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FIXED POINTS OF SURFACE DIFFEOMORPHISMS

BOJU JIANG AND JIANHAN GUO

We give a complete proof of the following theorem which was con-
jectured by Jakob Nielsen for closed oriented surfaces.

THEOREM. Let f\M-^M be a homeomorphism of a compact
surface. When M is closed, then f is isotopic to a diffeomorphism
with N(f) fixed points, where N(f) is its Nielsen number. When
M has boundary, N(f) should be replaced by the relative Nielsen
number N(f;M,dM) defined by Schirmer.

Another result is the inequality \L(f) - χ(M)\ < N(f) - χ(M)
when χ(M) < 0, where L(f) is the Lefschetz number and χ(M)
is the Euler characteristic.

Introduction. For a self-map / of a compact polyhedron X, the
Nielsen number N(f) is defined to be the number of essential fixed
point classes. (See [J3] for an introduction to the Nielsen fixed point
theory.) It is a classical theorem of Wecken [W] that N(f) is a lower
bound of the number of fixed points for all maps homotopic to / ,
and that if X is a manifold of dimension > 3, this lower bound
is always realizable (see also [Br], [K]). It is now known [J4] that
when X is a surface with negative Euler characteristic, there exists
a map / : X -> X such that every map homotopic to / has more
than N(f) fixed points. The purpose of this paper is to show that
for homeomorphisms of surfaces the Nielsen number is indeed the
least number of fixed points in the isotopy class, as Nielsen himself
conjectured (cf. [N2, §31]) in his study of oriented closed surfaces.

MAIN THEOREM. Let M be a compact surface, closed or with bound-
ary. Let f:M^M be a homeomorphism. Then f is isotopic
to a smooth embedding which has N(f) fixed points. If, in addi-
tion, no boundary component of M is mapped onto itself by f in an
orientation-reversing manner, then f is isotopic to a diffeomorphism
haying N(f) fixed points.

This theorem was announced in [32], here strengthened with
smoothness considerations. An example in [Jl] shows it is necessary

67



68 BOJU JIANG AND JIANHAN GUO

to allow embeddings in order to get as few as N(f) fixed points when
there are orientation-reversing invariant boundary components. If we
insist on diffeomorphisms, the least number of fixed points in the iso-
topy class turns out to be the relative Nielsen number N(f\ M, ΘM)
defined by Schirmer [S]. See Theorem 5.1 below. Another result is an
interesting inequality (Theorem 4.1) relating the Nielsen number with
the Lefschetz number.

All the recent progress on Nielsen's fixed point conjecture origi-
nated in Thurston's theory of surface diffeomorphisms [T]. Thurston
himself solved the important case of orientation-preserving pseudo-
Anosov maps in Theorem 6 of [T], See [BK] for the first published
proof. The easy periodic case was treated in [Jl]. The work [I] con-
sidered orientation-preserving maps of closed orientable surfaces and,
besides pseudo-Anosov and periodic cases, hinted at the kind of anal-
ysis needed for reducible maps. In the present paper, we shall con-
sider general diffeomorphisms of compact surfaces, and give complete
proofs.

There are seven connected compact surfaces with positive or zero
Euler characteristic. For them the truth of the Main Theorem can
be checked case by case. The 2-sρhere, the 2-disk and the annulus
have respectively 2, 2 and 4 isotopy classes of self-homeomorphisms.
The real protective plane has only one isotopy class, the Mδbius band
has two (see [E, Theorems 5.5 and 5.8]). All these isotopy classes
have obvious simple representatives satisfying the requirements of
the Main Theorem. The torus and the Klein bottle are more inter-
esting. They are studied in Nielsen's classical paper [Nl]. Both have
the Euclidean plane E2 as the universal covering space with isometric
covering translations. Each isotopy class contains a linear representa-
tive, i.e. one that lifts to a linear map of E2 . Such a representative,
slightly perturbed if necessary to remove inessential fixed point classes,
minimizes the number of fixed points.

Henceforth we assume that M is a compact surface such that each of
its connected components has negative Euler characteristic. Our proof
of the Main Theorem is based on Thurston's classification of surface
homeomorphisms.

THURSTON THEOREM ([T]). Every homeomorphism f: M —• M is
isotopic to a "diffeomorphism" φ such that either

(1) φ is an isometry with respect to some hyperbolic metric on M,
or equivalentlyy φ is a periodic map, i.e. φm = id; or
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(2) φ is a pseudoΆnosov map, i.e. there is a number λ > 1 and a
pair of transverse measured foliations (# 5 , μs) and {$u, μu) such that
φ($s, μs) = (3*, ι

Ίμ
s) and φ(V, //") = (£w , λμu) or

(3) 9? is a reducible map, i.e. there is a system of disjoint simple
closed curves Γ = { Γi , . . . , Tn } in intM such that Γ is invariant
by φ {but the Tfs may be permuted) and Γ has a φ-invariant tubu-
lar neighborhood ^ ( Γ ) such that each component of M - ^ ( Γ ) has
negative Euler characteristic and on each {not necessarily connected)
φ-component of M - ^ ( Γ ) , φ satisfies {I) or (2).

REMARK. The pseudo-Anosov map in [T] is not an honest diffeo-
morphism in that it is not even C 1 at the singularities of $s and
$u. In the statement given in [T], Γ/ are two-sided simple closed
curves on M, so some components of M - ^ ( Γ ) may be Mobius
bands. We prefer to allow one-sided Γ, in order to guarantee that
every component of M — Jf(Γ) has negative Euler characteristic.

The proof of this theorem can be found in [B], [FLP], [HT] for the
oriented surfaces, and in [Wu] for non-orientable surfaces.

