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MAPS BETWEEN SEIFERT FIBERED SPACES
OF INFINITE πx

YONGWU RONG

A theorem of A. Edmonds says that any nonzero degree map be-
tween closed surfaces is homotopic to a composition of a pinch map
and a branched covering. Here we consider the analogous problem
in dimension three. We prove that any nonzero degree map between
P2-irreducible Seifert fibered spaces of infinite πx is homotopic to
a composition of "vertical pinches" and a fiber preserving branched
covering, except for a few cases which we describe completely. In
particular, any such degree one map is homotopic to a composition of
vertical pinches.

0. Introduction. In this paper we study nonzero degree maps be-
tween closed P2-irreducible Seifert fibered spaces of infinite π\, or
equivalently, closed aspherical Seifert fibered spaces. We prove that
any such map is homotopic to a composition of vertical pinches (de-
fined in §1) and a fiber preserving branched covering, except for cer-
tain cases which can be completely understood (Theorem 3.2). As a
corollary, any degree one map between such spaces is homotopic to a
composition of vertical pinches.

The analogous theorem for surfaces was proved by A. Edmonds [1].
Later R. Skora gave a simplified proof using the notion of geometric
degree [6]. Our proof uses similar ideas as theirs. Some extra work
must be done to adjust the map so that it is nice with respect to the
Seifert fibrations of the manifolds.

In § 1 we establish terminology. Pinches and squeezes are defined by
analogy with those definitions in dimension two given by A. Edmonds
[1]. In §2 we show our map can be homotoped into an equivariant
fiber preserving map, but possibly followed by a covering between
Euclidean manifolds (those which have the geometry of E3). In §3
we give an inductive proof of our main theorem.

I would like to thank R. Fintushel for helpful conversations, and R.
Skora for his useful comment.

1. Notations and terminology. For a Seifert fibered space M , h
denotes either a regular fiber or its homotopy class. Tori and annuli
are often regarded as Seifert fibered without singular fibers, and h has
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a similar meaning in these cases. For two or more spaces which are
Seifert fibered, we use the same letter h to denote the regular fibers
in them if this does not cause confusion. For an element x in a
group, (x) denotes the subgroup generated by x . For a submanifold
S, N(S) denotes the regular neighborhood of S. / always denotes
a closed interval, T denotes a torus, V a solid torus, and A an
annulus. The abbreviation S.F.S. stands for Seifert fibered space. The
geometric degree of a proper map / : Mn —• Nn , denoted by G(f),
is the least number d such that for some map g properly homotopic
to / , and some disk in TV, g~ι(D) consists of exactly d disks and
g maps each such disk homeomorphically onto D.

We now define pinches. Let M be a closed 3-manifold, F be a 2-
sided closed surface which separates M into a union of M\ and M2 .
If there is a map q from M2 onto a handlebody H such that q\d
is a homeomorphism, then we have a degree one map / (= idu#)
from M to N = M\ UpH. We call such a map a I-pinch. When Z7 is
a 2-sphere, a 1-pinch is a pinch in the usual sense, which we may call
a "0-pinch". The following lemma says that a 1-pinch can always be
homotoped so that it "pinches" M2 onto a 1-dimensional complex.
The proof is simple and is omitted.

LEMMA 1.1. / / / : (W 9 dW) -* (H, dH) is a map from a 3-mani-
fold onto a handlebody such that f\d is a homeomorphism, then f
can be homotoped reld such that f sends a collar dW x [0, 1) of
d W homeomorphically onto H-c, and sends W - d W x [0, 1) onto
c, where c is a core of H.

Proof. Let s: dW x [0, 1] -• [0, 1] be the projection. Let rt: H -*
H be a deformation retract of H so that r0 = id, and rλ (H) c c.
Let f: W —> H be defined by ft(x) = rts^of(x). It is easy to verify
ft is the desired homotopy. D

The next lemma tells us when a 1-pinch can occur:

LEMMA 1.2. Let W be a compact 3-manifold with dW = F, a
connected orientable surface. Then there exists a map f\W-+H
with f\d is a homeomorphism if and only if there are g (= genus(i7))
disjoint simple closed curves on F which cut F into a 2g-punctΰted
sphere and bound disjoint surfaces in W.

Proof. Let D = |J Dt be a system of meridian disks in H. If there
is such a map / , homotop /rel<9 so that / is transverse to D.
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Then f~ι(D) is a surface whose boundary is a collection of s.c.c. on
F satisfying the conclusion.

