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ON DISCRETE ISOMETRY GROUPS
OF NEGATIVE CURVATURE

GAVEN J. MARTIN

In this paper we extend well-known results concerning the alge-
braic limits and deformations of groups of hyperbolic isometries of
hyperbolic 3-space, H> , to negatively curved groups. For us these will
be groups of isometries of variable negative curvature metrics satisfy-
ing a pinching condition and in particular will include the R-rank one
Lie groups. We accomplish these goals, as in the hyperbolic case, by
producing a version of Jergensen’s inequality for such groups. Using
an appropriate normalisation we can consider algebraic limits and de-
formations of such groups in the homeomorphism group of the n-ball,
Hom(B"). We ask that the generators of each group move continu-
ously or some sequence of generators have limits in Hom(B"), but
there is no such restriction on the associated negatively curved metrics.
We then recover many of the standard results for groups of hyperbolic
isometries of H3 in this more general setting under mild and usually
necessary restrictions, such things as the limits being discrete, or the
deformations are algebraically trivial and so forth.

We point out, as a warning, that some authors use the term nega-
tively curved groups to mean hyperbolic groups in the sense of Gromov
[G].

The pinching condition we assume may be relaxed if the curvature is
nonpositive, bounded below and the associated Hadamard manifold
is a visibility manifold [EQ]. The version of Jargensen’s inequality
[J] that we produce follows more or less directly as in [M], where the
n-dimensional hyperbolic case is considered, from Gromov’s gener-
alization of the convergence of iterated commutators, see Buser and
Karcher [BK, §2]. The results of this paper can be viewed as further
applications of that fundamental result. Other aspects of the theory
of isometry groups of negative curvature can be found in the book
of Ballman, Gromov and Schroeder [BGS] which we use as a general
reference.

In §8§3, 4 we discuss the algebraic limits of negatively curved groups
(in the appropriate homeomorphism group) and show that under mild
(and necessary) hypotheses they are discrete. We also obtain that a
group of isometries of a negatively curved metric is discrete if and only
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if all its two generator subgroups are discrete under either the algebraic
assumption that the order of the torsion is bounded, or the geometric
assumption that the fixed points of hyperbolics are in general position.
It is not difficult to see that some assumption is necessary. Our result
includes those negatively curved groups which, as abstract groups, are
hyperbolic in the sense of Gromov.

In §5 we show that continuous deformations of most (for instance
those that are virtually torsion free) discrete negatively curved groups
are algebraically trivial; that is, the deformation consists entirely of
. isomorphic groups. (Here we vary the generators continuously in the
homeomorphism group, the underlying metrics need not change con-
tinuously.) From this it turns out that a continuous deformation of
a cocompact torsion free group is topologically trivial; that is, all the
groups are topologically conjugate (including the action on the sphere
at infinity).

There are three main reasons why our results (except in the R-rank
one case where more precise statements can be made) are not as good
as the hyperbolic case:

First, in this general setting there is no Selberg Lemma [S] asserting
the existence of torsion free subgroups of finite index in finitely gen-
erated matrix groups. Indeed there is an example, due to Gromov [G,
§4.5C], of a finitely generated infinite torsion group acting on a space
of nonpositive curvature (this space is not a manifold). He remarks,
page 79, that it might be possible to achieve a uniform bound on the
order of the torsion and thus produce a geometric Burnside group. It
is true however that a purely torsion negatively curved group is finite.
This is a simple consequence of [G, Lemma 8.1 A].

Secondly, there is no known compact core theorem, as for instance
Scott’s Core Theorem for 3-manifolds [Sc]. Thus we cannot assume
that a finitely generated group is finitely presented. Indeed, there are
finitely generated discrete hyperbolic groups (in dimension n > 4)
which are not finitely presented [KP]. We point out that there is a
useful version of the core theorem if one assumes pinched curvature
and the injectivity radius goes to zero [BGS, Theorem 10.5].

And thirdly, in [GM] we construct an infinite parabolic convergence
group which contains free groups of arbitrarily large rank and so is
not virtually nilpotent. The Heisenberg group is a purely parabolic
group of isometries of complex hyperbolic space which is not virtu-
ally abelian. Consequently, parabolicity is not as easy a condition to
deal with as it is in the constant curvature case. It should be noted,
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however, that a finitely generated discrete parabolic negatively curved
group is virtually nilpotent; see for instance [B] who shows that dis-
creteness implies finite generation in this case.

Finally we remark that it is an interesting feature of our work
that the underlying metrics do not play a crucial role in the discrete-
ness of limits. The dependence is more on the topological action of
such groups on the sphere at infinity (as convergence groups in the
sense of [GM]) which enables us to produce the appropriate version
of Jorgensen’s inequality. The algebraic limits of discrete negatively
groups may only be groups of homeomorphisms, but our results imply
they are discrete and have reasonable geometric structure.