The structure of the paper is as follows. In §§1-2 we develop stan-
dard forms for φ on the periodic pieces and the pseudo-Anosov pieces
respectively. These are not meant to be representatives of the isotopy
classes that have the minimal number of fixed points, rather they are
designed to be building blocks that are ready to be glued together. In
§3 these models are assembled into a standard form for a general φ ,
where we shall regard the case (3) in Thurston Theorem as the general
case by regarding the first two cases as "reducible" with empty reduc-
ing curves (Γ = 0 ) . The rest of §3 is devoted to the detailed analysis
of the fixed point classes of this standard form. This is a technical
stepping-stone of the paper. The Main Theorem is then proved in §4
by shrinking these fixed point classes to single points via isotopy. The
inequality relating the Nielsen number and the Lefschetz number is
also proved there. A discussion on the relative Nielsen numbers is
given in §5.

There is another obvious division of the problem into three cases:

(1) orientation preserving homeomorphisms on oriented surfaces,
(2) orientation reversing homeomorphisms on oriented surfaces,
(3) homeomorphisms on nonorientable surfaces.

Although we have chosen Thurston's structural trichotomy as the or-
ganizing principle of the paper, the above division is certainly the



70 BOJU JIANG AND JIANHAN GUO

natural order of understanding. The orientation preserving and re-
versing cases involve complementary types of fixed point classes, while
the nonorientable case combines both. So we suggest the reader to first
focus on the orientation preserving case which contains the main ideas
with only half of the technicalities, then the orientation reversing case
and finally the nonorientable case. For the convenience of the reader,
we systematically use the superscripts + / - in the labels to indicate
the relevance to orientation preserving/reversing cases.

The following notation and terminology will be used throughout the
paper.

NOTATION. Let / : X -> X be a map. Then Fix / denotes the
fixed point set {x e X \ x = f(x)}. When X is a polyhedron and
A c X is such that A Π Fix / is both open and closed in Fix / , then
index(/, A) denotes the fixed point index of A Π Fix / .

DEFINITION. Let / : X —• X be a map. A subset A c X is said to
be /'invariant if f(A) c A . Two path-connected /-invariant subsets
Ao, A\ are said to be f-related if there is a path c: I —> X such that
c ~ / o c : / , 0 , I -> X, AQ, A\.

In general this is not an equivalence relation among /-invariant
subsets. When both AQ and A\ are single points, it reduces to the
Nielsen equivalence relation between fixed points of / . Namely, two
fixed points x and y are in the same fixed point class if there is a
path c: I —> X connecting them such that c ~ foe rel endpoints.

1. The periodic case. Suppose φ: M -> M is periodic, i.e. φm = id
for some natural number m. It is well known that such a φ is an
isometry with respect to some hyperbolic metric on M (of constant
Gaussian curvature - 1 and with totally geodesic boundary).

In this section, the connected components of Fix φ are explicitly
described, and the fixed point classes of φ are identified with these
components.

LEMMA 1.1. Let A be a component of Fix φ. Then one of the
following is true:

(1)+ A is a component of M and index(^ , A) = χ(A) < 0.
(2)" A is a closed geodesic, with a neighborhood diffeomorphic

to Sι x (0, 1) where φ acts as the reflection (z,/) ^ (z, 1 - ί ) ;
index($9, A) = 0.

(3)" A is a geodesic arc orthogonally connecting two {not neces-
sarily distinct) components of dM, with a neighborhood diffeomor-
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phic to I x ( 0 , 1) where φ acts a s the reflection ( s , t) •-• ( s , \ — t)\
index(iz?, A) = 1.

(4)+ 4̂ w # /?omί, w/ίλ α neighborhood diffeomorphic to the open
unit disc intD = {z e C | \z\ < 1} where φ acts as a rotation;
index(^, A) = 1.

Proof. It is clear that each component of the fixed point set of an
isometry is a properly embedded totally geodesic submanifold. Hence
the four possibilities. The index is easily calculated from the local
description of φ . D

LEMMA 1.2. Let AQ, A\ be either a fixed point of φ or a φ-ίnvarίant
component of dM. Suppose Ao and A\ are φ-related via a path
c: 1, 0, 1 —• M, AQ, A\. Then there is a path y in Vixφ such that
γ~c:I90, l->M,A0,Aι.

Proof. Hyperbolic geometry guarantees a unique shortest geodesic
in every homotopy class of paths 1,0, 1 -* M, AQ, A\ . (Recall that
dM is totally geodesic.) Let γ be the shortest geodesic homotopic to
c. Since φ is isometric, φ o γ is the shortest geodesic homotopic to
φ o c. But c ~ φ oc so γ = φ oγ . This means γ is in Fix φ . D

COROLLARY 1.3. Fixed point classes of φ are connected. π

2. The pseudo-Anosov case. Suppose φ: M —• M is a pseudo-
Anosov map with stable and unstable measured foliations (φ 5, μs)
and ($u, μu) respectively, and with expansion constant λ > 1.

The classical model for φ is described in §2.1. It is isotoped in §2.2
to a standard form φ which is smooth and moreover, in view of our
later need in §3 of gluing periodic pieces and pseudo-Anosov pieces
together, is required to be periodic on dM. In §2.3, the fixed point
classes of φ are identified as the connected components of Fix φ .

2.1. The classical model The following model is adapted from the
description of Thurston's pseudo-Anosov map φ for closed surfaces
(cf. [GK, pp. 176, 182]). The strategy to describe φ near dM is as
follows: Collapsing each component of dM into a single point (called
a puncture) we obtain a generalized pseudo-Anosov map φ : M —> M
of a closed surface M (cf. [FLP, pp.217,243]). The model for pseudo-
Anosov maps works for generalized pseudo-Anosov maps as well by
allowing the prong number p > 1. We then recover M and φ by
"blowing up" the punctures of M.
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We first introduce some notations. Let us write I = In A > 0. Let
p be a natural number.

DEFINITION. On the complex plane C = { s = s\ + ίs2 \ sx, s2 £ R } ,
define the linear map

F: C —• C, si + /s2 •-• λs\ + /s2//l.

