πiβo) = 0.
Join β0 to 0 by a path on which ψM(e~2πiβ) φ 0 for all β and
PG(e~2πiβ) φ 0 for all β except possibly β = β0.

At each point β on the path, M(γw a) is irreducible and principal
by Proposition 3.2 of Yamane [Y], and corresponds to τ . Analytic
continuation finishes the argument. D

We will demonstrate this corollary explicitly for the dihedral groups.
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4. The dihedral groups. The even dihedral groups have two classes
of reflections while the odd dihedral groups have just one. In case of
one parameter there is a basis for 2fa ? τ in terms of hypergeometric
functions. We will determine the differential equation for the two-
parameter case and then specialize to one parameter. Fix an integer
k > 2 and consider the dihedral group h(2k) (of order 4k). Let
ζ := π/k then a list of positive roots is Vj := (sin(jξ/2), cos(jξ/2))
with corresponding reflections

^ 7 I _ . / »*\ / y\ I

The simple roots for h{2k) are v$ and -̂ 2/c—1 > while v0 and
are the simple roots for the subgroup h(k) (containing oy, 0 <
j < k — 1). The four linear characters are covered by the general
formula in Corollary 2.4. The irreducible unitary representations are
τ/, / = 1, . . . , k - 1 for I2(2k) or 1 < / < k/2 for I2(k) which
are defined by

The multiplicity function is taken to be a2j- = a, a2j+ι = β (for
arbitrary α, β e C). Because of the homogeneity of 3>a,τ (degree
= -k{a 4- β)) it suffices to restrict the system (2.3) to a circle around
the origin. Let xy(θ) = cos(θ/k), x2(θ) = sin(θ/k) with θ € C, and
fix the representation τ/. Then (2.3) becomes

(4.1) ^[gι(x(θ)), g2(x(θ))}

1 ί k~X
1 ί

= -£[g\, g2]\ a Σ τ,{σ2j) cot{jξ + θ/k)

k-\ Λ

+ βΣ τι(σ2j+ι)cot(U + \/2)ξ + θ/k) \.
7=0 )

4.1. PROPOSITION. The system (4.1) reduces to

+ Jβd_~ = eiθ(l-2l/k) (_^_

dθgx \ύnθ

^-Rl = e-Wi-21/k) (_SL
dθg2 Vsin

with either.

β φ 0, G = I2(2k), 1 < / < k - 1 the fundamental

region & corresponds toO < θ <π/2;



DIFFERENTIAL-DIFFERENCE OPERATORS OF HECKE ALGEBRAS 291

l k

& corresponds to 0 < θ < π.

Proof, Write the terms to be summed in complex exponential form,
namely,

cot(jξ + θ/k) = -{e~m<k + ωj)/{e-2iθlk - ωj),

where ω := e2πιlk (similar expressions for the β term). Since ωk = 1
each required sum can be expressed by use of

l ^ 7 = ̂ FΓT (n = U2,...,k, variable/),l 7 ^ ^ T
7=0

a partial fraction identity. D

Let δ := ^(1 — y ) , a convenient parameter in subsequent work.
When β φ 0, -1/2 < - ( 1 / 2 - 1/fc) < δ < ( 1 / 2 - 1/fc) < 1/2, and
when β = 0, 0 < δ < (1/2 - l/k) < 1/2.

4.2. COROLLARY. Solutions [g\, gι\ of(4Λ) satisfy g\ = eιδθu\,
g2 = e~iδθU2 where

/A <*\ d

(4.2) _ l l l =

-τΈu2 = ιδu2 +
cosθy

The substitution C = tan(β/2) rationalizes the system (4.2); indeed,

„ l λ rf r Ί r Λ{ 2iδ Γ-l 01 a Γ0

+ 2/jί fO - 1

This is a Fuchsian system with regular singular points at 0, ± 1 , ±/,
oo. The hypergeometric differential equation allows three such points
so this system appears to be too complicated for hypergeometric func-
tions. But specialization to β = 0, G = I2(k) (1 < / < k/2,
0 < δ < 1/2) allows solutions in known functions. The connec-
tion coefficients among the different solutions of the hypergeometric
equation will enable us to get the monodromy matrices explicitly.

Set β = 0 and substitute z = sin2(0/2) = ζ2/(l + ζ2),

U\ = ζav\ + iζa+ιv2, u2 = ζav\ — iζa'hlv2.
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Eliminating v2 from the first-order system

dv\ δ dvi δ la

we obtain

(4.4) z(l - z) (j-\ υx + (α + 1/2 - z)^vλ + <SV = 0.