1. Notation and Definitions. We denote by B” the closed unit ball
of euclidean n-space R”. A Hadamard manifold M is a complete
simply connected manifold all of whose Riemannian sectional curva-
tures K(M) < 0. Every n-dimensional Hadamard manifold is dif-
feomorphic to int(B"”) via the usual exponential mapping (Cartan-
Hadamard Theorem). The universal covering of any manifold whose
sectional curvatures are nonpositive is a Hadamard manifold. Two
unit speed geodesics ¢;, ¢; in M are asymptotic if there is some con-
stant b such that d(c(¢), c(t)) < b for all ¢ > 0. The equivalence
classes of asymptotic geodesics are called points at infinity and the col-
lection of all such points is denoted S, . There is a natural topology
on M U S, which makes it homeomorphic to B"” [EQ]. If the sec-
tional curvatures are strictly negative, K(M) < —a® < 0, then M is
a visibility manifold in the sense of [EQ]. Then for distinct x and y
in S there is a unique geodesic ¢: R — M such that ¢(+o00) = x
and c¢(—o0) = y. We say that a Hadamard manifold M has pinched
curvature if all of the sectional curvatures of M satisfy

where a # 0. The choice of —1 on the left-hand side of the above
inequality is a normalization which can be achieved by scalar multi-
plication of the Riemannian metric as soon as the sectional curvatures
satisfy —B? < K(M) < —b?. It is easy to see that any isometry of
a pinched Hadamard manifold M extends to a homeomorphism of
M U S, via its action on geodesics.

It is clear from the above discussion that the study of pinched
Hadamard manifolds and their isometries is equivalent to the study
of Riemannian metrics g defined on the open unit ball of R” and
for which all the sectional curvatures satisfy —1 < K(g) < —a?. For
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simplicity, this is the framework in which we will work. We say a
group I' of homeomorphisms of B” is a negatively curved group if
there is some metric g satisfying the above pinching condition and
for which I" acts as a group of isometries.

We say that a negatively curved group I' is discrete if the identity
is isolated in I" (the topology here is essentially irrelevant). Discrete
negatively curved groups arise naturally in the study of manifolds with
pinched curvature. If (M, g) is a Riemannian manifold with pinched
sectional curvature, then the fundamental group 7;(M) is a negatively
curved discrete group. Discrete subgroups of R-rank one Lie groups
are negatively curved groups. Let y be an isometry of a pinched
curvature metric g with associated distance function d(.,-). For
x € int(B") we define d,(x) = d(y(x), x) and d, = inf{d,(x): x €
int(B")}; d, is called the translation length of y. The isometry y is
classified by its translation length. We say y is elliptic if d, =0 and
this infimum is attained, y is hyperbolic if d, > 0 and this infimum
is attained, and y is parabolic if the infimum is not obtained. If y
is elliptic, then the fixed point set of y in int(B”) is a nonempty
complete totally geodesic subspace of codimension at least 1 (actually
2 if y is orientation preserving). If y is hyperbolic, then y has two
fixed points on the sphere at infinity. The unique geodesic connecting
these two points is completely invariant and y translates along the
geodesic by the distance d, . If y is parabolic, then y has a single fixed
point on the sphere at infinity [BGS]. This characterization implies the
notion of hyperbolicity, parabolicity and ellipticity are well defined
for negatively curved groups. That is, they are independent of the
underlying metric (of which there may be many).

In [MS] we prove that a discrete negatively curved group is a con-
vergence group in the sense of [GM]. These are groups of homeo-
morphisms with the compactness properties of quasiconformal (and
hence conformal) mappings. More precisely a group I' of homeomor-
phisms of B" is called a convergence group if every infinite family of
elements of I' contains a sequence {y;};>; for which there are x and
y in S™! such that

y; — x locally uniformly in B” — {y}
and
23 I - y locally uniformally in B” — {x},

the possibility x = y may occur. This definition is actually that of a
discrete convergence group in our reference [GM], but we adopt this
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terminology for simplicity. Note too that in accordance with the usual
terminology for isometries of negatively curved spaces we use the term
hyperbolic for loxodromic elements.

The limit set, L(I"), of a convergence group I is the set of accumu-
lation points of I'(0) = {y(0): y € I'}. We say that I" is elementary
if the limit set contains fewer than three points. Otherwise the limit
set is a perfect set, and the fixed points of hyperbolic elements are
pairwise dense in L(I") x L(I'). In [GM] we classify the elementary
convergence groups. The elements in a convergence group are also
classified according to their fixed point data and their order. In the
case of a discrete group of isometries of a pinched metric, the above
implies that the two classifications correspond.