It is the time-one map for the vector field V defined by s\ = ls\,

2̂ = —Is2, or
V(s) = Is.

DEFINITION. On the complex plane C = {z = peίθ \ p > 09 θ e
R }, consider the (multi-valued) map

and its inverse

Φ " 1 = Φ - 1 : C - ^ C , s*->s2lp.

Consider the map Ψ: C - intD, S1 -+ C, 0 defined by Ψ(z) = z -
z/\z\. It restricts to a difFeomorphism Ψ: C - D -> C - {0} with
inverse

DEFINITION. Let v = vp be the vector field Φ~{V. A simple cal-
culation gives

v{z) =

 21Z ( ± Y o r v ( p )

Let / = fp be the time-one map for v = υp .

FIGURE 1. The flow of v and υ (p = 3
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FIGURE 2. The flow of υ' and v' (p = 3)

Define the vector field v' on C — D by v' = Ψzlv The formula
for v' is easily obtained:

υ'(peiθ) = ILKp-iyV-^ + eW-^sinpθ},

so vf is smoothly extendable to C-intD with vf\dD tangent to dD.
Let / ' be the time-one map for υ'. We have a commutative diagram

C

4

Φ
C

Φ Ψ

C-intZ)

v
Ψ

C < C < C - i n t D

DEFINITION. Let r = r. k^± : C -> C be the map

r(peiθ) = pe±i(θ+2kπ/p)

where k is an integer, 0 < k < p . It is simply a rotation or a reflection
according as the plus sign or the minus sign is chosen.

The atlas. A chart at a point x € int M is an open neighborhood Ux

and an embedding ux: £/*, x —• C, 0. A chart at a component A of
<9Λf is an open neighborhood UA and an embedding UA' UA, A -*
C-intD, Sι.

There is a finite smooth atlas ^ of M, consisting of one chart for
each interior singularity, one chart for each boundary component, and
some other charts at interior regular points, such that:

(1) The measures μs and μu on Ux are mapped by ux to the
measures \Ktdzpl2\ = \RedΦp(z)\ and \lmdzpl2\ = \\mdΦp{z)\ on
C respectively, where p = px > 3 is the number of prongs of # at
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a singular point x, or px = 2 if x is a regular point; the leaves
of 3s and 5" get mapped to the lines {ReΦp(z) = constant} and
{ImΦp(z) = constant} respectively. (The prongs of $s are {z =
peiθ I p > 0, 0 = ^ π } and the prongs of $u are { z = peiθ \ p >
0, 0 = ^ π } . )

(2) The measures μs and μw on UA are mapped by uA to the
measures |ReJΦ p oψ(z)| and |ImrfΦpoψ(z)| on C-intZ) respec-
tively, where /? = pA > 1 is the number of prongs of # at A the leaves
of #5 and #w get mapped to the lines (ReΦ poψ(z) = constant} and
{ImΦp o ψ(z) = constant} respectively.

We may further assume (change scale if necessary) that, in each chart
at an interior singular point x, the closed unit disk D is contained
in ux(Ux) and is disjoint from chart overlaps; similarly for the closed
annulus { z | 1 < \z\ < 2 } in each chart UA .

The model for φ. In such an atlas ^ , denoting U'x = UxΓ\φ~ι Uφ(X)

and U'A = UAΓ[φ~xUφi<A), we have commutative diagrams

U'x, x - * - > Uφ{x), φ(x) U'Λ , A - ! U

C,0 ^ - C,0 C - i n t i ) , ^ 1 - ^ C - i n t ί ) , ^ 1

in charts at interior singularities and boundary components, where

/ = / ^ / = / p a n d r = r(P,k)± f o r s u i t a b l e P>k

If such a singular point x is a fixed point of φ, it will be called
a fixed point of type (p, k^ . Similarly, if this A is ^-invariant, it
is called a ^-invariant boundary component of type (p, fc)± . Here
the sign + / - indicates φ\A : A —• ̂ 4 is orientation preserving or
reversing.

Suppose x eintM is a regular point and φ(x) = x . Then there
exist local charts at x and φ(x) (not necessarily in the atlas %) with
the above commutative diagram where p is taken to be 2. In this
sense a regular point can be regarded as a "2-prong singularity", so
that our discussion of singularities applies to regular points as well.

REMARK. In view of the rotation symmetry of v , v', / and / ' , for
odd p every type (p, k)~ is conjugate to, hence regarded the same
as, the type (p, 0)~ for even p, among the types (p, fc)~ there are
two essentially different types: (/?, 0)~ and (p, 1)~ .
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Note that in contrast to the non-smoothness of φ at an interior /?-
prong singularity (p > 2), this model of φ can be smoothly extended
to the boundary dM. However, it fails to meet our later need in §3
that φ be periodic on dM.

2.2. The standard form. We shall modify the previous model to
achieve two goals: to make φ smooth and to make φ\dM periodic.

DEFINITION. Let a: R —• / be a non-decreasing smooth function
such that α(0) = 0, α(l//l2) = 1, and a(t) > 0 if t > 0. Let V be
the smooth vector field on C obtained by "slowing down" the vector
field V, V(s) = a(\s\)V(s). Then V and its differentials of any order
vanish at 0 e C. Let F: C -> C be the time-one map for V. It is
clear that F is a diffeomorphism and F(s) — F(s) when \s\ > 1.

DEFINITION. Let / : C - {0} -> C - {0} be the time-one map for
the vector field v :=φ-ιV on C-{0}. Let / ' : C-D-+C-D be the
time-one map for the vector field v1 := Ψ " 1 ^ on C - D. It follows
from the smoothness of V and its flatness at 0 that we can make
v smooth on C by defining v(0) = 0, and extend v' smoothly to
Sι = 3D by defining V'(z) = 0 there. The diffeomorphisms / and
/ ; are then extended accordingly. We have a commutative diagram

Φ ψ
C < C < C-intD

V
φ ψ

C < C < C - i n t D

It is clear that f = f when \z\ > 1, / ' = / ' when \z\ > 2, and / '
has the same jets (of any order) at Sι as the identity map.