If there is such a collection of s.c.c. {l\, . . . , lg} on F such that
/, = dFi, and F/'s are disjoint, let H be the handlebody obtained
by adding 2-handles to F x / along each //, and then a 3-handle to
cap off the 2-sphere. There is a map from N(\JFi) onto the union
of the 2-handles by pinching. The map can then be extended over the
remaining part onto the 3-handle by the Tietze extension theorem. D

A manifold W satisfying the above lemma is called pinchable.
If M is a Seifert fibered space and T is a separating vertical torus

in M such that one side of T is pinchable, then the resulting manifold
N after the pinching is again a Seifert fibered space with an induced
Seifert fibration from M. This is true because in Mi, the fiber h
is not null-homologous. Such a 1-pinch is called a vertical 1-pinch or
simply a vertical pinch.

Next we define squeezes. Let T be an incompressible torus in a
3-manifold M with a product neighborhood Txl, I be an essential
simple closed curve on T. Parameterize T by T = Sι x S1 such
that / = Sι x {p}. Let X = M/~, where (x, y, t) ~ (x', y, ή for
(x,y,t), (x*, y, t) e Sι x Sι x I. The quotient map q: M -+ X is
called a squeeze. Topologically X is M cut open along T, union two
solid tori along the boundary such that each meridian is identified with
a copy of /, and then union an annulus connecting the cores of the
two tori. If T is a vertical torus in a Seifert fibered space, a squeeze
along T is called a vertical squeeze.

If a map f:M-+N factors through a squeeze, then we say /
admits a squeeze. If N is aspherical, then / admits a squeeze along
a torus T iff f sends an essential s.c.c. on T onto a null-homotopic
loop in N.

2. Equivariant fiber preserving maps. Let M be a Seifert fibered
space. Fix a Seifert fibration of M and regard M as an S1-bundle
over its base orbifold OM [5]. The transition group is SO(2) if the
bundle is orientable and is O(2) otherwise. In any case, there is a well-
defined local 51-action on M. We denote the image of the action by
tx for t G Sx and x e M. Globally tx is well-defined up to changing
t into r 1 .

Let a be a path in M connecting two fibers CQ and c\ . An Sι-
action tx on c0 extends along a to an S1-action tax on ci . If
a' is another arc connecting c0

 a n d <?i, then tax = ifl/x or Π 1 ^
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depending whether w\(a Ua1) = 0 or 1, where W\ is the first Stiefel-
Whitney class of the bundle. In particular, the S ̂ action is globally
well-defined iff the bundle is orientable.

We say a map f\M—*N is an equίvarίant fiber preserving map
(EFPM) if / is a bundle homomorphism. By definition / is EFPM iff
/ is fiber preserving and f(t(x)) — tn f[x), where n is the integer for
which /*(/*) = hn . (n is globally well-defined when both M and N
are oriented bundles, otherwise \n\ is well-defined and will be called
the geometric fiber degree of / in §3.)

Similar definitions can be made for annuli, tori, and Klein bottles
when they are regarded as Seifert fibered spaces.

We hope to show in this section that any nonzero degree map be-
tween aspherical S.F.S. M and N is homotopic to an EFPM for
some Seifert fibrations of M and N. However, the following exam-
ple shows that this is not true in general.

EXAMPLE. Let M = Fg x Sι, where Fg is a closed orientable sur-
face of genus > 1. Let S = Sι xSι xSι, N be the unique S.F.S. with
orbifold S2(3,3,3) that is covered by S. Let a = p x id: M -+ S,
where p is a (2-dimensional) pinch from Fg onto Sι x S1. Hence
a sends the fiber of M onto the last S ^factor of S. Let β: S —> N
be a covering that sends the first Sι -factor onto the fiber of N. Now
define F = β o a. Under the unique Seifert fibrations of M and N,
f*(h) φ (h). Hence / is not homotopic to a fiber preserving map.

The core of the above example is that S has two non-isotopic Seifert
fibrations, so that a and β are both fiber preserving but under dif-
ferent Seifert fibrations of S. In other words, when a map factors
through S, S switches its fibration. Since we restrict ourself to P2-
irreducible manifolds with infinite π\, such S must be a Euclidean
manifold [5]. There are only finitely many of such Seifert fibered
spaces. We will show that this is the only way our map fails to be an
EFPM (Lemma 2.1 and Proposition 2.4).