Let g be a negatively curved Riemannian metric on int(B”), d(-, -)
the associated distance function, y an isometry and x € int(B”).
Then the rotation of y at x is the angle

ry(x) = max{Z(w, Py(psx(w))): w € T,B" and |w| = 1}.

Here y.x: TxB" — T, B” is the differential at x and P,: T;()B" —
T,B" is parallel transportation along the geodesic from x to y(x).
We then define the norm of y at x as

ny(x) = max{r,(x), 8d,(x)}.

One of the most important results we use in the following conse-
quence of the generalization (due to Gromov) of the convergence of
iterated commutators in Lie groups, see Corollary 2.4.4 of [BK]. This
result can be found in [BGS, Corollary p. 106].

1.1. THEOREM. Let g be a pinched Riemannian metric, x €
int(B"”) and N a discrete group of isometries generated by elements o
with n.(x) <0.49. Then N is nilpotent.

It is interesting to note that the constant 0.49 is independent of
dimension. In the three-dimensional hyperbolic case, a related result
can be proved purely in terms of the translation length [GM2, §5].

It is easy to prove that a nonelementary convergence group contains
a subgroup isomorphic to the free group on two generators and is
therefore not nilpotent. Thus in Theorem 1.1 we could have arranged
the (weaker) conclusion that N is elementary and so in particular the
limit set consists of at most two points.

2. Jorgensen’s inequality for negative curvature. In this section we
prove a generalization of Jgrgensen’s inequality for Kleinian groups
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[J]. This result can be seen as a generalization of the classical Margulis
lemma, or the existence of Zassenhaus neighbourhoods. First we need
a couple of lemmas. We assume that y is an isometry of a negatively
curved metric. A line is a complete geodesic. We fix x € int(B").

2.1. LeMMA. If y interchanges the endpoints of a line, then y is
elliptic and n,(x) > n/2.

Proof. If y interchanges the endpoints of a line, then »2 has two
additional fixed points and hence is elliptic. Thus y too is elliptic.
Next, y has a fixed point on this line and so the set V' of perpen-
dicular geodesics to this line and passing through the fixed point is
invariant and separates B" into two components (if there were more
components we would find conjugate points). One of these compo-
nents V'* contains x, the other V'~ contains y(x). Let C be the
geodesic joining x to y(x) and y the point of intersection of C and
V. Let w be the unit tangent vector at x whose parallel transport
along C to y is perpendicular to V and points into V*. Then
y *x (w) points in the direction of V'~ as does its parallel transport
to y (note that y2(x) € V'*). Thus the angle between the parallel
transports of w and y *, (w) to y is at least n/2. This establishes
the lemma.

The following two lemmas are proved in a manner similar to Lem-
mas 4.1 and 4.2 of [M]. We illustrate the proof of the second lemma.

2.2. LEMMA. Suppose o and B are two isometries generating a
discrete negatively curved group. If a is parabolic or hyperbolic and
if the group (o, BaB™1) is elementary, then the group («, B) is also
elementary.

2.3. LEMMA. Let o and B be two isometries generating a discrete
negatively curved group. Suppose that o is elliptic and that p is the
dimension of the fixed point set of «. If the group

F=(fap™:i=0,1,2,...,p+1)
is elementary, then either (a, B) is elementary or ny(x) > n/2.
Proof. Let V = fix(a). As we have noted earlier V' is a nonempty

complete totally geodesic subspace. Given a collection of points X,
X1, ..., Xm we denote by sp(xg, X1, ..., Xm) the smallest totally
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geodesic complete subset containing these points. The curvature as-
sumption easily implies that sp(xg, ..., X») is difftomorphic (for in-
stance via the exponential mapping) to the interior of a ball of some
dimension at most # and that the closure of this set is topologically
a ball. As with the hyperbolic case we need to consider three cases.
(1) Suppose I is finite. Then there is a nonempty complete totally
geodesic subspace F pointwise fixed by every element of I". Let w €
F . Then glap~(w)=w forall i=0,1,2,...,p+1 andso x; =
B~ (w)eV forall i=1,...,p+ 1. Let j be the smallest integer
such that sp(xop, xi, ..., Xj) = sp(xp, X1,..., Xj, Xj4+1). Such a j
exists by general position as the {x;} are a collection of p + 2 points
lying in the p-dimension subspace V. As f is an isometry we have

B(sp(xo, X1, ..., X;)) = sp(B(x0), B(x1), ..., B(X;))
= Sp(X1, X2, ..., Xj41)-

But sp(x;, X2, ..., xj+1) is a subspace of sp(xp, X1, X2, ..., Xj41)
and a dimension count implies

B(sp(xo, X1, ..., Xj)) =sp(Xp, X1, ..., Xj).
Since the closure of the set is topologically a ball, § has a fixed point
in sp(xp, X1, ..., Xj), a subset of V', and therefore (a, B) fixes a
point and must be an elementary group [GM].