DEFINITION. In the atlas ^ , let φ: M —> M be defined by the
commutativity of the diagrams

Ux,x —φ—^ Uφ{x), φ{x) Uf

A,A —φ-^ Uφ{A),φ{A)

uλ \u

Ψ(X)
 UΛ\ k(Λ)

C,0 -^^-> C,0 C - i n t i ) , Sι -^-* C - i n t i ) , Sι

in the charts at interior singularities and boundary components, and
be the same as φ elsewhere. Clearly, it is well-defined and smooth.
Since v and ϋ1 are obtained from v and vf by "slowing down",
φ is isotopic to φ. This isotopy does not change the interior fixed
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points and the invariant boundary components, but φ\ΘM becomes
a periodic map. We shall call φ the standard form for the pseudo-
Anosov map φ.

REMARK 1. We do not claim that φ is topologically conjugate to φ
on i n t M . Our concern here is only the isotopy, not the more difficult
problem of conjugacy treated in [GK].

For the standard form we have:

LEMMA 2.1. Every interior fixed point of φ is isolated. Its index
depends on its type:

Type ofx {p, 0)+ (p, k)+, p \ k (peyen, 0)~ (peyen, 1)" (podd, 0)"
inάex(φ,x) 1 -p 1 - 1 1 0

Fixed points on an invariant boundary component A:

Type of A (p, 0 ) + (p, k)+, p \ k (peyen, 0)~ (/?even, 1 ) ' (A>dd, 0)~
Fix φ Π A A 0 2 points 2 points 2 points

index(^, A) -p 0 0 + 0 1 + 1 1+0

REMARK 2. Isolated fixed points of zero index are removable via
local perturbation. There are two cases:

For an interior fixed point of type (p, 0)~, p odd, locally φ
switches the two sides of the reflection axis and moves every point
of the axis (except the fixed point) in the same direction (cf. Fig. 1).
This fixed point can be removed by composing φ with a slight push
along the axis.

For a boundary fixed point on an unstable prong of a type (p, 0)~
boundary component, locally φ switches the two sides of the unstable
prong and moves every point of that prong (except the fixed point)
inward (cf. Fig. 2). This fixed point is removed by pushing the unstable
prong into intM.

2.3. Fixed point classes.

LEMMA 2.2. Let AQ, A\ be either a fixed point of φ or a φ-invariant
component of dM. Suppose AQ and A\ are φ-related via a path
c: 7 , 0 , 1 -• M, AQ,AI. Then there is a path γ ~ c: 7, 0, 1 -*
M, AQ, A\ such that either

(1) γ is in Fix^, or
(2) γ is in a component of dM of type (p, k)+ .

The same is true with φ replaced by φ.



FIXED POINTS OF SURFACE DIFFEOMORPHISMS 77

Proof. By assumption we have c ~ φoc: /, 0, 1 —> M, AQ, A\. De-
form c to an immersion γ quasi-transverse to $s. Then γ ~ φ o y :
/ , O , 1 - + M , ; 4 o ? ^ i and 9? o 7 is also an immersion quasi-transverse
to $s. (Cf. [FLP, p.76] for the definition of quasi-transversals. The
Propositions II. 3 and II.6 of [FLP, Expose 5] can be naturally gener-
alized to homotopy classes of paths 1,0, I -* M, AQ, A\.) Thus

μs(γ) = inf{ μs(d) \ d ~ γ } = inf{ μs(d) \ d ~ φ o γ } = μ5(#? o 7).

But μs(φ o γ) = λμs(γ) and λ > 1, hence μ5(y) = 0. This means γ
runs along the leaves of # s . Thus 7 is quasi-transverse to #w . Then
a similar argument shows that γ also runs along the leaves of $u.
This can occur only if γ is a constant path in intM or γ is in dM.
Hence the conclusion for φ .

The isotopy from φ to φ, obtained by "gradually slowing down"
the vector fields υ and t;' to ί) and ϋf, does not change the fixed
point set except on invariant boundary components of type (p, 0)+ .
So the fixed point classes of φ and φ correspond in an obvious way.
Hence the conclusion remains valid for φ . D

COROLLARY 2.3. For the standard form φ, every fixed point class is
connected. u

3. The general case. In this section, a standard form for a gen-
eral φ is introduced. Its restriction on the periodic pieces and the
pseudo-Anosov pieces having been specified in the previous sections,
it remains to specify its behavior in the neighborhood of the reducing
curves. This is done in §3.1. We then concentrate on the fixed point
classes of the standard form. Using a book-keeping scheme introduced
in §3.2, we in §3.3 identify the fixed point classes with the connected
components of the fixed point set. This enables us (in §3.4) to compile
a complete list of possible types of fixed point classes.

Our standard form has some other useful features. For example,
iterates of a standard φ are still standard. The standard form is also
"equivariant" with respect to finite group actions on M. These will
not be discussed in this paper.

Suppose φ: M —• M is a homeomorphism of a compact surface
M and Γ = Γi U • U ΓΛ (n > 0) is a disjoint union of smooth
simple closed curves Γ/ c intM such that Γ is ^-invariant. Let

be a ^-invariant tubular neighborhood of Γ. The components
i } of ^Γ(Γ) are annuli or Mόbius bands. The components { Mz }
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of M — «/^(Γ) are subsurfaces with negative Euler characteristic. On
these (not necessarily connected) ^-components, φ is either periodic
or pseudo-Anosov.

Note that according to the Thurston Theorem this is the general
case: If M has only one ^-component, the case Γ = 0 (n = 0) is
either periodic or pseudo-Anosov, while the case Γ Φ 0 (n > 0) is
reducible.

