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A NONEXISTENCE RESULT FOR THE n-LAPLACIAN

TILAK BHATTACHARYA

Let P be apointin R”, n > 2; then the problem div(|Vu|"~2Vu)
=e* with ue Wh"n L has no subsolutions in R"\{P}.

loc

Introduction. Let P = P(x;, X3, ..., X,) beapointin R” , n>2,
and Q = R"\{P}. Without any loss of generality we will take P to
be the origin. Consider the problem

Lyu=e* in Q,
(1.1) { SN
ue W _(Q)ynNnLx®

loc loc(Q); p> L.
Here L,u = div(|Vu|P~2Vu) is the p-Laplacian with 1 <p < co. By
a subsolution u of (1.1) we will mean that u € W'-?(Q) N L2 (Q),

d loc loc
an
/ VulP=2Vu, Vy +/ ey <0, Vye(CiP(Q)and vy >0.
Q Q

It is known that for 1 < p < n, (1.1) has no subsolutions in the
exterior of a compact set [AW]. However, for p = n there exist ra-
dial subsolutions for large values of |x|. We show that (1.1) has no
subsolutions in 2, thus extending the results of [AW], namely

THEOREM 1. The following problem
Lyiu=e* inQ, n>2,
has no subsolutions in W':"(Q) N L>(Q).

loc loc

The proof of Theorem 1 will be a consequence of a comparison
principle and nonexistence of global radial solutions. The proof is
presented in §4.

2. Preliminary results.

LEMMA 2.1. Consider

(14 x)/n
1+ x1/n

Then C(x) is decreasing on [0, 1].

C(x)= inmnd<x<l1.
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Proof. Elementary computations show that
d_C B (1 +x)1/n(1 _ x(l—n)/n)
dx = n(1+x1/n)2(1+x)
in 0 < x < 1. Furthermore, C(0) = 1 and C(1) = 2!="/7 and
C(x)—1as x—0. O

We now state an elementary inequality that is easy to prove
(2.1) x"-b">(x-0b)", forx>b2>0.

LEMMA 2.2. Suppose u(r) € C! satisfies the following differential

inequality in (a, R),
B-b
7> u/n
u>A (e + R r) R
where 1 represents differentiation with respectto r, 0 < A< 1, 0<
b<l,0<a<Rand B>%+b. Thenthereisan ¥ in (a, R) such
that u(r) - oo as r —T7.

Proof. Setting v = e~%/" | we obtain that

U+ , a<r<R,

A
< =
R—-rv_ n

where ¢ = ﬂBn;b). Using the integrating factor ¢(r) = (P—I_—r)" and
setting Z = v(r)¢(r) — v(a)p(a), we obtain

A R—-a
(—-;2—>lnR_r, c=1,
zZ <

NEENES) -G e

It is clear that for each ¢ > 1, there is an 7 € (a, R) such that
v(r) - 0 as r - 7, and hence u(r) - oco as r — 7. o

We present a comparison lemma; please refer to [AW] for its proof.

LeEMMA 2.3. Inaregion (Q) CR", n > 2, suppose u,v € Wl’p(Q)

loc
NLE(Q), and (u—v)* € Wol’”(Q). If g is a nondecreasing function

and
Lou>g(u) inD'(Q),
Lyv < g(v) inD'(Q),
then u<v ae. in (Q).
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3. Nonexistence of radial subsolutions. Consider the following prob-
lem

(3.1) (n— 1)|i|"2 <i’t+ %) =e¥, 0<r<oo,
u(R)=a, and u(R)=0b; a,beR.

LEMMA 3.1. For the problem in (3.1), there exists a C' radial solu-
tion u(r) such that at least one of the following occurs.

(i) Thereisan 7 in (0, R) such that u(r) — oo as r —T7.
(ii) Thereisan 7 in (R, o) such that u(r) — oo as r —F.

Furthermore, there are values of b for which both (i) and (ii) occur.
Proof. We divide the proof into three parts.

Case 1. Take b =0. Let u(r) be the solution defined by

r (g 1/(n=1)
(3.2) u(r) = a+ / 7{ / sn—leuws} dr,
R

R
in r > R. The existence and uniqueness in a small interval follows
from Picard’s iteration. It can be shown by differentiating that u
solves (3.1). From (3.2) it is clear that ri is increasing and thus
>0 in (R, r), and hence u is increasing. Continue # by (3.2). By

differentiating (3.2) once,
r 1/(n—1)
/ st Le(s) ds} )
R

u(r) = ! {
Thus,
d {(u)n-l} rmetr) — p [ps" e ds

r
- rn-l-l

S rneu(r) _ eu(r)(rn _ R”)
- rn+1

>0.

By simplifying the left side of the foregoing inequality,
u

- li>-—.
(n—1)it>*

Note that u is C? except possibly where i = 0. Noting that i > 0,
(3.1) yields

n(n—1)@)" i > e*, R<r< .
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Multiplying both sides by # and integrating once from R to r,
eu — ea
n—-1"~
For & > 0, small enough, it follows from (3.2) and the fact that u is
increasing that

r R+e 1/(n=1)
u(r) >a+ / - / s"le¥s) ds dt.
R+e b | JR

Hence for some appropriate constant 4 > 0,

(3.3) ()" 2

r
u(r) > a+AlnR+8

implying that u(r) — oo as r gets large. Thus in (3.3) we may take
r > R, where R, is large enough so that ¢*/2 < e*—e? for r > R;.
If u(r) » oo as r — Ry, then we are done. Otherwise, continue u

using (3.2) past r = R; . Hence
u>Ce¥", inr>Ry,
for some C > 0. Integrating,
u(r)
/ e “"du> C(r—Ry).
u(R,)

It is clear that there exists an 7 > R, such that u(r) — o0 as r - 7.
The case b > 0 follows similarly.