(2) Suppose L(I') = {xp}. Since the limit set is I" invariant we
have a(xg) =xp and forall i=1,2,...,p+1, Blaf™ (x) = Xxo.
The above argument now applies.

(3) Suppose L(I') = {xy, yo}. Again, the limit set is I" invariant
and so every element either fixes or interchanges the set {xp, yo}. If
every element of I" fixes this set, the argument of part one applies to
give the result. Otherwise there is an element of I" which interchanges
these points and therefore the line between them. Consequently one of
the generators must have this property. Since they are all conjugates of
«, a must have this property. Then Lemma 2.1 implies n,(x) > n/2.

The following is the necessary generalization of Jergensen’s inequal-
ity.

2.4. THEOREM. Suppose that o and B generate a discrete nonele-
mentary negatively curved group. If « is hyperbolic or parabolic, then
for each x € int(B")

max{ny(x), ny,p(x)}>0.49 and
max{ny(x), ngap—1(x)} > 0.49.
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If « is elliptic and p = dim(fix(a)), then
max{n,(x), n[a’ﬂ,](x): i=1,2,...,p+1}>0.49 and
max{nﬂ,aﬂ-,(x): i=0,1,2,...,p+1} >0.49.

Proof. Suppose that the inequality does not hold. In the parabolic or
hyperbolic case we find from Theorem 1.1 that the group (a, faf~!)
is nilpotent and hence elementary. The result in this case follows by
Lemma 2.2. In the elliptic case, we again obtain from Theorem 1.1
that the group (Baf~:i =0,1,...,p+ 1) is elementary. The
result then follows by Lemma 2.3.

It is the following principle, first espoused by Jorgensen, that makes
Theorem 2.4 such a valuable tool.

If two isometries o, B of a negatively pinched metric generate a
nonelementary discrete group, then given o, f§ cannot be too close to
the identity.

Jorgensen’s inequality is conjugacy invariant, while the above are
not (because of the dependence on x). However a simple corollary is

2.5. COROLLARY. Suppose that o and B generate a discrete non-
elementary negatively curved group. If o is hyperbolic or parabolic,

inf{max{n,(x), ny, g (x)}: x € int(B")} > 0.49.

There is of course a corresponding result if « is elliptic.

3. A limit theorem. We recall here that even in the hyperbolic case,
for dimensions greater than three, the limit of finitely generated dis-
crete nonelementary groups may not be discrete (even if the limit is
assumed to be nonelementary) [M, §5]. The problem arises as there
may be elliptics of high order converging to an irrational rotation about
a codimension two or larger subspace stabilized by a nonelementary
discrete subgroup. Thus in [M] we had to introduce the notion of uni-
formly bounded torsion. We must of course make a similar assump-
tion in this more general case. To begin with we need the following
lemma, essentially due to Newman [N], which we leave the reader to
verify. It can be proved using Newman’s result and a compactness ar-
gument for near the fixed point set the rotation angle is proportional
to the reciprocal of the order.

3.1. LEMMA. There is a positive constant 6 = d(m , n) such that if
x € int(B") and « is a periodic isometry of period less than or equal
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to m (which is not the identity), then
no(Xx) > 0(m).

3.2. DerINITION. Let {I';};>0 be a family of groups. We say that
{T';} has uniformly bounded torsion if there is an integer N such that
for all i and y €T}, either ord(y) = oo or ord(y) < N. Here ord(y)
is the minimal m # 0 such that y” = identity.

If T is group of homeomorphisms of B” (possibly not discrete) we
say that I'" is nonelementary if there are two elements a and g for
which

(a) o? and B2 have disjoint fixed point sets (if one has finite order)
or

(b) a and B are of infinite order and o? and B2 have different

fixed point sets.
By different we mean that they do not coincide exactly. Otherwise
I" is elementary. This apparently weaker definition of nonelementary
is equivalent to the usual definition for finitely generated Kleinian
groups. We make this definition so as to include infinite torsion groups
without a common fixed point amongst the nonelementary groups. We
point out that if in addition I" is a convergence group, then (a) and
(b) follow from the definition of nonelementary given earlier. As (a)
and (b) are essentially all that is needed in the limit groups for our
proofs we shall use this definition henceforth.

Here is the first convergence theorem. It is analogous to [J, Propo-
sition 1].

3.3. THEOREM. Let I" be a nonelementary group of homeomor-
phisms of B". For each m > 0 let y,, be a mapping yp,: T —
Isom(B”, gn,) into the isometry group of a Riemannian metric gm
whose sectional curvatures satisfy —1 < K(gm) < —a2, < 0 and which
has discrete image. Suppose that {ym(I')} >0 has uniformly bounded
torsion and that for each y € T’

Ym(y) — ¥

uniformly in B" as m — oo. Then T is discrete.