This allows us to write down solutions with specified singularities at
the regular singular points z = 0, 1 (0 = 0, π respectively).

4.3. THEOREM. The following four solutions for (4.2) are associated
to the singularities z°, (1 - z)°, z 1 / 2 ~ α , (1 - z) α + 1 / 2 respectively.
When a+1/2 ^ Z βwrf α + 1/2 ± (5 £ Z α/ry /wo of the solutions form
a basis for the solution space {the values of a correspond to q Φ — 1,
e±2πil/k\ .

δ,-δ

Γ(α+l/2) ^ (α + 1/2 ;

^ (α+D/2/i _ _\(l-α)/2

z

Γ(3/2-α)

3 / 2 _ α

Γ(3/2 - α ) 2 j F l ( 3/2-α

Γ(α + 3/2) 2 j F l ( , α + 3/2
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Proof. The form

Γ(c)'• Λ c ' V ^ Γ (c + «) n!

denotes the series which is an entire function of c. Four of Kummer's
24 solutions (see [AS], p. 563) have the argument z and another four
have argument 1 — z. By the identity

2 ί - , ( α ; * ; z ) = ( l - z r « - V , ( c - α ; < : - * ; *),

half of them are redundant. The above list contains the four solutions
coming from the equation (4.4) and use of vι — j ( l - z)j^v\ ( a n d
the formulas

d _ (a,b \ ab

and

f 0
ί/z V

Next, [MI, u2] = Cβ«i[l, l] + iζa+ίυ2[l,-l] where C =
(positive values for 0 < z < 1). The restrictions on a come from the
conditions that the 24 solutions all be defined. •

The paths yt(ί) = θoe
πit and γ2(t) = π + (θ0- π)eπίt (0 < t < 1),

and xo = (cos(θo/k), sin(θo/k)), 0 < #o < ^) generate πi(Ω; xo)
Along 7i, zc becomes e2πιczc along γ2, (1 - z)c becomes
e2πιc(l - z)c (any c e C ) . Using a superscript to denote analytic
continuation, we have (0 < θ < π):

[uιl, u$Y>(2π -θ) = e~πia[uι

2

ι, u?]

[uψ, uψY*{-θ) = -e~πia[uψ, uψ](θ);

[uψ, uψγ2(2π -θ) = -eπia[uψ, Y
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Now let g* = emu\ , gs

2 = e~mu\ with 5 = I, II, III, or IV. Recall

that the simple reflections are OQ and θ2(k-i) \ and

. , ΓO 1 1 , , Γ 0 - e - 2 κ i δ ]
T / ( < T 0 ) = [ l Oj ' τ^σΆk-\))=[_e2πiδ o j

(since e~2<^k~^liζ = e2liπlk = eiπ^~2δ~> = —e~2πiδ).

4.4. PROPOSITION. The monodromy actions are

M(γι a)gι = eπiagι, M(γ2 a)gn = -e~niagxx,

M{γx a)gm = e-
πiagm, M(γ2 α ) ^ I V = eπiagw.

Proof. The factor eiδθ becomes e~iδθ along γl} and [g2, g\] =

[gι J g2\τ(σo) • This proves the M{γx α) action. Along γ2 we get

-θ) = e-πia[eiδ(2π-θ)u\\θ), e-iδ^2π-θ^uY

A similar calculation applies to g I V . •

In order to obtain a fundamental solution which is entire in a we

choose gι, g11. From the known connection coefficients ([AS, p.

559]) and the identity Γ(c)Γ(l - c) = π/sin(πc) we obtain the fol-

lowing:

4.5. PROPOSITION.

,111 _ i yυμ y-d) , COSπα Π

rίΛlfy.-a + δ)Γ(l/2-a-δ)s π { ' V )S '

? I V = Γ(δ)Γ( δ)COSπacι i { d ) l {~d) r Π

The coefficients are entire functions of a, and 0 < δ < 1/2.