LEMMA 2.1. Let f:M-*N be a map of nonzero degree between
aspherical S.F.S. of infinite π\. Then, for any fixed Seifert fibration of
M, either

1. there is a Seifert fibration of N such that f*(h) e (h), or
2. there is a covering p: N —> N, a lifting f' JM -> N such that

f — P ° f y and f*{h) £ (h) for some fibration of N. Furthermore, N
and N are both Euclidean manifolds in this case.
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Proof. If /*(/*) = 1, f*(h) € (h). (In fact this can happen only
when N is a solid torus since deg / Φ 0.)

Now let us assume that f*(h)φ\. If /* is onto, then (f*(h))
is an infinite cyclic normal subgroup of π\(N). By [2, VΊ.ll(e)],
/(/*) G (Λ) for some Seifert fibration of N.

If /* is not onto, let p: TV —• N be the covering corresponding to
f*π\(M). It must be a finite covering for deg/ ^ 0. Let f:M—>N
be the lift of f. Since / is onto, f*{h) e (h) for some Seifert
fibration ofN. N also has a Seifert fibration induced from N by
the map p so that /? is fiber preserving covering. If the two Seifert
fibrations of N agree, then f*(h) € {h), and we are in case 1. If they
do not agree, then N has two Seifert fibrations that are not isotopic
to each other. By [5], N js Euclidean, and therefore N is Euclidean
since it is a quotient of N. D

From now on, we will focus on maps of case 1 in the above lemma.

LEMMA 2.2. Let f: A —• N be a map from an annulus into an
aspherical Seifert fibered space such that f sends dA into fibers and
f\OA is an EFPM. Then f can be homotoped rel<9 such that f is an
EFPM.

Proof. Let dA = α0 U tfi, a be a spanning arc of A. We consider
3 cases:

Case 1. Both /(αo) a n d f(a\) belong to regular fibers. Let f{tx) =
tnf{x) on a0. Define fx on A by fx(tx) = tnf(x) for t e Sι, x e a.
Then fx is an EFPM, and fx = f on dA. Using π2(N) = {0}, and
fx = / on a, we can easily see that f\ ~ /rel<9 .

Case 2. /(αo) belongs to a regular fiber but not f{a{). Let cx be
the singular fiber containing f(ax). The index p\ of Ci must divide
deg{/|: ax —• c}. Let α̂  be a parallel copy of #i in A, and Ax c A
be the annulus between α̂  and # i . We can homotop /rel<9 so that
it is an EFPM on A\, and f(a[) belongs to a regular fiber. By the
previous case the result holds.

Case 3. /(αo) and f(a\) belong to singular fibers CQ and C\ respec-
tively. Suppose that f{a{) covers c\ with degree Λ, . Let ON be the
base orbifold of N and ON be its universal covering. Let cι e πx (ON)
be the coset of c, in the quotient group π\(N)/{h) = TI\(ON) . The
map / gives a conjugacy relation CQ° = άc[ιa~x in U\(ON) . But cz

acts on 6V as a rotation around some point over the /th cone point.
Hence the relation cannot hold unless either the two rotation angles
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are both multiples of 2π, or the two rotations have the same fixed
point and a is also a rotation around this point. The first possibility
implies that Λ, is a multiple of the index of c\, and the result then
follows by a similar reason as in Case 2. For the second possibility,
c0 = c\, and f(ά) is a loop whose homotopy class lies in (CQ) . Hence
/ is homotopic to the constant fiber CQ . D

Similar to Case 1 above, the following lemma is proved using π$(N)
= {0}:

LEMMA 2.3. Let f: V —• N be a map from a Seifert fibered torus of
type (1,0) into an aspherical Seifert fiber ed space N such that f\dV
is an EFPM. Then f ~ f\ rel d, where f\ is an EFPM.

PROPOSITION 2.4. Let f: (Af, dM) —• (TV, dN) be a nonzero de-
gree map between aspherical S.F.S. of infinite πγ such that 1 Φ f*(h) G
(h). Then f can be homotoped into an EFPM. If f\d is already an
EFPM, then the homotopy can be chosen to be fixed on the boundary.

Proof. Consider first the case when M and N are closed. We can
write M as a union M = Ho u H\ u Hi, where Ho = N(h U cf ), h
is a regular fiber, \J cz is the union of all the singular fibers, H\ —
N(\JAj), where A/s are disjoint vertical annuli such that N(dAj) c

, and Hi = N(h\), where /*i is a regular fiber and dfy c
. (This is called a round-handle decomposition of M [3].)