Proof. Suppose that I" is not discrete. Then there is a sequence of
elements {a;};>0 converging (uniformly) to the identity in I'. From
our hypothesis there are two elements £, and f, satisfying (3.2) (a)
or (b). As the fixed point sets are closed, they are uniformly separated.
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Let x € int(B”). It follows by continuity that for j = 1,2 and
sufficiently large i and m that

nl//m(a,)(x) + My, (o), V/,,,(,Bj)](x) < min{d(N), 0.49}.

Where N is the bound on the maximal order of the cyclic subgroups
and J(N) is the number from Lemma 3.1. Thus y,(e;) is not el-
liptic for m and i sufficiently large and so from Theorem 2.4 the
groups (Wm(a;), Wm(Bj)Wm(ai)¥m(B;)~"), j =1, 2, are elementary
and have nonempty limit set. If the limit set consists of one point,
then these two elements have a common fixed point which is stabi-
lized by w,u(B;), j =1, 2. If the limit set contains two points, then
wm(B;) fixes or interchanges this set, j = 1, 2 and the squares have
a common fixed point. Now letting m — oo we obtain the desired
contradiction.

REMARK. Of course in the hyperbolic case the assumption of uni-
form convergence implies that the limits are again hyperbolic isome-
tries. Notice too that in the above situation we make no assumption
about the convergence of the metrics {g},>0, and that in the limit
I' may not even be a group of diffeomorphisms. Presumably however
there is some underlying metric structure in the limit.

3.4. CoROLLARY. Let I' be a nonelementary group of isometries of
a Riemannian metric all of whose sectional curvatures satisfy —A? <
K(g) < —a?, which has bounded torsion. Then T is discrete if and
only if every two generator subgroup is discrete.

Proof. By multiplying the metric by a suitable constant we may
assume the curvature satisfies —1 < K(g) < —c? < 0. Suppose that
I' is not discrete and let y; — identity in I'. Since I' has bounded
torsion we may assume ; is not elliptic. By hypothesis there are
two elements B;, j = 1, 2, which are parabolic or hyperbolic and
whose fixed point sets do not coincide exactly, or the fixed point sets
are disjoint. Also by hypothesis the sequence of groups (y;, 8;), J =
1, 2, is discrete. Finally an argument similar to Theorem 3.3 implies
this sequence of groups is elementary for sufficiently large i. We
therefore reach a contradiction as above and this establishes the result.

3.5. CoROLLARY. Let T be a group of isometries of a Riemannian
metric all of whose sectional curvatures satisfy —A* < K(g) < —a?.
Suppose that the fixed points of hyperbolic elements of T' are in general
position (that is, the fixed points of hyperbolic elements do not lie in a
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totally geodesic codimension 1 set). Then T is discrete if and only if
every two generator subgroup is discrete.

Proof.Let Bj, j=1,2,..., k be hyperbolic elements whose fixed
point sets are in general position. Let {y;} be a sequence as in Corol-
lary 3.4. If this sequence (or some subsequence) is not eventually
elliptic we can argue as above and conclude the desired result. Thus
we assume y; are all elliptic. Then for all j and for all i sufficiently
large we have (as above) (y;, B;) is a discrete elementary group and so
forall j, fix(B;) liesin fix(y;) as B; is hyperbolic. This is impossible
as fix(y;) is totally geodesic and codimension at least 1.

In the above two results it is clear that some additional hypothesis,
such as bounded torsion or the constraint on the fixed points of hyper-
bolic elements, is necessary (even in the hyperbolic case). We might
for instance encounter a negatively curved group isomorphic to I'xS,
with the circle action stabilizing a lower dimensional hyperbolic space
on which I' acts discretely. If Q is that subgroup of S containing all
the elements of finite order, then I" x Q has the property that all its
two generator subgroups are discrete. Of course I x Q is not discrete.
However, it is quite possible that the additional hypotheses are redun-
dant in the case that the group is finitely generated (this of course
implies bounded torsion by Selberg’s lemma in the symmetric cases).
Thus we ask the question: is it true that finitely generated groups of
isometries of a metric of pinched negative curvature have bounded tor-
sion? G. Mess showed me an argument which implies this is the case
if the abstract group is hyperbolic in the sense of Gromov [G].