Suppose φ is given as in the Thurston Theorem, and on pseudo-
Anosov pieces φ has already been isotoped into the standard form.
Thus φ\djy{Γ) is a periodic map. We shall isotope φ\yV{T) rel

into a standard form.

3.1. Standard form for φ on ^ ( Γ ) . We now consider the stan-
dard form of φ\Jf{T) under isotopies relative to dJ^iΓ). A compo-
nent of «/^(Γ) is either an annulus or a Mobius band. Let N be a

^-invariant component of ^ ( Γ ) . Then φ\N: N —> N is a diffeomor-
phism and φ\dN is periodic.

LEMMA 3.1. Let N be an annulus or a Mobius band, φ: N —> N
be a dijfeomorphism such that φ\dN is periodic. Then φ is isotopic
rdldN to a dijfeomorphism φ which is either periodic or a twist. More
precisely:

(A) The annular case: N is the annulus Sιxl. Then φ is isotopic
rel Sι x dl to a diffeomorphism φ which is conjugate to one of the
following standard maps ψ: Sι x / —• Sι x I.

(1)+ ψ(z, t) = (ze2(a+bt)πi, t), where a, b are rational numbers.
If b = 0, Fix ψ is either Sι x I or empty if b ^ 0, such a ψ will be
called a twist. Fix ψ is finitely many parallel circles Sι x {t}.

(2)~ ψ(z9 t) = (ze2aπi, 1—ί) where a is a rational number; F i x ^
is either Sx x {\} or empty.

(3)" ψ(z, t) = (z, t)\ Έixψ is two arcs {1} x / and {-1} x / .
(4)+ " ψ(z, t) = (ze'V-W™, 1 - 1 ) , where a is rational. If a φ 0,

such a ψ will be called a flip-twist. Fix ψ is two points (1,3) and

(-M)
(B) The Mobius band case: N is the Mobius band represented as

Sι x I modulo the identification (z, t) ~ (—z, 1 - t). Then φ is
isotopic rel dN to a diffeomorphism φ which is conjugate to on^of
the following standard maps ψ : N —• N.

(1) ψ(z,t) = (ze2aπi, t) ~ {-ze2aπi, 1 - 1 ) , where a is a rational
number, Fix ψ is either N, or empty, or the central circle represented
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(2) ψ(z, t) = ( z , t) ~ ( - z , l-ή; Fix ψ consists of an arc {1} x

- {-1} x / and another point (1, j) ~ ( - 1 , j ) .

Proof. The analysis is based on the following classical facts.
• Every periodic map of Sι is either conjugate to a rotation z *-•

ze2aπι ? w h e r e th e rational number α (mod 1) is the Poincare ro-
tation number, or conjugate to a reflection z t-+ Z .

• A homeomorphism of S 1 x / onto itself which is the identity on
Sι xdl is isotopic rel S1 xdl to a Dehn twist (z, ί) H-> (ze2ktπi, ί),
where fc is an integer.

• A homeomorphism of the Mόbius band onto itself which is the
identity on the boundary is isotopic rel boundary to the identity
(cf. [E, Theorem 3.4]).
These standard maps fall into two major types: periodic maps and

twists. The characteristic property of the twists is that Sι x dl can
never be in the same fixed point class of any iterate of φ . We omit
the details of the elementary but somewhat tedious arguments. D

REMARK 1. Strictly speaking, in order to guarantee that φ\Jf(Γ)
matches smoothly along d^f(Γ) with the standard form of φ\M -
JV(Γ), the standard formula for the twist should be ψ(z9 t) —
(ze2(a+bδ{t))πι^ ̂  where δ: I —> I is a smooth increasing function,
5(0) = 0, (5(1)= 1, and all the derivatives vanish at 0 and 1. Sim-
ilarly for the flip-twist. This modification would not change the fixed
point behavior that concerns us.

REMARK 2. Interior fixed circles can be removed via isotopy rel
boundary. There are two cases:

Interior fixed circles of type (Al) + can be removed by composing
ψ with a diffeomorphism Sι x / —> Sι x / , (z, t) H-» (Z , β(ή), where
β: R -+ R is a diίfeomorphism such that β(t) Φ t iff 0 < t < 1.

Fixed circles of types (A2) ~ and (Bl) are removed by rotating the
central circle -S1 x {\} e.g. composing ψ with a map Sι x / —> Sι x /,
(z, t) ι-> (zeia^, t) where a: R -> / is a smooth function with
α(0) = 0, α(i) = 1 and a(l - t) = a(t).

DEFINITION. A difFeomorphism ψ is said to be in standard form, if
its restriction to every periodic ^-component is periodic, its restriction
to every pseudo-Anosov ^-component is in the standard form φ of
§2.2, and its restriction to every ^-component of ^"(Γ) is in the
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standard form φ of Lemma 3.1. (For simplicity, we shall omit the
bar in the notation for the standard forms of §2.2 and Lemma 3.1.)

COROLLARY 3.2. Every fixed point class of φ\JV{Y) is connected.
Moreover, if two fixed points x, y are joined by a path c such that
c ~ φ o c, then there is a path γ in Fix φ such that γ ~ c rel end-
points. D

3.2. Book-keeping in the universal cover. Consider the following
general setting which clearly applies to the situation of §3.3.

Suppose M is a connected smooth m-manifold, S c M is a (not
necessarily connected) proper (m - l)-submanifold (proper in the
sense that S ΠdM = ΘS and S^has compact intersection with any
compact subset of M). Let p : M —• M be the universal covering of
M.

DEFINITION. The book-keeping graph G(S) is defined as follows.

Each connected component t/z of M — p~ι(S) gives rise to a vertex

Vj. Each connected component Sj of p~ι (S) gives rise to an edge ej .

A vertex vι is incident to an edge ej if and only if Sj is contained

in the closure of £//.