Since /I,(A) G (A), /*(cz) is a multiple of a fiber for each / [2,
VI. 1 l(f)]. Hence we can homotop / so that f\Ho is EFPM. Then we
apply Lemma 2.2 and Lemma 2.3 to finish the proof.

For manifolds with boundary, we first use the fact 1 Φ f*{h) G
(h) to homotop f\d so that f\d is an EFPM. The rest is similar as
before. D

Let Zn denote the cyclic subgroup of order n in Sι. Let ~ w be
the equivalence relation on the S.F.S. M defined by x ~n t{x) for
all x G M and all t eZn. Let Mn = M/~n. Then Mn is a Seifert
fibered space, and the quotient map is a fiber preserving branched
covering. An EFPM / with /*(/*) = hn satisfies /(*(*)) = t±n(f(x)).
Thus f(t(x)) = f{x) for all t G Zn . It follows that / factors through
Mn:

COROLLARY 2.5. Under the same hypothesis as in Proposition 2.4,
/ ~ fγ o p, where p: M —• M\ is a fiber preserving branched covering,
and fu(h) = h.
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3. Main theorem. We prove our main theorem in this section. First
we give some definitions. Let / : (M, dM) —>(N, ΘN) be a map of
Seifert fibered spaces which is homotopic to a fiber preserving map.
The geometric orbifold degree of / , denoted by Gob(f), is the mini-
mum number of regular fibers in f{~ι{h), where f\ ranges in all the
maps which are properly homotopic to / , fiber preserving, and trans-
verse to h. The geometric fiber degree of / , denoted by Gh(f), is
\n\ where f*(h) = hn. Notice that these definitions depend on the
choice of Seifert fibrations of the spaces.

Denote by fd the restriction of / on the boundary. We have

G{f)<Gh{f)Gob{f)<G{fd).

We say a fiber preserving map / is allowable if fd is a covering of
degree Gob(f)Gh(f). If dM = ON = 0 , then any fiber preserving
map is allowable. From the definition, the following observation is
easy to see and will be used later in our proof:

REMARK 1. If / : M —> N is allowable, X is a vertical set (ver-
tical annulus, vertical solid torus, etc.) in N, and f\ = f\: M -
f~ι(N{X)) -> JV - N(X), then fx is allowable if either

f\f~ι(X) is a covering of degree Gob(f)Gh(f), or
f\f~ι(X) is a covering of degree G(f). In the later case,

PROPOSITION 3.1. Let f be an allowable map between aspherical
S.F.S. of infinite π\ with G(f) Φ 0. Then F ~ gπ, where π is
a composition of finitely many of vertical pinches, and g is a fiber
preserving branched covering branched over fibers.

This proposition together with Lemma 2.1 and Proposition 2.4 im-
ply our main theorem:

THEOREM 3.2. Let f:M—*N be a nonzero degree map between
closed P1-irreducible S.F.S. of infinite %\. Then f ~pogoπ, where π
is a composition of finitely many vertical pinches, g is a fiber preserving
branched covering, and p is a covering.

REMARK 2. The covering p can be chosen to be the identity map
unless N is an Euclidean manifold. There are only 10 such mani-
folds N [5]. For each such N, the covering space Λf must have two
different Seifert fibrations and is Euclidean. There are only two such
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manifolds N, the three torus and the double of the twisted /-bundle
of the Klein bottle. Hence the possibilities of p are very limited.

When G{f) = 1, we have

COROLLARY 3.3. Any degree one map between closed P2-irreducible
Seifert fibered spaces of infinite %χ is a composition of finitely many
vertical pinches.

Before we prove Proposition 3.1, we first prove a lemma which
serves the initial step of the induction.

LEMMA 3.4. Let f:M—>V be an allowable map, where M is a
S.F.S. of infinite π\, and V is a Seifert fibered solid torus. Assume that
f does not admit a nontrivial vertical pinch, and Gh{f) = \. Then f
can be homotoped rel d to a fiber preserving breached covering.