4. Algebraic convergence.

4.1. DEerFINITION. Let {I';};>0 be a sequence of negatively curved
groups each with the same finite number of generators {y; 1, 7; 2, ...,
vimy. If foreach j=1,2,..., m, there is a self homeomorphism
yj of B" such that

Yi,j —Vj asi— oo,
then we say that the groups I'; converge algebraically to the group
F=(r1,72,57m)-

REMARK. Again we note that there is no assumption on the conver-

gence of the underlying Riemannian metrics of negative curvature, and

moreover no assumption that their curvature is uniformly bounded
above by a negative constant. Thus the limit could possibly be a group
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of isometries of a flat metric (and therefore a negatively curved group).
It is a consequence of our results that this is not the case.

4.2. THEOREM. Let I" be a group of homeomorphisms of B" which
is the algebraic limit of a sequence {I';}i>o of nonelementary negatively
curved groups with uniformly bounded torsion. Then T is infinite and
discrete. Moreover, if T is a negatively curved group, then T" is nonele-
mentary.

In the three-dimensional hyperbolic case the assumption of bounded
torsion is unnecessary and also that I" is nonelementary is a conse-
quence of algebraic convergence [JK]. For the higher-dimensional hy-
perbolic case, the assumption of bounded torsion (or a related assump-
tion) is necessary and also implies that I" is nonelementary. Notice
in Theorem 4.2 we have skirted the delicate issue of when the limit
of negatively curved groups is again negatively curved. We hope to
return to this at a later date.

Proof. Let
Ti=(Yi15 V.25 Vi,m) Withp; j—

be a sequence as in Theorem 4.2 with I = (y;, y2, ..., Ym). We
proceed by a series of lemmas.

4.3. LemMA. T is not finite.

Proof. Suppose T is finite. Then there is a 0 < k < co such that
every element of I" can be expressed as a word in the generators {y;}
of word length at most k. Since I'; is nonelementary, there are words
of all lengths. For each i choose a word w; of length Kk +1 in I
(in terms of the generators given). Since there are finitely many such
words, passing to subsequence we may assume that the sequence of
words converges to a word w in I'. This limit word can be expressed
in a word w’ of length k, and then let w; be the corresponding
word in T';. Then the sequence of words v; = w;w}~! is nontrivial,
has word length at most 2k + 1 and converges to the identity. The
assumption of bounded torsion implies that v; is not elliptic for: i
sufficiently large by Lemma 3.1. Thus v; is parabolic or hyperbolic.
Then there is a generator y; ; which does not stabilize the set fix(v;).
Hence the group (v;, 7; x) is nonelementary. But as v; — identity
and y;; — y;j, we easily obtain a contradiction to Corollary 2.5.
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Hence I' is finitely generated and infinite. In the classical case (or
whenever I' is isomorphic to a subgroup of GL(m, C) for some m)
we could now use Selberg’s Lemma [S] to assert the existence of ele-
ments of infinite order. This would simplify the following arguments.

4.4. LemMA. T is discrete.

Proof. If not choose a € I', so close to the identity (but o #
identity) so that if «; is any approximant to « in I, then «; is
parabolic or hyperbolic and also that for some x € int(B")

-1(x) < 0.49, j=1,2,...,m.

y',lalyl,l
We can of course do this by appealing to continuity and Lemma 3.1.
Then the group (a;, ¥;, joiv; }) is elementary by Corollary 2.5. Thus
each generator stabilizes fix(e;) and the group they generate is ele-
mentary. This is contrary to our hypothesis.

e (X) +n

We suppose henceforth that I" is a negatively curved group.
4.5. LeMMA. T is nonelementary.

Proof. As T is infinite and negatively curved, there is a hyperbolic
or parabolic « in I" ([G, Lemma 8.1 A] implies the group is not purely
torsion). Since I'; is nonelementary, some generator y; ; does not
setwise fix the fixed points of «;. Passing to a subsequence we may
assume that Kk =1 and y; ; = y;. If y and a do not have a common
fixed point, then we are done and so we suppose otherwise. Now
suppose (a, y) is discrete and elementary. If a is hyperbolic, then
by [GM] the group (a, y) is virtually cyclic. This easily leads to a
contradiction. We are left to consider the case that every element of
I' of infinite order is parabolic with the same fixed point [GM]. That
is, I' is a finitely generated negatively curved parabolic group and so
is virtually nilpotent [B]. Then there are integers p and ¢ such that
a=a” and b = yady~! generate a nilpotent group. Let x € int(B").
There is a d such that any d-fold commutator [ , ]; of a and b is
trivial. Thus, summing over all the finitely many d-fold commutators
involving only a and b

Z L ]d(X) = 0.
[, 1

Then by continuity and Theorem 1.1, for sufficiently large i, the group
generated by the d-fold commutators of the approximants a; and b;
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will be nilpotent. Thus there is a d’ so that all d’-fold commutators
involving (only) the approximants a; and b; are trivial. Then the
commutator identity [a, bc] = [a, b][b, [a, cllla, c] implies that all
d’'-fold commutators are trivial as they can be written as (much longer)
products of d’-fold commutators in a; and b;, see for instance [BK, p.
28). Thus (a;, b;) is eventually nilpotent and hence elementary. But
this is easily seen not to be the case. The contradiction establishes the
lemma.