DEFINITION. Suppose c is a path in M from x to y transverse
to p~ι(S). Let z\, . . . , zk be the successive points where c crosses
p~ι(S). Let do, C\, ... , Ck be the successive segments of c cut by
p~ι(S). Define the book-keeping path β(c) for c to be the edge-path
VQe\V\ -vk_ιejcvk on G(S), where e^ corresponds to the connected
component S^ of p"ι(S) containing z^ , and υ^ corresponds to the
connected component Uh of M-p~ι(S) containing ch.

LEMMA 3.3. The book-keeping graph G(S) is a tree. If every con-
nected component U ofM — S is π\-injective in the sense that τt\{U)
injects into π\(M), and if c has minimal intersection with p~~ι(S)
among paths from x to y, then the book-keeping path β{c) is an arc
{possibly degenerate to a single vertex).

Proof. Since M is a simply connected m-manifold and Sj c M is
a connected proper (m — l)-submanifold, every Sj must separate M
by homological reasons. Thus every edge ej separates G{S), hence
the graph G(S) is a tree.

For the second part, it suffices to show there is no spur in the edge-
path β(c) = Vo^\V\ - vk~\ekvk - If otherwise e^ = e^+χ for some h ,
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the path c^ in U^ would have both ends in the same 5 ^ = 5 ^ + 1 . Now
£4 is simply connected by the πi-injectivity assumption. So c^ could
be deformed into S^ = S^+i, thus the product path c^γc^c^x could
be further deformed into ΪJh_x =. C7Λ+1, contradicting the minimality
of c. Ώ

3.3. Connectedness of fixed point classes. Suppose the diffeomor-
phism φ is in the standard form defined in §3.1.

LEMMA 3.4. Let AQ, A\ be either a fixed point of φ or a φ-invariant
component of dM. Suppose AQ and A\ are φ-related via a path
c: 1, 0, 1 --> M, AQ, A\. Then there is a path γ ~ c: / , 0, 1 —•
M, AQ9A\ such that either

(1) γ is in Fix φ, or
(2) γ is in AQ = A\ which is a boundary component containing no

fixed point

Proof. (1) Without loss of generality we may assume the path c has
the minimal number of intersections with cλ/f (Γ) in its homotopy
class / , 0, 1 -* M, AQ, A\. Note that if c does not cross cλ/f (Γ),
the truth of the conclusion is already guaranteed by Lemmas 1.2, 2.2
and 3.2.

(2) We shall work on the universal cover, using another form of the
notion of ^-relation defined at the end of the Introduction.

Alternative Definition. Path-connected ^-invariant subsets A$,
A\ c M are ^-related (via a path c) if and only if: there is a lifting
φ: M —• M of φ on the universal cover M of M, such that some
connected component AQ of P~1(AQ) and some connected compo-
nent A\ of ρ~ι(A\) (joined by a lifting c of c) are ^-invariant.

(The " i f part is trivial. For the "only i f part, choose a lifting φ
of φ and a lifting c of c such that the given homotopy c ~ φ o c
lifts to a homotopy c ~ φ o c. See [J3, Theorem 1.1.10] for the case
when both AQ, Aγ are single points.)

(3) Apply the book-keeping scheme of §3.2 to M with m = 2 and
S := d^y(Γ), and use the notation in the definition of β{c). The π\-
injectivity condition in Lemma 3.3 is clearly satisfied in our setting,
and the minimality assumption on c guarantees the minimality of c
with respect to p~ι(S). So β(c) = VQe\Vι '-vk_γekvk is an arc in
G{S).
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The diffeomorphism φ leaves P~ι{S) invariant, so the book-

keeping path β(φ o c) = v'Qe[v[ " ' v'k-\e'kv'k *s a * s o a n a r c

Since AQ and A\ are ^-invariant, we have VQ = ^ό a n c * vk — vk
By the uniqueness of joining arcs in the tree G(S), we conclude that
vh = y'h and e^ = e'h for all h. Thus every £4 and S^ is ^-invariant.

(4) Apply Definition (2) to the universal cover p : ΪJh —• U^, we
see 5^ := p(Sh) and S^+1 =P(S 'A+I)

 a r e ^-related on the subsurface
t/β , via c^ := p o £h , the Λ-th segment of c.

(5) The subsurfaces Z70, . . . , ΊJk are alternately of two different
kinds: components of M -yV(Γ) (the Mj 's with χ < 0), and com-
ponents of ^ ( Γ ) (the Ni 's with χ = 0).

(6) For every h of the first kind, Lemmas 1.2 and 2.2 say there is
a path γh in Fixφ and paths τ^, τ/j+1 in S^, S^+x such that ĉ  ĉ
τh7hτh+\ rel endpoints. Replacing the segment c^ with τh7hτh+\ a n c ^
then slightly pushing the parts τ^ , T/^ into the neighboring regions
£//>_!, Uh+ι (of the second kind) respectively, we deform c into a
new c with ŷ  as the new c^ . This deformation does not affect the
minimality of c with respect to S. Hence we may assume from now
on that Ch is in Fix φ for every h of the first kind.

(7) Continue with h of the first kind. Now that φ o ch — c^ , there
exists a covering translation α^ such that φ oc^= ahoch. We claim
that α/j = 1. Indeed, when AQ or A\ is a point, this is true for
h = 0 or k because AQ or A\ is a point. In all other cases^apply the
following geometric observation to the universal cover p: U^ —• U^.

Observation. Suppose p: M —> M is the universal cover of a con-
nected compact surface M with boundary, χ{M) < 0. Suppose α
is a covering translation. If there is a path £ in M such that £ and
a o c join the same pair of different connected components of dM,
then a must be the identity.

(Proof of this observation: Think of M as a hyperbolic surface
with totally geodesic boundary, so that dM consists of hyperbolic
straight lines. Via homotopy we may replace c with the unique short-
est geodesic joining that pair of components of dM. Since a is an
isometry, a o c is the same shortest geodesic. So a = 1.)