Proof. Since F has no nontrivial vertical pinch, the orbifold OM
of M must be a planar surface with at most one cone point. Let
fli,...,fljt be proper arcs which cut OM into a disk with possibly
one cone point, let At be the annulus over at. Then \JAi cut M
into a Seifert fibered solid torus V\. The map f\A\ can be homotoped
reld so that /(J4, ) is d-parallel. Now f\Vλ is a map between tori,
hence can be homotoped reld such that off dV\ it is a branched
covering branched over the core c of V. It follows from Remark 1
that f\\ M\ -> N\ is allowable and Gob{f\) = Gob{f), where N\ =
(N-N{c))~9 M^f-HNJ, fι=f\Mx.

The Seifert fibered space N\ is isomorphic to a product A x Sι

where A is a horizontal annulus. Homotop /ireld such that f{~ι(A)
is incompressible. It must be either vertical or horizontal by [7]. But it
cannot be vertical since fu{h) — h in π\(N\). Hence f{~x{A) must
be a union of parallel horizontal surfaces (J F, and M\ is a fibered
manifold with fiber F and a periodic gluing map. Using G^ (/i) = 1,
we conclude that there is only one copy of F and the gluing map must
be the identity. The map f\\: f~ι(A) —> A is allowable as a map of
surfaces (note that Edmonds and Skora both defined allowable maps,
but the two definitions are in fact equivalent by [6]); also it does not
admit a pinch since / does not admit a vertical pinch. By Edmond$
theorem, it is homotopic rel d to a branched covering g. This implies
f\ is homotopic reld to g x id: F x Sι -» A x Sι, which is a fiber
preserving branched covering. Hence / is homotopic rel d to a fiber
preserving branched covering. D
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Proof of Proposition 3.1. After a finite number of vertical pinches we
may assume that / has no vertical pinch. Next by Corollary 2.5, we
can compose / as / = f\ o g, where g is a fiber preserving branched
covering branched over fibers and Gh(f\) — 1. Note that f\ does
not admit a vertical pinch since a vertical pinch of f\ would yield a
vertical pinch of / . Therefore we may assume that G^(f) = 1 -

If dM = 0, let h be a regular fiber in N such that / is transverse
to A, and f~ι(h) is a union of Gob(f) regular fibers. We then
consider f\M - N(f~ι(h)), which is again an allowable map of the
same geometric orbifold degree. Hence we may assume that dM ψ 0 .

From now on, we assume that dM φ 0 , / has no vertical pinch,
and Gh(f) = 1. Under these assumptions we prove that / is homo-
topic to a fiber preserving branched covering branched over fibers by
an induction on the complexities of M and N.

The first step is the case when N = V. This has been done by
Lemma 3.4.

Next is the inductive step:

Case 1. / admits a squeeze along an incompressible vertical torus
T.

We take a maximum collection of disjoint non-parallel incompress-
ible vertical tori along which / admits squeezes. Let X = Q U A be
the space obtained after these squeezes, where Q = \JQi is a union of
S.F.S., A = [)Aj is a union of annuli such that dA is a disjoint union
of (possibly singular) fibers in Q. After a homotopy, / = (g U α) o q,
where Q is a composition of squeezes, g = [jgi is defined on Q,
and a is defined on A. Each Qi must be of infinite π\ for other-
wise f*{h) factors through an element of finite order in π\Qι which
implies /*(/*) = 1 in πχ(N), and thus G(f) = 0.

Claim, g is allowable and Gob(g) = Gob{f), Gh{g) = 1.

Proof of Claim. Clearly, G^{g) = G^(/) = 1. Next, fix a regular
fiber h in 7V,homotop gi so that gi is fiber preserving and g~ι(h)
is a union of Gob(gi) regular fibers in M. By Lemma 2.2 we can
homotop a rel d so that a is fiber preserving; hence we can perturb
it so that a(A) misses h. So f~x{h) = g~ι{h). Hence Gob(f) <
Gob(g). It follows that G(fd) = Gob(f)Gh(f) < Gob{g)Gh{g) <
G(gβ). Since fo = gβ, all inequalities must be equalities. Hence
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Gob(g)Gh(g) = G(gd)> a n d thus g is allowable. It also follows from
the above equalities that Gob{g) = GOb(f).

By the maximality of q, g does not admit any squeeze, thus no
vertical pinch.

For each / such that Q\ is closed, by Lemma 3.5 below we can
homotop gj such that gi(Qi) is contained in a fiber of N. Let B\
be the union of such fibers in N.

For each / such that Q, has boundary, Gob(gi) Φ 0 since g is
allowable. By the inductive hypothesis, each gt is homotopic to a
fiber preserving branched covering branched over fibers. Let Bi be
the union of the branched fibers in TV.