Actually, the above argument only needs that I" is a convergence
group which is not purely torsion and whose discrete parabolic sub-
groups are virtually nilpotent. If this is actually the case, we can
further restrict the possibilities for I" with the following

4.6. LemMA. If T is infinite and purely torsion convergence group,
then T is discrete and has bounded torsion.

Proof. T is discrete. If there is no bound on the order of torsion
elements, then the approximants to all elements of sufficiently high
order will have to be parabolic or hyperbolic. Powers of these elements
will again be parabolic or hyperbolic and close to the identity. The
argument of Lemma 4.4 again produces a contradiction.

4.7. THEOREM. Let T" be a finitely generated abstract group with
uniformly bounded torsion. For each m >0 let

Wm: T — Isom(B”, gn), —1<K(gm) < —a% <0,

be an isomorphism such that the images y,,(I') = I',, are discrete
and nonelementary and converge algebraically to T'n,. Then T'y, is
discrete and the correspondence of generators induces an isomorphism
Voo: oo —T.

Proof. As yp, is an isomorphism, the sequence {I',},,>0 has uni-
formly bounded torsion. Thus from Theorem 4.2 I', is discrete. It
is clear that the correspondence of generators Yo : 1o — I' = T,
induces a homomorphism onto. Suppose a € ', — {Identity} and
Voo(a) = Identity. Uniformly bounded torsion implies that y,,{«)
is parabolic or hyperbolic for all m sufficiently large as y,,(y) —
Identity by Lemma 3.1. Now apply the argument of Lemma 4.4.

Indeed the above argument easily implies (see [M, Theorem 6.1]).
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4.8. THEOREM. Let {I';};>0 be a sequence of discrete nonelemen-
tary negatively curved groups with uniformly bounded torsion converg-
ing algebraically to a finitely presented group of homeomorphisms T .
Then T is discrete and the correspondence of generators I’ — I', in-
duces a homomorphism for all i sufficiently large.

If each T'; has a finite presentation, each relation of which has uni-
Sformly bounded wordlength, then the correspondence eventually induces
an isomorphism.

From [BGS, Theorem 10.2] if T" is a negatively curved torsion free
group with the injectivity radius of the quotient manifold B"/T" going
to zero at infinity (for instance cofinite volume), then this quotient is
diffeomorphic to the interior of a compact manifold (with boundary)
and so the fundamental group I' is finitely presented. The conclusion
of Theorem 4.7 would then hold and all groups sufficiently close to
I", in the topology of algebraic convergence, would be factors of I".

The symmetric Riemannian R-rank one spaces of negative curva-
ture are real hyperbolic space SO(1, n)/SO(n), complex hyperbolic
space SU(1, n)/U(n), quaternionic hyperbolic space Sp(1, n)/Sp(n)
and hyperbolic space over the Cayley numbers F4/Spin9. The isom-
etry groups are the Lie groups SO(1, n), SU(1, n), Sp(l, n) and
F, respectively. The metric is the canonical left invariant metric with
-1 <K < -1, see [Mo] and [H].

Let I" be a discrete subgroup of one of the isometry groups above
and let H(I') be the geodesically convex hull of the limit set L(I')
of I'. We say that I' is of compact type if H(I')/I" is compact.
Clearly compact type groups are finitely generated and finitely pre-
sented. Therefore and application of Theorem 4.8 yields

4.9. CoRrOLLARY. Suppose I' is a compact type discrete subgroup of
the isometry group of an R-rank one space of negative curvature. Then
there is a neighbourhood of the generators of T' in & X & x--- X & such
that every discrete group whose generators lie in this neighbourhood is
a factor of T'.

5. Continuous deformations. In this section we shall show that a
continuous deformation of a negatively curved group, through dis-
crete negatively curved groups, is algebraically trivial, Theorem 5.3.
That is, all the groups have the same isomorphism type. It then fol-
lows that in the torsion free cocompact case that such a deformation
is topologically trivial as well. That is, all the associated quotients
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are homeomorphic and the deformation is induced by a topological
conjugacy on the whole (closed) ball.

5.1. DerFINITION. We say a group I' is virtually torsion free, if T
has a torsion free subgroup of finite index. Let D(k, n) denote the
space of all virtually torsion free k generator discrete nonelementary
negatively curved groups. We give D(k, n) the topology of algebraic
convergence. In what follows we fix x € int(B”) and define the norm
of a as n(a) = n.(x).