(8) We have shown that for h of the first kind, c^ is indeed a path
in Fix0 . In particular, zh9 zh+x are fixed points of φ. But every
other h is of the first kind, so that all cut points z\, . . . , zk of c are
fixed points of φ .

(9) Now we turn to those h of the second kind, Vh c ^ ( Γ ) . By
Definition (2), z^, zh+x are in the same fixed point class of
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Corollary 3.2 tells us there is a path homotopy c^ — 7h r e l endpoints
such that γh is in Fix φ. Replacing every such segment c^ with γh ,
we obtain the desired path γ lying entirely in Fix φ. α

COROLLARY 3.5. Every fixed point class of φ is connected. π

3.4. Types of fixed point classes. The last corollary enables us to
identify the fixed point classes of φ . Each is a component of Fix φ,
hence a union of the fixed point components on the standard pieces
described in Lemmas 1.1, 2.1 and 3.1. Putting together all the infor-
mation there and paying attention to the consistency along dJ^{T),
we can get

LEMMA 3.6. The possible types of fixed point classes of φ are listed
below, with a description of their local behavior.

( I )* Isolated fixed point x:
(a) + x G int M, φ is conjugate to a rotation in a neighborhood

of x index(0>, JC) = 1.

(b) + x G intM is a fixed point of an annular flip-twist;
index($?, x) = 1.

(c) + x G in tM is a type (/?, k)+ interior fixed point of a
pseudo-Anosov piece; index(^, x) = 1 —p or 1.

(d)~ x G intM is a type (p, k)~ interior fixed point of a
pseudo-Anosov piece; index($?, x) = 1, — 1 or 0.

(e)" x edM and x is in a type (p, k)~ invariant boundary
component of some pseudo-Anosov piece; index(^, x) = 1 or 0.

(2)± Fixed circle C:
( a ) + C c int M is a fixed circle of an annular twist; index(^? C)

= 0.
(b) ~ C c intM and in a neighborhood of C, φ is conjugate

to the reflection (z, t) \-+ (z, 1 - t) on the annulus Sι x I or the
Mόbius band Sι x // ~ index(#>, C) = 0.

(c) + C c i n t M ; on one side C is a type (p, 0)+ bound-
ary component of some pseudo-Anosov piecey on the other side C is a
boundary component of an annular twist; index(ί?, C) = —p.

(d) + C c d M , and C is a type (p, 0)+ boundary component
of some pseudo-Anosov piece; index($? 9 C) = —p.

(3)~ Fixed arc A, contained in some subsurface B of M on which
φ acts as an involution. Every endpoint x of A is either

(a) x G intM, on the outside of B x is in a type (p, k)~
invariant boundary component of a pseudo-Anosov piece, or

(b) J C G < 9 M .
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The possible values of index(^, A) are 1,-1 or 0.

(4)+ Fixed subsurface B of M with χ{B) < 0 . The possible forms
for a component C of dB:

(a) C c intM, on the outside of B C is a type (pc, 0)+

invariant boundary component of some pseudo-Anosov piece;
(b) C c intM, on the outside of B C is a boundary com-

ponent of an annular twist,
(c) CcdM.

We have index(^, B) = χ(B) - ΣPC < 0 where the summation is
over the components C of dB of type (a).

Proof. These are the only possible combinations of the fixed point
sets of the standard models. The calculation of the index can be done
using the well-known proposition below. D

PROPOSITION 3.7. Let f:X—>X be a self map of a compact poly-
hedron. Suppose Xθ9XΪ9 X2 are subpolyhedra of X such that X =
Xx UX2, Xo = Xι ΠX2. We suppose /(X;) c X{ and write f: Xt -> Xt

for the restriction of f, for i = 0, 1,2. Let A c Fix/ be both open
and closed in Fix/, and let Aι — AπXi, i = 0, 1, 2. Then

index(/, A) = index(/i > A\) + index^, A2) - index(/), AQ). Π

4. Proof of the Main Theorem. In this section we first prove the
Main Theorem. Then we prove an inequality relating the Lefschetz
number and the Nielsen number.

Proof of the Main Theorem. We are supposed to show that every
essential fixed point class of φ (in the standard form) is shrinkable to
a point, and every inessential one is removable, via a smooth isotopy
(through diffeomorphisms or through embeddings). In Steps 1-4 be-
low, we examine successively the various types of fixed point classes
listed in Lemma 3.6.

Step 1 ~ . Isolated fixed points of zero index.
This can occur in types (Id) " and (le) ~ . They can be removed

according to Remark 2 of §2.2.
Step 2 ± . Fixed circles.
Circles of types (2a) + and (2b) ~ can be removed according to

Remark 2 of §3.1. Circles of types (2c) + and (2d)+ will be treated
later in Step 4.
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Step 3 . Fixed arcs.
Arcs of type (3) ~ have six possible forms shown in Fig. 3, in which

φ switches the two sides of the horizontal axis and moves points on
the extension of A in the direction of the arrows. In the two forms
with zero index, the fixed point set A can be removed by composing
φ with a slight push along the axis in the direction of the arrow. In
the forms with index ±1 the fixed point class can be reduced to a
point by composing φ with a slight contraction or stretch along the
axis.

Step 4+ . Fixed point classes F of types (2c) + , (2d) + and (4) +

have some common features and will be given a unified treatment.
They all have negative index so the task is to reduce F to a point via
an isotopy. Let us fix a hyperbolic metric on M and let δ > 0 be the
minimal length of closed geodesies of M. Then every simple closed
curve of length less than δ must bound a disk.