Case 2. Without any loss of generality, take a = 0. Take b < 0.
Now #(r) < 0 near r = R, so we obtain that #(r) satisfies

1 r 1/(n=1)
(3.4) (r) = - {|bR|"‘1 ~ / tnlent) dt} ,
R

in r > R. We show that there is » < 0 such that if & < b < 0, there
is an 7 > R such that #(r) — 0 as r — 7. It follows from (3.4) that
ru is increasing and thus

bTRSitSO, forr > R.

Set ¢ = bR. Integrating, we find

equc,

r 1/(n=1)
{|c|n—l _/ tn—1+cdt} .
R

and so (3.4) yields

~ | -

ar) >
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Therefore,
n+c _ pn+cy 1/(n=1)
——l-{lcl"“——r———};——} . —n<c<0,
=y et
n—1
——% {lcl"‘l —ln%} ; c=-n.

It is clear that there is an # > R for which #(r) — 0 as r — 7. Now,
take ¢ < —n, satisfying

(3.5) et - L (LT e
lc] = n \R )

Now, (3.4) yields

u(r) > —% {lcl”“1 T 1_ . {(1_12)""" _ (%)ICI—nH 1/(n=1) |

Using (3.5), there is an 7 such that #(r) > -2 for r > 7. If u(r) — 0
as r — 7, then we are done. Otherwise, continue u past r = F.
Repeating the arguments preceding (3.5), we see that #(r) — 0 as
r — 7 for some 7 > R. Continuing u past r =7 using

"y 1/(n=1)
u(r) = u(f)+/ " {/ s”“‘e”(s)ds} dt,
P P

we may show, as in Case 1, that there is an 7 > R where u blows up.

Case 3. We may again take a = 0. Let c < —n, t = R -,
and v(t) = u(r), where 0 < r < R. Then ©(¢t) = —u(r), where v
represents differentiation with respect to ¢. Then

_ qin—2 [ a5 _ v — pV
(3.6) (n—1)|v| (v R—t) ev, 0<t<R,
v(0)=0 and ©(0)=->.

A solution of (3.6) is given by

t s 1/(n-1)
'U(t)=/ o {1c|"-1+/ (R—w)"”‘e”(“’)dw} ds.
0 s 0

Equation (3.6) yields that £{(R - )0} > 0, thus © > 0 in ¢ > 0.
Integrating this inequality from O to ¢, we obtain

; lc]
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Hence,

3.7 vl L)
. 2| — .
(3.7) ¢ —(R—J

Let 0 < ¢y <1 be such that

1+¢l/m
> [ —
le] > n{(l +8)1/n}+8
for every ¢ in (0, g). It follows from (3.7) that there isa #; < R

such that "
() <o

for t > ¢. If v(t) > 00 as t — t;, then we are done; otherwise
continue v(t) past ¢t = t;. Furthermore, we may take #; such that
R — t; < gy . Rearranging the terms in (3.6), and multiplying by v(¢)
yields

m-nwy4ﬁ=&ﬁ+2:jmﬂ 0<t<R.

Integrating both sides from 0 to ¢, and noting that v > Rﬂ‘_-t , we find

le]
R—t
By the definition of ¢, it follows that

n
wyzw—1+( ), 0<t<R.

n
(1’1)”2e”+(%_—i°) ,  t<t<R.

Icl — & " -v
={=——] ¢
x (R—t ’
the above may be rewritten as
()" >e’{1 +x}.

Setting

Hence,
0 > eV/"{1 4+ x}/",

Using Lemma 2.1 and the definition of ¢,
v > C(ep)e¥/"{1 + x'/} .

Thus we obtain

'l)ZC(&o){ev/n-l-l—cIli—:—{;q}, tp <t<R.
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By Lemma 2.2, there is a ¢, > ¢; such that v(¢) — o0 as t — 1;.
Hence there is an 7 € (0, R) for which u(r) — oo as r — 7. Thus for
every ¢ < —n, we have a vertical asymptote in (0, R). It is clear from
(3.5) that there are values of b for which both (i) and (ii) happen.
Call one such value to be bg.

For the case a # 0, we introduce the following change of variables.
Let v(r) = u(r) — a; then

(n = 1)jo|*2 (v + 2 - 1@) = %" .

Setting ¢ = re?/” , and w(¢) = v(r), and differentiating with respect
to t, we have

-1
(n—1)|w|*? (w + z1——;———w) = e,
w(R)=0 and w(R)=e"¥"b,
where R = e%/"R. There is a by so that the corresponding solution
which we continue to call w(t), blows up near zero and at a point

past R. Then u(t) = a+w(e~%"f) is such a solution for the original
problem. o

4. Proof of Theorem 1. This follows easily from Lemma 2.3 and
Lemma 3.1.

Proof of Theorem 1. Assume to the contrary. Let U(x) be such a
subsolution in (1.2). Let

a= _inf U(x).
1/2<ix|<3/2

By Lemma 3.1, there is a radial solution u(r) such that u(1)=a—-1,
and u(r) blows up at some r € (0, 1) and 7€ (1, o). Let

M= sup U(x),

r<|x|<r
re(r,1) and 7 € (1, 7) be such that u(r), u(F) > M + 1. Using
Lemma 2.3, u(x) > U(x) in r < |x| < 7, a contradiction. O

REMARK. In Theorem 1, 1 < p < n is the best possible. For p > n,
take u =In(4), where 0 < A4 < (p — n)pP~!. Then
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