The proof of the following lemma is more or less implicit in what
we have done in §4, see for instance [M, Lemma 6.2]

5.1. LemMA. Let T € D(k, n). Then there is a neighbourhood
Ne(I") of T such that if o € Ne(I') and n(a) < €, then a = Identity .

The following is a generalization of [J, Theorem 3] and [M, Theo-
rem 6.3]. The proof given here follows the latter reference.

5.2. THEOREM. Let E be a connected compact subset of D(k, n).
Then E consists entirely of isomorphic groups.

Proof. Let E,, denote that subset of E for which the maximal order
of a finite cyclic subgroup is exactly m. Then {E;},>o is a disjoint
collection, E,, is compact by Theorem 4.2 and as each element of
D(k, n) is virtually torsion free £ =J,,5gEm. Let € E,, and R a
relation in T, and F,, that subset of E,, with the relation R. Lemma
5.1 implies that F,, is relatively open; clearly it is also closed and so is
a union of components of E,, . Thus each component of E,, consists
entirely of isomorphic groups. As E is compact, Sierpinski’s Theorem
[K, §47II1, Theorem 6] (which states that a compact connected set
cannot be the countable union of closed disjoint subsets) implies that
E = E,, for some m and we are done.

It is interesting to note that each component of Ej (the torsion free
groups) consists entirely of isomorphic groups. Notice too that in the
proof we did not use the full hypothesis that every group is virtually
torsion free. Only that each group has bounded torsion. Furthermore,
although Sierpinski’s Theorem is not true for arbitrary closed sets, it
is true for the real line. We can then obtain the following slightly dif-
ferent result. Here, by a continuous deformation, we mean that a fixed
finite set of generators is being continuously deformed in Hom(B").
The underlying metrics (of negative curvature) need not change con-
tinuously.
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5.3. THEOREM. Let T" be a finitely generated nonelementary neg-
atively curved group with bounded torsion. Let {I';: t € R} be a con-
tinuous deformation of T = I'y through discrete nonelementary nega-
tively curved groups. Then {I';: t € R}, and its closure in the topology
of algebraic convergence in Hom(B"), consists entirely of isomorphic
groups.

Proof. Since the elliptics have integer-valued order, one cannot con-
tinuously change this without the order becoming infinite. Since each
group in the deformation is assumed discrete, if the order of an el-
liptic is not preserved by the deformation it must be perturbed to a
parabolic or hyperbolic element. But then some power of these el-
ements will be arbitrarily close to the identity (by continuity) and
still parabolic or hyperbolic. Pairing this power with its conjugate by
each generator will imply by Corollary 2.5, as we have seen before
in Lemma 4.4, that the groups generators stabilize a set containing at
most two points and therefore the group they generate is elementary,
contrary to our hypothesis. Thus the deformation preserves the orders
of elliptics. As I" has bounded torsion so does every element of the
deformation. Then the proof of Theorem 5.2 implies the deformation
is through isomorphic groups.

We say a negatively curved group is cocompact if the orbit space
int(B")/I" is compact. Notice that cocompact implies nonelementary.

5.5. THEOREM. Let {I';: t € R} be a continuous deformation of a
torsion free group T'y. If each T, is a discrete cocompact negatively
curved group, then there is a continuous family of homeomorphisms
fi: B" — B" such that fTof ! = Iy. That is, the deformation is
topologically trivial.

Sketch of Proof. For each t the quotient is a compact negatively
pinched manifold, each with the same isomorphic fundamental group
I'. The obvious action of this group on the space int(B") x [0, 1]
(here [0, 1] is the parameter space) is proper. The orbit space is a
manifold foliated by the codimension 1, two-sided compact manifolds
(leaves) int(B")/I';. By Reeb stability, all the leaves are homeomor-
phic and the orbit space is a trivial fibration. Thus there is a conjugacy
fi: int(B") — int(B"). Since each group is cocompact, it is uniform
and therefore contains no parabolics [BGS, Lemma 8.2]. The usual
Mostow-Margulis construction, see [Mo] and [T], shows that f; is a
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pseudo-isometry, that is, a continuous map which is a bounded dis-
tance from an isometry (the minimal number of fundamental domains
between two points is preserved by f as it is automorphic). In partic-
ular, the image under f of a geodesic line will be a bounded distance
from another geodesic line. (Here the curvature assumptions and co-
compactness simplify matters greatly. The details are not trivial, see
[Mo] and compare with the R-rank one lattice case there. Alterna-
tively the argument given by Thurston [T] works in this general set-
ting). Such maps as f extend homeomorphically to the boundary via
their action on geodesic lines.

We remark that the much deeper results of Farrell and Jones [FJ]
also imply that the leaves are homeomorphic (for n # 3, 4).
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