The solutions of'(4.1) when multiplied by l/h(x) become elements

of 3>r

a^τln this case

(0<θ< π).
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4.6. THEOREM. For any aeC, G = h{k), a fundamental solution
for (2.3) is

(sin 0)
2Γ(α + 3/2)

f<5, 1
α + 3/2

1 + δ ' ! * δ • sin2 0/2 ) [em, -e~m\ ) ,

/"-(cos 0/2)-2α

Γ ( l / 2 - α ) z ' Vl/2-α
/ δ

• cos2θ/2\\eιδθι δ θ

2Γ(3/2-α) (sin0)

/n this basis

M{γx α) =

and

M(γ2 α) =

1 -

0

3/2 - α '

2πe

•<ϊ-α)Γ(l/2-<ϊ-α)

2πe —πia

—e

0 •

—Iπia

Proof. When α+1/2 ̂  Z, the distinct eigenvectors of M(γ\ a) are
(sinθ)""^^1 and (ύnθ)~agm (with eigenvalues 1, e~2πιa). The ex-
pansion coefficients in Proposition 4.5 lead to the matrix for M(γ{ a)
in the (fι, fu)-basis. There is a cancellation (1 + e~2πιa)/ cosπa in
the calculation. Since this fundamental solution is entire in a, the
matrix is valid for all a. A similar proof applies to M(γ2 a). D

4.7. COROLLARY. The algebra generated by M{γ\\ a) and M(γι\ a)
is semίsίmple when q Φ e±2πillk, where q — e~2πia.

Proof. When the condition on q is satisfied, I, M{y\ α), M(y2 α),
and Af(yi α)Af(72 α) are linearly independent (by an elementary
argument using the fact sin πδ φ 0). If a ± δ = 1/2, 3/2, 5/2, ... ,
then Af(yi α) is diagonal and C[̂ ] is an invariant subspace; if
a± δ = -1/2, -3/2, -5/2, then M(γ2 α) is diagonal and Cβ] is
invariant. D
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This is an illustration of Yamane's result; see Corollary 3.2.
By calculating

M{yx a)M(γ2 a)

2πe~3πιa

-e~4πίa - 2e~2πia cos(2πδ)
Γ(l/2 + <ϊ-α)Γ(l/2-(J-α)

e~

we can find its eigenvalues ~qe±2πiδ , that is, qe±2πillk . Accordingly
these representations of H(I2{k) q) can be identified with those con-
structed by [CIK, pp. 103-104]. However, the present matrices involve
not only qχl2 (i.e., e~3πιa) but also values of the gamma functions
Γ(l/2 ± a ± δ). These could be avoided by an appropriate change
of scale fu -> c / π but only for q φ e±2πιllk, thus losing the entire
dependence on a.

Up to now XQ has been arbitrary point in ̂ . A likely candidate for
a distinguished point would be an extreme value of h(x) on the unit
sphere (for αz > 0, studied as "peak points" in [Du2]). As support
for this idea, consider the peak point for I2(k) (β = 0), namely
X\ = cos(π/2fc), x2 = sin(π/2/c), θ = π/2, z = 1/2. Indeed, by use
of Kummer's sum for 2F\ (a>\~a 1/2) and contiguity relations ([AS,
pp. 556-558]) we can evaluate the fundamental solution (fι, fu) at
θ = π/2. Define the entire function s(c, a) :=
Then

fin/2) =

f\π/2) = 2

•j(-α+l/2, -c

where η\=eιπδl2. The determinant of [wi/^J equals - ^ 2 2 α + 1 sinπJ

(using ^(c, Λ).S(1 - c, α) = (l/27r2)(sin(πα) -hsin(πc)).

5. Further questions. When two multiplicity functions a and af

differ by integers (α -αζ GZ,all /) and the specialization //(G, ή') is
semisimple, then M(γw a) and M(7^ α;) are equivalent represen-
tations. Thus there exists a nonsingular intertwining matrix A(a, a7}
such that A(a, af)M(γw a) = M(γw a')A(a9 a7) (w G G), where
M(γw α) , M(γw α;) are expressed with respect to fundamental so-
lutions whose values at Xo a r e independent of a. More specific infor-
mation about A(a, a7) would be very desirable. This may be related
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to recurrence relations for some associated (as yet unspecified) definite
integrals.

Can one find explicit bases for 2Ja 9 τ when G — hi^k) and there are
two parameters in terms of classical special functions? The differential
equation (4.3) has six regular singular points but it may be possible to
reduce this number by a transformation.

Are there useful distinguished points in Ψ in the sense of allowing
explicit evaluations of fundamental solutions? The obvious candidate
is the peak point XQ where

(see [Du2]).
When ax > 0 for all i and \h(x)\2 is an interesting weight function

for orthogonal polynomials on the sphere it may be that there are inter-
esting definite integrals associated to ^a,τ •> for example \f(x)\2\h(x)\2

(f G S^a,τ) with respect to surface measure on if n{x e RN : \x\ — 1} .
Kazhdan and Lusztig (see [KL], also [Hu, Ch. 7]) constructed a

different basis for H(G; q) for the purpose of a more detailed repre-
sentation theory. Do the elements of their basis have an informative
geometric meaning under the monodromy representation?
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