For all these three types, it is clear that there exists a neighborhood
W of F and a smooth vector field w on W such that w = 0 on
F 9 \w\ < δ/2 on W, φ coincides with the time-one map for w on
a smaller neighborhood V of F. Perturb w to get a smooth vector
field v on W so that υ(x) Φ w(x) only if x is in a sufficiently small
neighborhood U ofF, \v\ < δ/2 on W, v is tangent to dM on
dM Π W, and υ has a unique singularity XQ on W, XQ being any
pre-assigned point of F. The index of the singularity must equal to
index (φ, F) < 0. Let φ1 be the time-one map for v . When U is
small enough, φ1 is well defined on V and coincides with φ near
the boundary of V. So, letting φ1 — φ on M - V, we extend φf
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to a diffeomorphism M —• M. This φf is clearly isotopic to φ. It
remains to show φ' has no fixed points other than XQ .

The vector field v on W cannot have closed orbits shorter than δ ,
because otherwise on the disk bounded by this closed orbit the sum
of indices of the singularities of υ must add up to 1, contradicting
the fact that v has only one singularity with negative index. But
|ι;| < δ/2, so the time-one map can have no fixed point other than the
singularity XQ.

Thus all types have been treated and our goal is achieved.
Note that isotopies through embeddings are needed only in Step

1, type (le)~~ and in Step 3, all involving orientation-reversing φ-
invariant components of dM. D

As a by-product of the analysis leading to the Main Theorem, we
have

THEOREM 4.1. Let M be a compact surface with χ{M) < 0, and
f : M —> M be a homeomorphism. Let L(f) be the Lefschetz num-
ber of f. Then N(f) > L(f) > -N(f) + 2χ(M), or equivalent^,
\L(f)-χ(M)\<N(f)-χ(M).

Proof. Since both L(f) and N(f) are homotopy invariants of / ,
we may assume / is in the standard form φ . The fixed point classes
of φ are as described in Lemma 3.6. L(φ) < N(φ) simply because
every fixed point class of φ has index < 1. The other inequality
needs a closer analysis. Clearly

A

where the summation is taken over all fixed point classes A with
index(^, A) < — 1. A 0-dimensional fixed point class A in the last
summation must be a point x which is an interior px -prong singular-
ity of some pseudo-Anosov piece Mj and index(#>, A) + 1 = 2 - px .
A 1-dimensional fixed point class in this sum is a circle C which
is a /?c-prong boundary component of some pseudo-Anosov piece of
φ, index(9> ? ^) — ~Pc F° r a 2-dimensional fixed point class A,
index(^ , A) = χ(A)~ΣPC where the summation is over components
C of dA which is at the same time a /?c-prong boundary component
of a pseudo-Anosov piece Mj . Hence

C
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where Σx sums over the pseudo-Anosov pieces Mj of φ and Σ2

sums over the periodic pieces Mj of φ , in the braces x runs over all
interior singularities of φ\Mj and C runs over the boundary compo-
nents. By the Euler-Poincare formula of [FLP, p. 75] (applied to the
stable foliation of φ\Mj), the sum in the braces equals 2χ(Mj). Thus

L{φ) + N(φ) > £ 2χ(Mj) + ]Γ χ(Mj) > 2χ(M)
1 2

since every χ(Mj) < 0. D

REMARK. From the proof we see that the equality L(f) + N(f) =
2χ(M) can occur only if / is isotopic to a pseudo-Anosov map of a
closed surface.

Question. Is Theorem 4.1 true even for self-maps of MΊ Note that
for compact surfaces with χ — 0, it is known that \L(f)\ < N(f) for
every self-map / .

5. The relative Nielsen numbers. What is the best lower bound for
the number of fixed points in an isotopy class of diίfeomorphisms?
The Main Theorem provides the answer only for the isotopy classes
without orientation-reversing invariant boundary components. A can-
didate for a general answer is the relative Nielsen number introduced
by Schirmer [S].

Let (X, A) be a pair of compact polyhedra, / : X, A-^ X, A be a
self-map of the pair. Let /A : A —• A be the restriction of / . Denote
by N(f, /A) the number of essential fixed point classes of / that
contain some essential fixed point class of /A . Define

W ; X,A):= N(f) + N(fA) - N{f, fA).

It is shown in [S] that for any map g~f:X,A->X,A,we always
have N{f\ X, A) = N(g X, A), therefore such a map g has at least
N(f; X, A) fixed points on X.

Another relative Nielsen number is introduced by Zhao [Z]. Define
N(f; X - A) to be the number of essential fixed point classes of /
that are not /-related to the /-invariant set A. For any map g ~
f\X9A-* X,A, we always have N(f\ X - A) = N(g; X - A) 9

hence such a map g has at least N(f\ X - A) fixed points on the
complement X-A.

Note that a map / : X, A -* X, A has exactly N{f\ X, A) fixed
points on X and exactly N(f; X-A) fixed points on X-A if and
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only if the following three conditions are satisfied:
• every fixed point class of fA is a single point;
• every inessential fixed point class of / consists of essential fixed

points of fA

• an essential fixed point class of / can have more than one point
only if it consists of essential fixed points of fA .
For homeomorphisms of surfaces we have:

THEOREM 5.1. Let M be a compact surface and let f:M-*M be
a homeomorphism. Then f is isotopic to a dίjfeomorphism which has
exactly N(f; M, dM) fixed points on M and exactly N(f; M-dM)
fixed points in intΛf.

Proof. For the three connected compact surfaces M with χ(M) >
0, the conclusion is obvious. Hence we assume that every component
of M has negative Euler characteristic. By Thurston Theorem we
may replace / with the diffeomorphism φ in the standard form, as
at the beginning of §4. Now we isotope φ as in the proof of the
Main Theorem, with the following modifications: In Step 1 and Step
3, when we push along the axis we leave the intersection of the axis
with dM fixed. In Step 4, we choose the singularity XQ of the vector
field υ to be in F Π dM when F Π dM φ 0 . The result φ1 is
then a diffeomorphism and satisfies the three conditions listed above.
Hence φf has exactly N(φ'\ M, dM) fixed points on M and exactly
N{φ' M — dM) fixed points on int M. D
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