Now consider a: A —> N. a{dA) = g(ΘA) must be fibers in N.
By Lemma 2.2, we may assume that a is fiber preserving after a
homotopy reld.

If a component of dAj is a singular fiber c in Q of order n
(> 1), a(Aj) must be contained in one singular fiber. Otherwise, by
Lemma 2.2, a sends a fiber d of Aj in IntAj into a regular fiber
in N. So α(c') ~ A* and thus g(c) ~ α(c') ~ A* . This implies that
#(λ) ~ g(cn) ~ Λn/:, contradicting the fact that Gh{g) = Gh(f) = 1.

If both components of dAj are regular fibers in Q, we can perturb
them so that they are mapped into different regular fibers in TV under
g. By Lemma 2.2, a(Aj) can be homotoped into an immersed vertical
annulus. Thus we can homotop αreld so that a(Aj) is an embedded
vertical annulus by sliding the double lines off a{dAj).

It follows that in any case, a{Aj) is contained in a vertical solid
torus after a homotopy rel d . Let B^ be the union of these vertical
solid tori in N.

Let E be a vertical essential annulus in N missing B\ U B2 U 2?3.
Now f~x(E) covers E with degree G^(f)Gof)(f)9 thus consists of
a collection of annuli. The map f\: M - N(f~ι(E)) -* N - N(E) is
again allowable, so it is homotopic rel d to a fiber preserving branched
covering by the inductive hypothesis. Hence / is homotopic to a fiber
preserving branched covering.

Case 2. f does not admit a squeeze along any incompressible ver-
tical torus. Since d N Φ 0 , and N ψV\ there is an essential vertical
annulus E in N. Homotop / such that f~ι(E) is incompressible.
It must be either vertical or horizontal [7]. lϊ F is a horizontal com-
ponent of f~ι(E), then the subgroup A generated by π\(F) and h
has finite index in π\(M). Let B = π\(E), which is an infinite index
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subgroup of π\(N). Since f*(A) c B, we have

[πxN : B] < [πλN : f(A)] = [πxN : f+πxM\[f+πχM : f+A]

< [π\N : f*π\M][π\M : A] < oo, a contradiction.

Hence f~ι(E) must be a union of incompressible vertical tori or
annuli. It must be a union of annuli because / does not admit a
squeeze. Denote the annuli by {Ej}. After a homotopy of / , f\E[
either covers E or misses a boundary component of E. But the
later case cannot happen, for otherwise f~ι(h) has less than GOb(f)
components for a regular fiber h on E that is close to dE, a contra-
diction. It follows that /|AΓ - N(f~ι(E)) is an allowable map onto
N — iV(2?). Therefore the inductive hypothesis implies it can be ho-
motoped rel d into a fiber preserving branched covering. Hence / is
homotopic to a fiber preserving branched covering. α

LEMMA 3.5. Let g: M —• N be a map ofaspherical Seifert fibered
spaces of infinite %\ such that 1 Φ f*{h) e (A). Assume that M
is closed and dN φ 0. 77ze« either f admits a squeeze along an
incompressible vertical torus or f ~ f\, where f\ (M) c a fiber of N.

Proof. Let A be a union of essential vertical annuli in N which
cut N into a union of solid tori. Homotop / so that f~ι(A) is
incompressible in M.

Case 1. If a component F c f~ι(A) is horizontal, the group G =
(π\(F), h) is of finite index in π\(M). But f*(G) is cyclic since it
is contained in an annulus group. Hence f*(π\M) contains a cyclic
group of finite index. Therefore if M contains an incompressible
vertical torus then / admits a squeeze along this torus. If M does not
contain any incompressible vertical torus then M is a Seifert fibered
space whose base orbifold is S2 with three exceptional fibers. In this
case G = π\(M). Thus f*(ji\M) = f*(G) is a cyclic group with
a generator x. Since this group contains f*(h), and f*(h) G (A),
x is represented by a power of fiber c in JV [2, VΙ.ll(f)]. Hence
f*{π\M) C (c), and so / ~ f\ where f\(M) c c.

Case 2. If Z " " 1 ^ ) is a nonempty union of incompressible vertical
tori, then / admits squeezes along these tori.

Case 3. If f~ι(A) = 0, then /(M) is contained in one of the tori
of N cut along A. Hence f(M) can be homotoped into the core of
this torus, which is a fiber of N. D
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